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Mathématiques, 23 rue du Docteur Paul Michelon, 42023
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Abstract. We study quantum Schubert varieties from the point of view of
regularity conditions. More precisely, we show that these rings are domains that are
maximal orders and are AS-Cohen-Macaulay and we determine which of them are
AS-Gorenstein. One key fact that enables us to prove these results is that quantum
Schubert varieties are quantum graded algebras with a straightening law that have a
unique minimal element in the defining poset. We prove a general result showing when
such quantum graded algebras are maximal orders. Finally, we exploit these results to
show that quantum determinantal rings are maximal orders.
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Introduction. Since the appearance of quantum groups in the eighties, there
have been several attempts to define quantum analogues of coordinate rings of
grassmannian varieties and, more generally, of flag varieties. Here, we are interested
in such deformations for grassmannian varieties and we follow the approach of
Lakshmibai and Reshetikhin (see [8]). Hence, we start with the (usual) quantum
deformation, denoted by Oq(Mm,n(k)), of the coordinate ring of m × n matrices. Then,
denoting by Gm,n(k) the grassmanian of m-dimensional subspaces in kn, the quantum
deformation of the coordinate ring of Gm,n(k) that we consider is the k-subalgebra of
Oq(Mm,n(k)) generated by the maximal quantum minors. We denote this algebra by
Oq(Gm,n(k)) and call it the quantum grassmannian for simplicity. Precise definitions are
recalled in Section 1.

Our main interest, in this paper, is the study of a family of quotients of Oq(Gm,n(k))
that appear in [8] and are natural quantum analogues of coordinate rings of Schubert
varieties in Gm,n(k). These quantum Schubert varieties have already been studied, to
some extent, in [10]. There, they were used as a central tool to show that Oq(Gm,n(k)) is
a quantum graded algebra with a straightening law. Details on the notion of quantum
graded algebra with a straightening law (quantum graded A.S.L. for short) can be
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found in Section 2 below and in [10] where this notion was introduced. Roughly
speaking, such an algebra is endowed with a standard monomial basis built on the
elements of a finite partially ordered subset of generators. In addition, the quantum
graded A.S.L. structure provides a good control on the way such standard monomials
multiply with each other by means of the so-called straightening law and commutation
law.

In fact, the notion of quantum graded A.S.L. is particularly well adapted to
studying both Oq(Gm,n(k)) and its associated quantum Schubert varieties, which are
also quantum graded A.S.L. as shown in [10]. Here, we use this notion to study quantum
Schubert varieties from the point of view of noncommutative algebraic geometry.
Namely, we first show that they are integral domains that are maximal orders in their
division ring of fractions. Recall that the notion of maximal order generalises, in the
noncommutative setting, that of a normal domain in commutative algebra. Next, we
study their regularity properties in the sense of Artin and Schelter (namely, homological
properties such as the Cohen-Macaulay and the Gorenstein properties).

Also, it turns out that quantum Schubert varieties are strongly linked to another
family of interesting quantum algebras: the quantum determinantal rings. These are
quotients of Oq(Mm,n(k)) by the ideal generated by quantum minors of a given size.
Hence, as a consequence of our results, we are able to show that quantum determinantal
rings are maximal orders in their division ring of fractions. This generalises results
obtained in [9] where it was shown that quantum determinantal rings are maximal
orders under the restrictive hypotheses that k is the field of complex numbers and the
deformation parameter q is transcendental over �.

The paper is organised as follows. Section 1 is mainly devoted to recalling basic
definitions and crucial results concerning the quantum algebras we intend to study.
Section 2 starts with a short reminder about the notion of quantum graded A.S.L. Here,
we establish a general criterion that allows us to prove that, in certain circumstances,
a quantum graded algebra with a straightening law that is a domain and whose
underlying poset has a single minimal element is a maximal order in its division
ring of fractions. In Section 3 we use the results of Section 2 to show that quantum
Schubert varieties are integral domains and are maximal orders in their division ring
of fractions. Also, we investigate their regularity properties. It was shown in [10] that
quantum Schubert varieties are AS-Cohen-Macaulay. Here we determine which of
them are AS-Gorenstein. Section 4 is devoted to proving that quantum determinantal
rings are maximal orders in their division ring of fractions. This is shown by using the
material of the two preceding sections.

Recall from [11, Chapter 5, Section 1] that a commutative noetherian domain A
is a maximal order in its quotient field if and only if it is integrally closed. For this
reason, if A is a (noncommutative) domain, then we will say that A is normal if it is
a maximal order in its division ring of fractions. This convention differs slightly from
classical uses in noncommutative algebra.

Throughout k denotes a field. The cardinality of a finite set X is denoted by |X |.

1. Basic definitions. In this section, we collect some basic definitions and proper-
ties about the objects we intend to study. Most proofs will be omitted since these results
already appear in [5] and [10]. Appropriate references will be given in the text.

Let m, n be positive integers. The standard quantization of the coordinate ring of
the affine variety Mm,n(k) of m × n matrices with entries in k is denoted Oq(Mm,n(k)).
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It is the k-algebra generated by mn indeterminates Xij, with 1 ≤ i ≤ m and 1 ≤ j ≤ n,
subject to the relations:

XijXil = qXilXij, for 1 ≤ i ≤ m, and 1 ≤ j < l ≤ n ;
XijXkj = qXkjXij, for 1 ≤ i < k ≤ m, and 1 ≤ j ≤ n ;
XijXkl = XklXij, for 1 ≤ k < i ≤ m, and 1 ≤ j < l ≤ n ;
XijXkl − XklXij = (q − q−1)XilXkj, for 1 ≤ i < k ≤ m, and 1 ≤ j < l ≤ n.

To simplify, we write Mn(k) for Mn,n(k). The m × n matrix X = (Xij) is called the generic
matrix associated with Oq(Mm,n(k)).

As is well known, there exists a k-algebra transpose isomorphism between
Oq(Mm,n(k)) and Oq(Mn,m(k)), see [10, Remark 3.1.3]. Hence, from now on, we assume
that m ≤ n, without loss of generality.

An index pair (in {1, . . . , m} × {1, . . . , n}) is a pair (I, J) such that I ⊆ {1, . . . , m}
and J ⊆ {1, . . . , n} are subsets with the same cardinality. Hence, an index pair is given
by an integer t such that 1 ≤ t ≤ m and ordered sets I = {i1 < . . . < it} ⊆ {1, . . . , m}
and J = {j1 < . . . < jt} ⊆ {1, . . . , n}. To any such index pair we associate the quantum
minor

[I|J] =
∑
σ∈St

(−q)�(σ )Xiσ (1)j1 . . . Xiσ (t)jt .

