
J. Austral. Math. Soc. (Series A) 46 (1989), 69-87

THE MAXIMUM DISTRIBUTION
OF A GAUSSIAN STOCHASTIC PROCESS

INDEXED BY A LOCAL FIELD

STEVEN N. EVANS

(Received 24 November 1986; revised 3 July 1987)

Communicated by T. C. Brown

Abstract

We consider continuous Gaussian stochastic process indexed by a compact subset of a vector
space over a local field. Under suitable conditions we obtain an asymptotic expression for the
probability that such a process will exceed a high level. An important component in the proof
of these results is a theorem of independent interest concerning the amount of 'time' which the
process spends at high levels.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 60 G 15, 60 G 10,
26E30.

The sample path properties of Gaussian stochastic processes indexed by a sub-
set of a finite dimensional vector space over a local field (that is, a non-discrete,
locally compact, totally disconnected topological field) have been studied by the
author in Evans (1986, 1988). A number of the results in these two papers
indicate that such processes can exhibit behaviour which has no analogue for
processes indexed by a Euclidean space. Other results do have Euclidean coun-
terparts but the proofs are sometimes quite dissimilar and often considerably
simpler in the local field case. Also, as well as being of intrinsic interest, these
processes can provide a useful tool for constructing interesting examples of sets
and functions in the analysis of local fields.

Let A" be a continuous Gaussian process by a compact subset of a finite
dimensional vector space over a local field. An important input into several of the
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70 Steven N. Evans [2]

results in Evans (1986,1988) was a fairly crude upper bound on a probability that
X will exceed a high level (see Corollary (9-2) of Evans (1988) which is restated as
Lemma (2-7) below). In the present paper we show that it is sometimes possible
to say considerably more about the tail of the maximum of X. In Theorem (4-1)
we show that if X is stationary then under an approximate scaling condition on
the covariance kernel of X we may find explicit sequences { t ^ n ) } ^ ! c]0, oo[
and {p(n)}%Li such that u(n) —• oo as n —* oo and

• «(«)) /P(n) = 1.

In Corollary (4-7) we replace the condition that X is stationary by the much
weaker condition that E(X(t)2) is constant and show that under appropriate
assumptions on the growth of the incremental variance function of X we may
find explicit sequences {u(n)}'^L1 c]0, oof and {p(n)}^L1 such that u(n) —> oo
and n —» oo and

0 < liminf P (maxX(t) > u(n)) /p(n)

< limsupP (maxX(t) > u(n)\ /p{n) < oo.

The techniques which we use to obtain Theorem (4-1) are similar to those
used in Berman (1982) to obtain corresponding results for processes indexed
by subsets of ] — oo,oo[. In particular, we rely on detailed asymptotics for the
amount of 'time' that the process sojourns above high levels. These are obtained
in Section 3 using methods from Berman (1985).

We remark that Theorem (4-1) complements the results of Berman as well
as those obtained by other authors in the Euclidean case (see, for example,
Pickands (1969a,b) or Belyaev and Piterbarg (1972)) in that they indicate how it
is the concordance of the covariance structure of the process with the translation
and dilation structure of the index space (that is, stationarity and approximate
scaling) which underlies the proofs in both settings.

On the other hand, Corollary (4-7) is of a more novel nature in that there
appears to be a dearth in the Euclidean literature of general results giving non-
trivial asymptotic lower bounds on the probability that a non-stationary process
will exceed a high level.

1. Local fields

This section is more or less a summary of results to be found in Taibleson
(1975) and we refer the reader to this latter account for the relevant proofs and
references.
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[3] Maximum of a local field process 71

Let K be a topological field, t ha t is, K is a field such tha t K+ and K* are

topological groups (where K+ and K* are the additive and multiplicative groups

of K). UK is locally compact, non-discrete and connected then K is either R

or C. If A" is locally compact, non-discrete and disconnected then K is totally

disconnected and we say tha t K is a local field.

For the rest of this section let K be a fixed local field. There is a distinguished

real-valued mapping on K which we denote by x t—> \x\ and call the valuation

map. This map takes values in the set {qk: k G 2} U {0}, where q = pc for some

prime p and positive integer c, and has the following properties:

|x| =0-0- x = 0;

\xy\ = \x\\y\;

\x + y\ < max[ |z | , \y\}.

The last property is called the ultrametric inequality and it implies that if \x\ ^
\y\ then \x + y\ — max[|z|, |j/|]. The mapping (a;, y) i-> \x — y\ on K x K is a
metric on K which gives the topology of K.

The set D = {i € K: \x\ < 1}, which we call the ring of integers in K, is the
unique maximal compact subring of K. There exists p € D with \p\ = q~l. We
set

B = {xeK: \x\ <1} = {XGK: \X\ < q'1} = pD,

and
Bk = {x e K: \x\ < q~k} = pkD, kel.

Each Bk is compact and open and a subgroup of K+. If k > k' then Bk is an
additive subgroup of Bk> with card(Sfc'/flfc) = qk~k>.