The set of all index pairs is denoted by �m,n. Since �m,n is in one-to-one correspondence
with the set of all quantum minors of Oq(Mm,n(k)), we will often identify these two
sets. The set �m,n is equipped with the partial order ≤st defined in [10, Section 3.5].
Namely, if (I, J) and (K, L) are index pairs with I = {i1 < . . . < iu}, J = {j1 < . . . <

ju}, K = {k1 < . . . < kv} and L = {l1 < . . . < lv} then

(I, J) ≤st (K, L) ⇐⇒
⎧⎨
⎩

u ≥ v,

is ≤ ks for 1 ≤ s ≤ v,

js ≤ ls for 1 ≤ s ≤ v.

We now consider the quantization of the coordinate ring of the grassmannian of
m-dimensional subspaces of kn, denoted by Oq(Gm,n(k)). This is defined to be the
subalgebra of Oq(Mm,n(k)) generated by the m × m quantum minors.

An index set (in {1, . . . , n}) is a subset I = {i1 < . . . < im} ⊆ {1, . . . , n}. To any
index set we associate the maximal quantum minor [{1, . . . , m}|I ] of Oq(Mm,n(k)) that
is, thus, an element of Oq(Gm,n(k)). The set of all index sets is denoted by �m,n. Since
�m,n is in one-to-one correspondence with the set of all maximal quantum minors of
Oq(Mm,n(k)), we will often identify these two sets. The map �m,n −→ �m,n given by
I 
→ ({1, . . . , m}, I), identifies �m,n with a subset of �m,n. Hence, the partial order ≤st

induces a partial order on �m,n that we still denote by ≤st. Clearly, if I = {i1 < . . . < im}
and J = {j1 < . . . < jm} are two index sets, we have

I ≤st J ⇐⇒ is ≤ js for 1 ≤ s ≤ m.

The order in which the k-algebras Oq(Mm,n(k)) and Oq(Gm,n(k)) have been
introduced above is forced upon us by the definition of the quantum grassmannian.
Despite this, from our point of view, the more fundamental object is Oq(Gm,n(k)),
rather than Oq(Mm,n(k)) and we concentrate on Oq(Gm,n(k)) in this paper. Indeed,
many desirable properties shared by these two algebras are more easily proven for
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Oq(Gm,n(k)). Then, the corresponding property can be transfered to Oq(Mm,n(k))
using the dehomogenisation map Dm,n, introduced in [5], that relates the two algebras.
We briefly recall the definition of this map. Recall from [10, Section 3.5] that
to any (I, J) ∈ �m,n we associate K(I,J) ∈ �m,m+n where, if I = {i1 < . . . < it} and
J = {j1 < . . . < jt}, for 1 ≤ t ≤ m, we set K(I,J) := {j1, . . . , jt, n + 1 . . . , n + m} \ {n +
m + 1 − i1, . . . , n + m + 1 − it}. Then, letting M = {n + 1, . . . , n + m}, the map δm,n :
�m,n −→ �m,m+n \ {M}, (I, J) 
→ K(I,J) is an isomorphism of partially ordered sets, see
[10, 3.5.2]. Let φ be the automorphism of Oq(Mm,n(k)) defined by φ(Xij) = q−1Xij for
1 ≤ i ≤ m and 1 ≤ j ≤ n. It can be shown that there exists a k-algebra isomorphism

Dm,n : Oq(Mm,n(k))[y, y−1; φ] −→ Oq(Gm,m+n(k))[[M]−1]

given by [I|J] 
→ [K(I,J)][M]−1 and y 
→ [M]. For details about this map see [10,
Section 3.5].

One crucial property in the study ofOq(Gm,n(k)) andOq(Mm,n(k)) is the existence of
standard monomial bases. By a standard monomial in Oq(Gm,n(k)) we mean either 1 or a
product of the form [I1] . . . [I�], where � ∈ �∗ and I1 ≤st . . . ≤st I� ∈ �m,n. By [10, 3.2.4],
the set of standard monomials is a k-basis of Oq(Gm,n(k)), called the standard monomial
basis of Oq(Gm,n(k)). A similar notion of standard monomial can be introduced in
Oq(Mm,n(k)) using �m,n.

Here again, it turns out that the set of standard monomials is a k-basis of
Oq(Mm,n(k)), called the standard monomial basis of Oq(Mm,n(k)). This fact can easily
be proved using the standard monomial basis of the quantum grassmannian and the
map Dm,n, see the proof of [10, 3.5.3] for part of the argument. However, note that it is
also a special case of [4, Theorem 9].

We now introduce the main object of investigation of the present work, namely,
quantum analogues of coordinate rings of Schubert varieties in the grassmannian.

DEFINITION 1.1. Let γ ∈ �m,n and put �
γ
m,n = {α ∈ �m,n | α �≥st γ }. The quantum

Schubert variety associated to γ is

Oq(Gm,n(k))γ := Oq(Gm,n(k))/〈�γ
m,n〉.

REMARK 1.2.
(i) Quantum Schubert varieties, as defined above, appear in [8, p.162]. Notice,

however, that our conventions differ slightly from those of [8]. However, it is easy to
see that the two different conventions produce isomorphic algebras.

(ii) Definition 1.1 is inspired by the classical description of the coordinate rings
of Schubert varieties in the grassmannian. For details about this matter, see [3,
Section 6.3.4].

It turns out that quantum Schubert varieties also have standard monomial bases.
In fact these bases are inherited from the corresponding bases for Oq(Gm,n(k)). One
convenient way to show this is by means of the notion of quantum graded algebra
with a straightening law. Hence, we postpone the details about this point until Section
2 where this notion is discussed.

We end this section by showing a technical result that we will use later on. It is a
quantum analogue of Muir’s Law of Extensible Minors. In fact, the result we prove,
Proposition 1.3 below, is only a special case of the Quantum Muir’s Law of Extensible
Minors. For a general result, the reader is referred to [7, Theorem 3.4]. Even though
the result we prove can be deduced from [7, Theorem 3.4], we have inserted a proof for
the convenience of the reader, since our proof is relatively short.
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Recall that n is a positive integer and put F = {1, . . . , n}. As is well known, the
quantum determinant [F |F ] is a central element of Oq(Mn(k)), see, for example, [13,
4.6.1]. Hence, we may form the localisation Oq(GLn(k)) := Oq(Mn(k))[[F |F ]−1]. By
[13, 5.3.2], Oq(GLn(k)) is a Hopf algebra whose antipode is the anti-automorphism S
induced by

S(Xij) = (−q)i−j[F \ {j}|F \ {i}][F |F ]−1.

In addition, if I = {i1, . . . , it} and J = {j1, . . . , jt} are subsets of F then

S([I|J]) = (−q)(i1+...+it)−(j1+...+jt)[F \ J|F \ I ][F |F ]−1,

see, for example, [5, Lemma 4.1].
Now, for 1 ≤ � ≤ n, let ε� denote the element of �n whose only nonzero coordinate

equals one and is in the �-th position. There is a natural �n × �n-grading on Oq(Mn)
relative to which, for 1 ≤ i, j ≤ n, the degree of Xij is (εi, εj). Clearly, if I, J are subsets
of F of the same cardinality, the degree of [I|J] is (

∑
i∈I εi,

∑
j∈J εj).

PROPOSITION 1.3. Let P, Q be two subsets of F of the same cardinality and denote
by P, Q their respective complements in F. Consider d ∈ �∗ and, for 1 ≤ s ≤ d, elements
cs ∈ k and subsets Is, Ks ⊆ P and Js, Ls ⊆ Q such that |Is| = |Js| and |Ks| = |Ls|. If the
relation

∑d
s=1 cs[Is|Js][Ks|Ls] = 0 holds in Oq(Mn(k)), then the relation

d∑
s=1

cs[Is ∪ P|Js ∪ Q][Ks ∪ P|Ls ∪ Q] = 0

holds in Oq(Mn(k)).

Proof. We may suppose, without loss of generality, that the products [Is|Js][Ks|Ls]
in the relation

∑d
s=1 cs[Is|Js][Ks|Ls] = 0 have the same �n × �n-degree. Now, let p be

the common cardinality of P and Q. The subalgebra of Oq(Mn(k)) generated by those
Xij such that i ∈ P and j ∈ Q is isomorphic to Oq(Mp(k)). Hence, we may consider the
relation

∑d
s=1 cs[Is|Js][Ks|Ls] = 0 as a relation in Oq(Mp(k)) and apply to this relation

the antipode of Oq(GLp(k)). This yields the relation

d∑
s=1

cs[Q \ Ls|P \ Ks][Q \ Js|P \ Is] = 0

inOq(Mn(k)). (Notice that the �n × �n-homogeniety of the relation has been used here
to cancel out the various powers of q occuring from the application of the antipode.)
Now, applying the antipode of Oq(GLn(k)) to this relation gives us the relation

d∑
s=1

cs[Is ∪ P|Js ∪ Q][Ks ∪ P|Ls ∪ Q] = 0

in Oq(Mn(k)). �

2. Quantum graded algebras with a straightening law. In this section, we start
reviewing the notion of quantum graded algebra with a straightening law, as introduced
and studied in [10]. Next, we give a criterion that allows us to show that, under certain
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hypotheses, a quantum graded algebra with a straightening law that is a domain and
whose underlying partially ordered set has a single minimal element is a maximal order
in its division ring of fractions.

2.1. Short reminder. In this subsection, we recall the notion of a quantum graded
algebra with a straightening law (on a partially ordered set �). We also recall various
properties of such algebras that we will use later.

Let A be an algebra and � a finite subset of elements of A with a partial order <st.
A standard monomial on � is an element of A that is either 1 or of the form α1 . . . αs,
for some s ≥ 1, where α1, . . . , αs ∈ � and α1 ≤st . . . ≤st αs.

DEFINITION 2.1.1. Let A be an �-graded k-algebra and � a finite subset of A
equipped with a partial order <st. We say that A is a quantum graded algebra with
a straightening law (quantum graded A.S.L. for short) on the poset (�,<st) if the
following conditions are satisfied.

(1) The elements of � are homogeneous with positive degree.
(2) The elements of � generate A as a k-algebra.
(3) The set of standard monomials on � is a linearly independent set.
(4) If α, β ∈ � are not comparable for <st, then αβ is a linear combination of terms

λ or λµ, where λ,µ ∈ �, λ ≤st µ and λ <st α, β.
(5) For all α, β ∈ �, there exists cαβ ∈ k∗ such that αβ − cαββα is a linear

combination of terms λ or λµ, where λ,µ ∈ �, λ ≤st µ and λ <st α, β.

By [10, Proposition 1.1.4], if A is a quantum graded A.S.L. on the partially ordered
set (�,<st), then the set of standard monomials on � forms a k-basis of A. Hence,
in the presence of a standard monomial basis, the structure of a quantum graded
A.S.L. may be seen as providing substantial further information on the way standard
monomials multiply and commute.

EXAMPLE 2.1.2. As is well known, the algebra Oq(Mm,n(k)) is �-graded, by putting
the canonical generators in degree one. Now, since Oq(Gm,n(k)) is a subalgebra of
Oq(Mm,n(k)) generated by homogeneous elements, Oq(Gm,n(k)) inherits a natural �-
grading from that of Oq(Mm,n(k)). In fact, beyond the existence of standard monomial
bases for Oq(Gm,n(k)) and Oq(Mm,n(k)), as mentioned in Section 1, we have that
Oq(Gm,n(k)) is a quantum graded A.S.L. on (�m,n,≤st) and that Oq(Mm,n(k)) is a
quantum graded A.S.L. on (�m,n,≤st), see [10, Theorem 3.4.4 and 3.5.3].

From our point of view, one important feature of quantum graded A.S.L. is the
following. Let A be a k-algebra that is a quantum graded A.S.L. on the set (�,≤st). A
subset � of � will be called a �-ideal if it is an ideal of the partially ordered set (�,≤st)
in the sense of lattice theory; that is, if it satisfies the following property: if α ∈ � and if
β ∈ �, with β ≤st α, then β ∈ �. We can consider the quotient A/〈�〉 of A by the ideal
generated by �. Clearly, it is still a graded algebra and it is generated by the images
in A/〈�〉 of the elements of � \ �. The important point here is that A/〈�〉 inherits
from A a natural quantum graded A.S.L. structure on � \ � (or, more precisely, on the
canonical image of � \ � in A/〈�〉). In particular, the set of homomorphic images in
A/〈�〉 of the standard monomials of A that either equal 1 or are of the form α1 . . . αt

(t ∈ �∗) and α1 /∈ � form a k-basis for A/〈�〉. The reader will find all the necessary
details in [10, Section 1.2].
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EXAMPLE 2.1.3. Let γ ∈ �m,n. It is clear that the set �
γ
m,n introduced in

Definition 1.1 is a �m,n-ideal. Hence, the discussion above shows that the quantum
Schubert variety Oq(Gm,n(k))γ is a quantum graded A.S.L. on the canonical image in
Oq(Gm,n(k))γ of �m,n \ �

γ
m,n. In particular, the canonical images in Oq(Gm,n(k))γ of the

standard monomials of Oq(Gm,n(k)) that either equal to 1 or are of the form [I1] . . . [It],
for some t ≥ 1 and with γ ≤st [I1], form a k-basis of Oq(Gm,n(k))γ .

REMARK 2.1.4. Let γ ∈ �m,n. As mentioned in Example 2.1.3, the quantum
Schubert variety Oq(Gm,n(k))γ is a quantum graded A.S.L. on the canonical image in
Oq(Gm,n(k))γ of �m,n \ �

γ
m,n. At this point, it is worth noting that the set �m,n \ �

γ
m,n

has a single minimal element, namely γ .

We end this subsection by recalling from [10, Proposition 1.1.5] the formula that
gives the Gelfand-Kirillov dimension of a quantum graded A.S.L. Note that, if (�,≤st)
is a partially ordered set, the rank of an element π ∈ �, denoted rkπ , is the greatest
integer k ∈ � such that there exists a chain π1 <st . . . <st πk−1 <st πk = π of elements
of �. Then, we define the rank of � by rk� = max{rkπ, π ∈ �}. Then, we have the
following proposition.

PROPOSITION 2.1.5. Let A be a quantum graded A.S.L. on (�,≤st); then GKdimA =
rk�.

COROLLARY 2.1.6. Let γ = {γ1, . . . , γm} ∈ �m,n. Then

GKdimOq(Gm,n(k))γ = m(n − m) + m(m + 1)
2

−
( m∑

i=1

γi

)
+ 1.

Proof. It is well known that rk
(
�m,n \ �

γ
m,n

) = m(n − m) + m(m+1)
2 − (∑m

i=1 γi
) +

1, see [1, 5.12]; so, the result follows from Proposition 2.1.5. �

2.2. Quantum graded A.S.L. and the maximal order property. In this subsection
we are interested in quantum graded A.S.L. whose associated poset has a single minimal
element. Hence, let A be a quantum graded A.S.L. on the poset (�,≤st), and assume
that (�,≤st) has a single minimal element, denoted γ . We know that γ is a regular
normal element of A, by [10, Lemma 1.2.1]. Hence, we may form the localisation,
A[γ −1], of A with respect to the powers of γ and the canonical map A −→ A[γ −1]
is injective. Notice that quantum Schubert varieties are examples of such algebras, as
mentioned in Remark 2.1.4.

Our first interest is in studying the ideal 〈γ 〉 of A.
To each element σ ∈ �, we associate the subset �σ of � defined by

�σ = {π ∈ � | π �≥st σ }.

It is clear that �σ is a �-ideal. In addition, we let Iσ be the ideal of A generated by �σ :

Iσ = 〈�σ 〉.

It is clear that, if σ and τ are elements of � such that σ ≤st τ , then �σ ⊆ �τ and
hence Iσ ⊆ Iτ . Finally, a last piece of notation: let σ ∈ �; an element τ is called an
upper neighbour of σ if σ <st τ and there is no element ν ∈ � such that σ <st ν <st τ .
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Clearly, for any σ ∈ �, the set of upper neighbours of σ is a (finite) subset of � that is
empty if and only if σ is maximal.

LEMMA 2.2.1. We keep the notation introduced above.
(i) Let ψ be the automorphism of A associated to the regular normal element γ ; that

is, γ a = ψ(a)γ , for all a ∈ A. Then ψ(Iτ ) = Iτ for all τ ∈ �.
(ii) Suppose that {γ } � �. Then the following formula holds, where the intersection

is taken over all the upper neighbours τ of γ :

〈γ 〉 =
⋂

Iτ .

Proof. (i) By condition (5) of Definition 2.1.1, the element γ commutes up to a
non zero scalar with each element of �. Thus, each τ ∈ � is an eigenvector (with non
zero eigenvalue) of ψ ; so, the statement is clear.

(ii) There is at least one upper neighbour of γ , since {γ } � �. As γ ∈ �τ , for
all upper neighbours τ of γ , the inclusion 〈γ 〉 ⊆ ⋂

Iτ is clear. Let us now obtain
the reverse inclusion. First, notice that any element of � different from γ must be
greater than or equal to some upper neighbour of γ ; this is an easy consequence of
the fact that � is a finite partially ordered set whose unique minimal element is γ . On
the other hand, for all τ ∈ �, since �τ is a �-ideal, the ideal Iτ is the vector space
generated by standard monomials involving an element of �τ , see [10, Proposition
1.2.5]. Hence, Iτ is the vector space generated by standard monomials of the form
α1 . . . αr, with α1 ≤st . . . ≤st αr ∈ � and such that α1 �≥st τ . Since, in addition, the
standard monomials form a basis of A, it follows that

⋂
Iτ (where the intersection is

taken over all the upper neighbours of γ ) is the vector space generated by standard
monomials of the form α1 . . . αr, with α1 ≤st . . . ≤st αr ∈ � and such that α1 is not
greater than or equal to any upper neighbour of γ . By the above comment, this forces
α1 = γ . The inclusion

⋂
Iτ ⊆ 〈γ 〉 now follows. �

PROPOSITION 2.2.2. We keep the notation introduced above. Assume that A is a
domain such that Iτ is a completely prime ideal of A for any upper neighbour τ of γ , and
that A[γ −1] is a maximal order in its division ring of fractions. Then A is a maximal order
in its division ring of fractions.

Proof. First, recall from [10, Lemma 1.2.3] that A is noetherian. Notice, in addition,
that if � = {γ }, then A is a commutative polynomial ring in one indeterminate; so that
A is clearly a maximal order in its division ring of fractions. Now, assume that {γ } � �.
By Lemma 2.2.1 and the hypotheses made on A, we are in position to apply [14, Lemma
1.1] that gives the result. �

3. Quantum Schubert varieties in the grassmannian. Let m, n be positive integers.
As discussed above, to each γ ∈ �m,n, we may associate the k-algebra Oq(Gm,n(k))γ ,
which is a quantum deformation of the coordinate ring of a Schubert variety. The aim
of this section is to study these rings. In the first subsection, we shall will show that
they are normal integral domains. In the second section, we shall will study them from
the point of view of regularity conditions.

3.1. Integrality and normality. Our aim in this subsection is to prove that the
quantum Schubert variety Oq(Gm,n(k))γ is a normal domain for any γ ∈ �m,n. Here,
by normal domain, we mean an integral domain that is a maximal order in its division
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ring of fractions. To achieve this goal, we will be naturally led to use certain subalgebras
of Oq(Mm,n(k)) that we now define.

Let us start by introducing some convenient notation. To each γ = {γ1, . . . , γm} ∈
�m,n, with 1 ≤ γ1 < . . . < γm ≤ n, we associate the subsetLγ of {1, . . . , m} × {1, . . . , n}
defined by

Lγ = {(i, j) ∈ {1, . . . , m} × {1, . . . , n} | j > γm+1−i and j �= γ� for 1 ≤ � ≤ m},
that we call the ladder associated with γ .

It follows from the definition of Lγ that for each (i, j) ∈ Lγ the set {γ1, . . . , γm} \
{γm+1−i} ∪ {j} is a subset of {1, . . . , n} containing m distinct elements. Hence, it makes
sense to associate to this subset the maximal quantum minor mij := [{γ1, . . . , γm} \
{γm+1−i} ∪ {j}] of Oq(Mm,n(k)). We then set

Mγ = {mij ∈ �m,n | (i, j) ∈ Lγ } ⊆ �m,n.

REMARK 3.1.1. Let γ = {γ1, . . . , γm} ∈ �m,n.
(i) Consider j, l ∈ {1, . . . , m} and suppose j /∈ {γ1, . . . , γm}. Then, clearly, j <

γl implies that [{γ1, . . . , γm} \ {γl} ∪ {j}] <st γ while j > γl implies that
[{γ1, . . . , γm} \ {γl} ∪ {j}] >st γ .

(ii) Hence, the elements ofMγ are nothing but the elements of �m,n that are greater
than γ with respect to the partial order ≤st and differ from γ by exactly one
column index.

DEFINITION 3.1.2. Let γ = {γ1, . . . , γm} ∈ �m,n, with 1 ≤ γ1 < . . . < γm ≤ n. The
quantum ladder matrix ring associated with γ , denoted Oq(Mm,n,γ (k)), is the k-
subalgebra of Oq(Mm,n(k)) generated by the elements Xij ∈ Oq(Mm,n(k)) such that
(i, j) ∈ Lγ .

Let us discuss an example to clarify the definition.

EXAMPLE 3.1.3. We put (m, n) = (3, 7) and γ = {γ1, γ2, γ3} = {1, 3, 6} ∈ �3,7. In
the 3 × 7 generic matrix X = (

Xij
)

associated to Oq(M3,7(k)), put a bullet on each row
as follows: on the first row, the bullet is in column 6 because γ3 is 6, on the second row,
the bullet is in column 3 because γ2 is 3 and on the third row, the bullet is in column 1
because γ1 = 1. Now, in each position that is to the left of a bullet, or that is below a
bullet, put a star. To finish, place Xij in any position (i, j) that has not yet been filled.
We obtain

⎛
⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗ • X17

∗ ∗ • X24 X25 ∗ X27

• X32 ∗ X34 X35 ∗ X37

⎞
⎟⎟⎟⎟⎠

.

By definition, the ladder quantum matrix ring associated to γ = {1, 3, 6} is the subal-
gebra of Oq(M3,7(k)) generated by the elements X17, X24, X25, X27, X32, X34, X35, X37.

Our aim now is to show that the localisation of Oq(Gm,n(k))γ at the powers of the
image of γ inOq(Gm,n(k))γ is isomorphic to a skew Laurent extension ofOq(Mm,n,γ (k)).

LEMMA 3.1.4. Let γ = {γ1, . . . , γm} ∈ �m,n, with 1 ≤ γ1 < . . . < γm ≤ n. For
(i, j), (k, l) ∈ Lγ , the following relations hold in Oq(Gm,n(k)):
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(i) if i = k and j < l, then mijmkl = qmklmij;
(ii) if i < k and j = l, then mijmkl = qmklmij;
(iii) if i < k and j > l, then mijmkl = mklmij;
(iv) if i < k and j < l, then mijmkl − mklmij = (q − q−1)milmkj;
(v) γ mij = qmijγ .

Proof. The proof is an easy application of Proposition 1.3. We give details for (iv)
leaving the other (easier) cases to the reader.

First, note that, if we set R = {γ1, . . . , γm} \ {γm+1−i, γm+1−k}, then mij =
[{γ1, . . . , γm} \ {γm+1−i} ∪ {j}] = [R ∪ {γm+1−k, j}] and mkl = [{γ1, . . . , γm} \ {γm+1−k} ∪
{l}] = [R ∪ {γm+1−i, l}]. In addition, γm+1−i < j, since (i, j) and (k, l) are in Lγ . Hence,

γm+1−k < γm+1−i < j < l.

It follows that, in Oq(Mn(k)), we have the relation

[1, 2|γm+1−k, j][1, 2|γm+1−i, l] − [1, 2|γm+1−i, l][1, 2|γm+1−k, j]

= (q − q−1)[1, 2|γm+1−k, l][1, 2|γm+1−i, j].

(This is an immediate consequence of the relation [13][24] − [24][13] = (q − q−1)[14][23]
that holds in Oq(G2,4(k)), see the introduction of [5], using a suitable injection of
Oq(G2,4(k)) in Oq(Mn(k)).) Now, applying Proposition 1.3 to this relation, with P =
{3, . . . , m} and Q = R gives the relation

[1, . . . , m|R ∪ {γm+1−k, j}][1, . . . , m|R ∪ {γm+1−i, l}]

−[1, . . . , m|R ∪ {γm+1−i, l}][1, . . . , m|{R ∪ γm+1−k, j}]

= (q − q−1)[1, . . . , m|R ∪ {γm+1−k, l}][1, . . . , m|R ∪ {γm+1−i, j}].

If we view Oq(Gm,n(k) as the subalgebra of Oq(Mn(k)) generated by the m × m minors
built on the first m rows of the generic matrix of Oq(Mn(k)), this gives the required
relation. �

REMARK 3.1.5. (i) In view of the defining relations of Oq(Mm,n(k)), it is clear that
there exists a k-algebra automorphism ψ : Oq(Mm,n(k)) −→ Oq(Mm,n(k)) such that
ψ(Xij) = qXij, for each i, j.

(ii) Let γ ∈ �m,n. It is not difficult to check that the quantum ladder matrix
ring, Oq(Mm,n,γ (k)), is isomorphic to an iterated skew polynomial extension of k
obtained by inserting the generators Xij, with (i, j) ∈ Lγ , in lexicographic order. In
fact, Oq(Mm,n,γ (k)) is isomorphic to the k-algebra generated by indeterminates Xij,
with (i, j) ∈ Lγ , subject to the relations imposed by the fact that Xij ∈ Oq(Mm,n(k)).
In addition ψ clearly restricts to a k-algebra automorphism of Oq(Mm,n,γ (k)), that we
also denote by ψ .

(iii) Let γ ∈ �m,n. By point (ii) above and standard results on Gelfand-Kirillov
dimension, one has GKdimOq(Mm,n,γ (k)) = |Lγ |. Now, clearly, ψ is a locally algebraic
automorphism of Oq(Mm,n,γ (k)) in the sense of [6, Section 12.3]. It follows, see
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[6, Section 12.3], that:

GKdimOq(Mm,n,γ (k))[Y, Y−1; ψ ] = |Lγ | + 1 = m(n − m) + m(m + 1)
2

−
( m∑

i=1

γi

)
+1.

Let γ ∈ �m,n. The homomorphic image in Oq(Gm,n(k))γ of an element x ∈
Oq(Gm,n(k)) will be denoted x. Theorem 3.1.6 establishes a strong link between the
localisation of Oq(Gm,n(k))γ at powers of γ and a skew Laurent extension of the
quantum ladder matrix ring Oq(Mm,n,γ (k)). Recall that Oq(Gm,n(k))γ is a quantum
graded A.S.L. on the set �m,n \ �

γ
m,n (identified with its image in Oq(Gm,n(k))γ ). The

element γ is the unique minimal element of �m,n \ �
γ
m,n; and so γ is a regular normal

element of Oq(Gm,n(k))γ . Thus, we may form the localisation Oq(Gm,n(k))γ [γ −1] of
Oq(Gm,n(k))γ at the powers of γ , as indicated in the introduction to Subsection 2.2.

THEOREM 3.1.6. Let γ ∈ �m,n. There exists a k-algebra isomorphism

dγ : Oq(Mm,n,γ (k))[Y, Y−1; φ] −→ Oq(Gm,n(k))γ [γ −1]

sending Xij to mij and Y to γ .

Proof. The existence of the k-algebra morphism dγ is clear from Lemma 3.1.4 and
Remark 3.1.5. We now show that dγ is onto, by showing that Oq(Gm,n(k))γ [γ −1] is
generated as a k-algebra by γ , γ −1 and mij, (i, j) ∈ Lγ . Clearly, Oq(Gm,n(k))γ [γ −1] is
generated as a k-algebra by γ , γ −1 and the images in Oq(Gm,n(k))γ of the minors in
�m,n \ �

γ
m,n; so, what we must show is that x ∈ imdγ , for all x ∈ �m,n \ �

γ
m,n. To each

x = [j1, . . . , jm] ∈ �m,n \ �
γ
m,n, we associate the number n(x) of elements js, with 1 ≤ s ≤

m, such that js /∈ {γ1, . . . , γm}. As mentioned in Remark 3.1.1, if x ∈ �m,n \ �
γ
m,n is such

that n(x) ≤ 1, then either x = γ or x = mij for some (i, j) ∈ Lγ ; so that x ∈ imdγ . Now,
suppose t is an integer in {1, . . . , m − 1} with the property that any x ∈ �m,n \ �

γ
m,n

such that n(x) ≤ t satisfies x ∈ imdγ . Consider x = [j1, . . . , jm] ∈ �m,n \ �
γ
m,n such that

n(x) = t + 1. In addition, let 1 ≤ � ≤ m be such that j� /∈ {γ1, . . . , γm}. The generalised
quantum Plücker relations of [5, Theorem 2.1], applied with J1 = ∅, J2 = {j1, . . . , jm} \
{j�} and K = {γ1, . . . , γm} ∪ {j�} give a relation

∑
K ′�K ′′=K

(−q)•[K ′][K ′′ � J2] = 0

in Oq(Gm,n(k)). (Here, by a symbol (−q)•, we mean some power of −q with exponent in
�.) Let us now consider the various terms [K ′][K ′′ � J2] of the above equation. When
K ′′ = {j�}, then [K ′][K ′′ � J2] = γ x. Otherwise, K ′′ = {γk} for some 1 ≤ k ≤ m such that
γk /∈ {j1, . . . , jm}. In this case, [K ′][K ′′ � J2] = [{γ1, . . . , γm} \ {γk} ∪ {j�}][{j1, . . . , jm} \
{j�} ∪ {γk}] (notice that the image of such a term in Oq(Gm,n(k))γ might very well be
zero). Hence, taking the image of the above relation in Oq(Gm,n(k))γ , we get a relation
of the form

γ x =
∑

(−q)•yz

where the sum extends over pairs (y, z) of elements in �m,n \ �
γ
m,n such that n(y) = 1

and n(z) = t. Hence, each x ∈ im(dγ ), by the induction hypothesis since γ is invertible
in Oq(Gm,n(k))γ [γ −1]. This shows that dγ is surjective. Recall from Remark 3.1.5
that GKdimOq(Mm,n,γ (k))[Y, Y−1; ψ ] = m(n − m) + m(m+1)

2 − (
∑m

i=1 γi) + 1. On the
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other hand, γ is a local normal element in the sense of [6, Section 12.4]. Hence,
by [6, Theorem 12.4.4] and Corollary 2.1.6, GKdimOq(Gm,n(k))γ [γ −1] = m(n − m) +
m(m+1)

2 − (
∑m

i=1 γi) + 1. As Oq(Mm,n,γ (k))[Y, Y−1; ψ ] is an integral domain and dγ is
surjective, the injectivity of dγ follows, by [6, Proposition 3.15]. �

COROLLARY 3.1.7. Let γ ∈ �m,n. The k-algebra Oq(Gm,n(k))γ is a normal domain.

Proof. Consider τ ∈ �m,n. Theorem 3.1.6 asserts that there exists a k-algebra
isomorphism Oq(Mm,n,τ (k))[Y, Y−1; ψ ] ∼= Oq(Gm,n(k))τ [τ−1]. Hence Oq(Gm,n(k))τ [τ−1]
is an integral domain. As we already mentioned, τ is a regular element of Oq(Gm,n(k))τ ;
so the canonical mapOq(Gm,n(k))τ −→ Oq(Gm,n(k))τ [τ−1] is an injection. It follows that
Oq(Gm,n(k))τ is an integral domain. Hence, we have proved that any quantum Schubert
variety is an integral domain.

It follows that, in the notation of Subsection 2.2, the ideal Iτ of Oq(Gm,n(k))γ is
a completely prime ideal for all τ ∈ �m,n \ �

γ
m,n. Moreover, since Oq(Gm,n(k))γ [γ −1] is

isomorphic to a localisation of an iterated Ore extension of k, it is a normal domain
by [12, V. Proposition 2.5, IV Proposition 2.1]. Hence, Proposition 2.2.2 applies to the
quantum graded A.S.L. Oq(Gm,n(k))γ (whose underlying poset has a single minimal
element, as noticed in Remark 2.1.4); so we conclude that Oq(Gm,n(k))γ is a normal
domain. �

3.2. The AS-Cohen-Macaulay and AS-Gorenstein properties. The following
result is Theorem 4.2 of [10].

THEOREM 3.2.1. Let γ ∈ �m,n. The quantum Schubert variety Oq(Gm,n(k))γ is AS-
Cohen-Macaulay.

It is now easy to determine among quantum Schubert varieties those that
are AS-Gorenstein. Let A be a noetherian �-graded connected k-algebra. For the
definition of the AS-Gorenstein condition for A see [10, Subsection 2.1]. Suppose
in addition that A has enough normal elements in the sense of Zhang, see [10,
Definition 2.1.3]. Then, A is AS-Gorenstein if and only if it has finite injective
dimension on both sides. In particular, if A is commutative, then A is AS-Gorenstein
if and only if it is Gorenstein in the usual sense. For details on these statements, see
Subsection 2.1 of [10] and in particular [10, Remark 2.1.10].

We need to introduce some more notation. Let γ = {γ1, . . . , γm} ∈ �m,n. Following
[1, Chapter 6, Section B], we denote by β0, . . . , βs the blocks of consecutive integers in
γ and by χ0, . . . , χs−1 the gaps between these blocks.

THEOREM 3.2.2. Let γ = {γ1, . . . , γm} ∈ �m,n. In the previous notation, we put t = s
if γm < n and t = s − 1 if γm = n. Then, the k-algebra Oq(Gm,n(k))γ is AS-Gorenstein if
and only if (with the above notation) |χi−1| = |βi| for 1 ≤ i ≤ t.

Proof. As mentioned above, Oq(Gm,n(k))γ is a quantum graded algebra with a
straightening law on the poset �m,n \ �

γ
m,n. It follows from [10, Remark 2.1.4] that

it has enough normal elements. In addition, Oq(Gm,n(k))γ is a AS-Cohen-Macaulay
domain, by Corollary 3.1.7 and Theorem 3.2.1. On the other hand, Oq(Gm,n(k))γ
has a vector space basis consisting of standard monomials on �m,n \ �

γ
m,n, since it

is a quantum graded algebra with a straightening law on this poset. Clearly, this
implies that the Hilbert series of Oq(Gm,n(k))γ is independent of the particular value
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of q ∈ k∗. Hence, using [2, Theorem 6.2], Oq(Gm,n(k))γ is AS-Gorenstein if and only if
O1(Gm,n(k))γ is AS-Gorenstein; that is, if and only if O1(Gm,n(k))γ is Gorenstein (by
the discussion above). The result now follows from Corollary 8.13 of [1] . �

4. Application to the normality of quantum determinantal rings. The aim of this
section is to apply the previous results on quantum Schubert varieties in order to
show that quantum determinantal rings are normal domains. Recall that a quantum
determinantal ring is a factor Oq(Mm,n(k))/It, where 1 ≤ t ≤ m and It is the ideal of
Oq(Mm,n(k)) generated by the t × t quantum minors.

Let us start by defining a larger class of quotients of Oq(Mm,n(k)). This class is
obtained fromOq(Mm,n(k)) in the same way as quantum Schubert varieties are obtained
from Oq(Gm,n(k)).

DEFINITION 4.1. Let δ ∈ �m,n and put �δ
m,n = {α ∈ �m,n | α �≥st δ}.

Oq(Mm,n(k))δ = Oq(Mm,n(k))/〈�δ
m,n〉.

REMARK 4.2. (i) Let δ ∈ �m,n. It is clear that �δ
m,n is a �m,n-ideal. Hence,

as mentioned in Subsection 2.1, the generalised quantum determinantal ring
Oq(Mm,n(k))δ inherits from Oq(Mm,n(k)) the structure of a quantum graded A.S.L.
on the poset �m,n \ �δ

m,n. Notice also that �m,n \ �δ
m,n has a unique minimal element.

(ii) Let δ ∈ �m,n. It follows from point (i) above that Oq(Mm,n(k))δ has a standard
monomial basis inherited from the corresponding basis of Oq(Mm,n(k)). The elements
of this k-basis are the canonical images in Oq(Mm,n(k))δ of the standard monomials
of Oq(Mm,n(k)) that either are equal to 1 or are of the form [I1|J1] . . . [It|Jt] with
δ ≤st [I1|J1].

(iii) Let δ = ({i1 < . . . < ir}, {j1 < . . . < jr}), for some integer r such that 1 ≤ r ≤ m.
Then,

GKdimOq(Mm,n(k))δ = (m + n)r −
r∑

s=1

(is + js) + r,

by Proposition 2.1.5 and [1, 5.12].
(iv) As noticed in [10, Section 3.5], quantum determinantal rings are special cases of

generalised quantum determinantal rings, hence justifying the vocabulary in Definition
4.1. More precisely, the paragraph before [10, Corollary 3.5.4] shows that, for 1 < t ≤
m, the quantum determinantal ringOq(Mm,n(k))/It is equal to the generalised quantum
determinantal ring Oq(Mm,n(k))δ where δ = ({1, . . . , t − 1}, {1, . . . , t − 1}).

The normality of quantum determinantal rings will be establised by applying
Proposition 2.2.2. Hence, we first need to prove that generalised quantum
determinantal rings are integral domains. This is what we do now. Fix an element
δ ∈ �m,n and denote by γ the image of δ under the map δm,n introduced in Section 1.
Recall from Section 1 the dehomogenisation map

Dm,n : Oq(Mm,n(k))[y, y−1; φ] −→ Oq(Gm,m+n(k))[[M]−1]

that sends [I|J] to [K(I,J)][M]−1 and y to [M]. It is clear that the ideal 〈�δ
m,n〉 of

Oq(Mm,n(k)) is stable under φ. Hence, using the obvious abuse of notation, there is a
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canonical isomorphism

Oq(Mm,n(k))[y, y−1; φ]/
〈
�δ

m,n

〉
[y, y−1; φ] ∼= (

Oq(Mm,n(k))/
〈
�δ

m,n

〉)
[y, y−1; φ]

= Oq(Mm,n(k))δ [y, y−1; φ].

(Here, the notation 〈�δ
m,n〉[y, y−1; φ] on the left hand side stands for the two-sided ideal

of Oq(Mm,n(k))[y, y−1; φ] generated by �δ
m,n.) Now, observe that the ideal 〈�γ

m,n+m〉 of
Oq(Gm,m+n(k)) is completely prime, by Corollary 3.1.7, and does not intersect the set
of powers of [M], as one may easily prove using the standard basis of Oq(Gm,m+n(k)).
Hence, there is a canonical isomorphism

Oq(Gm,m+n(k))[[M]−1]/
〈
�

γ
m,n

〉
[[M]−1] ∼= (

Oq(Gm,m+n(k))/
〈
�

γ
m,n

〉)
[[M]

−1
]

= Oq(Gm,m+n(k))γ [[M]
−1

].

(Recall that, if x ∈ Oq(Gm,m+n(k)), then x stands for its canonical image in
Oq(Gm,m+n(k))γ . The same convention applies to Oq(Mm,n(k))δ.)

Clearly, Dm,n(〈�δ
m,n〉[y, y−1; φ]) = 〈�γ

m,n〉)[[M]−1]; and so it follows that Dm,n

induces an isomorphism

Dδ
m,n : Oq(Mm,n(k))δ[y, y−1; φ] −→ Oq(Gm,m+n(k))γ [[M]

−1
]

that sends [I|J] to [K(I,J)] [M]
−1

and y to [M].
From this we deduce the following result.

PROPOSITION 4.3. Let δ ∈ �m,n. Then the ring Oq(Mm,n(k))δ is an integral domain.

Proof. Let γ be the image of δ under the map δm,n. By the above discussion, we
have an isomorphism

Dδ
m,n : Oq(Mm,n(k))δ [y, y−1; φ] −→ Oq(Gm,m+n(k))γ [[M]

−1
] .

Hence, the result follows by Corollary 3.1.7. �
The normality of quantum determinantal rings is now easy to obtain. First, we

need a lemma.

LEMMA 4.4. Let 2 ≤ t ≤ m. Let δ = [{1, . . . , t − 1}|{1, . . . , t − 1}] ∈ Oq(Mm,n(k))
and let δ be the canonical image of δ in Oq(Mm,n(k))/It. Let At be the subalgebra of
Oq(Mm,n(k)) generated by the elements Xij such that either i ≤ t − 1 or j ≤ t − 1. Then δ

is a normal element in At and

(Oq(Mm,n(k))/It)[δ
−1

] ∼= At [δ−1] .

.

Proof. For 2 ≤ t ≤ m, there is an obvious algebra homomorphism

At −→ Oq(Mm,n(k)) −→ Oq(Mm,n(k))/It −→ (Oq(Mm,n(k))/It)[δ
−1

].

Here, the first map is the obvious injection, the second is the canonical projection
while the third is the natural injection of a ring into a localisation with respect to the
multiplicative set generated by a regular normal element. In addition, δ is a normal
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element of At, see [13, Lemma 4.5.1], and it is sent to an invertible element by the above
map. Hence, there is a natural algebra homomorphism

φt : At[δ−1] −→ (Oq(Mm,n(k))/It)[δ
−1

].

We will show that φt is an isomorphism. First, we show that φt is surjective. Clearly,
δ

−1
is in the image of φt. Let 1 ≤ i ≤ m and 1 ≤ j ≤ n. It is clear that if either i < t

or j < t, then Xij + It is in the image of φt. Now, assume i, j ≥ t. The subalgebra of
Oq(Mm,n(k)) generated by the entries of the generic matrix corresponding to rows
1, . . . , t − 1, i and columns 1, . . . , t − 1, j is isomorphic to Oq(Mt(k)). We may then
develop its quantum determinant with respect to its last row. This relation, seen inside
(Oq(Mm,n(k))/It)[δ

−1
], shows that Xij + It is in the image of φt.

Next we show that φt is injective. First, it is easy to see that

GKdimAt = mn − (m − (t − 1))(n − (t − 1)).

In addition, since δ commutes up to scalar with each of the canonical generators of
At, it is easy to show that it is a local normal element in the sense of [6, Section 12.4].
It then follows by [6, Theorem 12.4.4.] that GKdim(At)δ = mn − (m − (t − 1))(n −
(t − 1)). On the other hand, by Remark 4.2, GKdimOq(Mm,n(k))/It = mn − (m − (t −
1))(n − (t − 1)) from which it follows that GKdim(Oq(Mm,n(k))/It)[δ

−1
] ≥ mn − (m −

(t − 1))(n − (t − 1)), see [6, Lemma 3.1]. As At [δ−1] is an integral domain, any non-zero
element of At [δ−1] is regular. Hence, in view of the above estimates of Gelfand-Kirillov
dimension, by [6, Proposition 3.15] we must have ker φt = (0). �

THEOREM 4.5. Let 1 ≤ t ≤ m. Then Oq(Mm,n(k))/It is a normal domain.

Proof. The case t = 1 is trivial. Let 2 ≤ t ≤ m. Recall that Oq(Mm,n(k))/It =
Oq(Mm,n(k))δ, where δ = ({1, . . . , t − 1}, {1, . . . , t − 1}). Hence, Oq(Mm,n(k))/It is a
domain by Proposition 4.3. In addition, we are in the context of Section 2.2 since
Oq(Mm,n(k))/It is a quantum graded A.S.L. whose underlying poset has a single
minimal element, namely δ = δ + It. In addition, Proposition 4.3 shows that, for
any upper neighbour γ of δ, the ring (Oq(Mm,n(k))/It)/Iγ is a domain (here, we are
using the notation of Subsection 2.2). By Proposition 2.2.2, it is enough to show that
(Oq(Mm,n(k))/It)[δ

−1
] is a normal domain. However, using [12, V. Proposition 2.5, IV.

Proposition 2.1], this is a consequence of Lemma 4.4. �
REMARK 4.6. In the light of Theorem 4.5, one obvious question arises: are

generalised quantum determinantal rings normal domains? Recall that this is true in the
commutative case, see [1, Theorem 6.3]. Let δ ∈ �m,n. The isomorphism Dδ

m,n together
with Corollary 3.1.7 shows that the skew Laurent extension Oq(Mm,n(k))δ [y, y−1; φ] is
normal. However, we have not been able to deduce that Oq(Mm,n(k))δ is normal from
this fact. Another approach to the normality of Oq(Mm,n(k))δ (that is the approach we
have used to derive the normality of quantum determinantal rings) would be to apply
Proposition 2.2.2. We would then need to show that Oq(Mm,n(k))δ [δ

−1
] is a normal

domain. The problem here is of technical nature: presumably, Oq(Mm,n(k))δ [δ
−1

] can
be described as a localisation of an iterated Ore extension (this would generalise
Lemma 4.4 to any generalised quantum determinantal ring). However, getting such a
description seems to be a rather tricky computation.
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