Let KN be the canonical iV-dimensional vector space over K. For x —
(x1,...,xN) € KN the mapping x\-+\x\= maxi |x*| satisfies:

|z| = 0 •«• x = 0;

\ax\ = \a\ \x\, a 6 K\

\x + y\ <max[|a;|,|2/|].

If | i | ^ \y\ then \x+y\ = max[|x|, \y\]. The mapping (x, y) i-» \x—y\ on KN xKN

is a metric which gives the product topology of KN.
We have DN = {x € KN: \x\ < 1} and {Bk)N = {x e KN:\x\ < q~k =

pkDN, k e Z. If k > k' then (Bk)N is an additive subgroup of {Bk')N with
card((Bk')N/{Bk)N) = qV*-k')N.

There is a distinguished Borel measure dx on KN for which we denote fA dx
by \A\. This measure has the properties:

|z + >l| = |i4|, x(EKN;

\aA\ = \a\N\A\, aeK;

\DN\ = 1.
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The second of these properties is a special case of the result tha t \AA\ =

| det A| \A\, where A is a N x JV-matrix over K and the determinant is calcu-

lated exactly as in the case when the ground field is R or C.

2. Preliminary results for Gaussian processes

For the remainder of this paper we will work with the following class of pro-
cesses.

DEFINITION. Let (Q, 7, P) be a complete probability space. We say a stochas-
tic process {X(t): t 6 DN} is of class Q (or, simply, X € Q) if

(i) X is real-valued Gaussian;
(ii) X is centred, that is, EX(t) = O,t&DN;
(iii) X has a continuous covariance kernel.
For ease of reference, we include some results that we will require later. The

first of these is a consequence of Proposition (3-2) in Evans (1988) and ensures
that we have a plentiful supply of concrete examples of stationary processes.

PROPOSITION (2-1). Suppose that g:{q~h}keN U {0} -»• [0,oo[ is non-
increasing and continuous at 0. Then there exists X € Q with stationary co-
variance kernel

EX{s)X{t) = g(\s-t\), s,teDN.

We will be primarily concerned with continuous processes. For the sake of
completeness we include the following suflBcient condition for sample path conti-
nuity which is just a particular case of a result due to Dudley (see for example,
Theorem IV-5-2 of Jain and Marcus (1978)).

DEFINITION. Let T be a pseudo-metric space with pseudo-metric d. For
e > 0 let v(e) denote the minimum number of balls of radius at most e that
cover T. The function H{e) = log i/(e) is called the metric entropy of T with
respect to d.

THEOREM (2-2). Consider X € Q. Let H denote the metric entropy of DN

with respect to the pseudo-metric a, where

a2{s,t)=E{X{s)-X{t)f

is the incremental variance function of X. The condition

d

I
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[5] Maximum of a local field process 73

implies that there exists a version {X(t):t € DN} of X with continuous sample
paths such that for every w e Q there exists a 6(UJ) > 0 for which

,u)-X{t,u)\ <147 / H(u)1/2 du.
Jo

A related result to Theorem (2-2) is the following theorem which is a special
case of Theorem IV-5-5 in Jain and Marcus (1978).

THEOREM (2-3). Consider a continuous process X G Q. In the notation of
Theorem (2 - 2) we have for 0 < 6 < 1/2 that

E\ sup \X{s)-X{t)\
\a(a,t)<6

<K\ f H{u)
\Jo

where K is a fixed constant which does not depend on X.

In order to apply Theorems (2-2) and (2-3) it is helpful to have some simple
means of estimating the integrals that appear. The following is an analogue of
Lemma FV-5-3 in Jain and Marcus (1978) (see Lemma (7-2) in Evans (1988)).

LEMMA (2-4). Let a and H be as in the statement of Theorem (2-2). Sup-
pose that

<r{s,t) <$(\s — t\), s,t€DN

for some non-decreasing function f: [0,1]-»R. Then for 0 < 6 < 1, \s — t\ < 6,

[""' H{uY'2 du < N1'2 U{6)(logq/S)l'2 + f fMtr^logu-1)-1/2du
Jo [ Jo

EXAMPLE. Suppose that a, /? > 0 are given and k € N is such that qka > /3.
From Proposition (2-1), Lemma (2-4) and Theorem (2-2) it is easy to see that
there exists a continuous process X(-; a, 0, k) G Q with covariance kernel

0, otherwise.

We will also need a readily checkable criterion for the tightness of a family
of Gaussian measures on C(DN,R). The requisite result, Corollary (2-6), is
obtained by using the estimates of Lemma (2-4) and Theorem (2-3) to verify the
conditions of the following general tightness lemma.
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LEMMA (2-5). Let {Pn}™-! be a sequence of probability measures on C(T, R),
where (T, d) is a compact metric space. Assume that

(i) For each r\ > 0 there exists a > 0 such that for all n

sapPn(xeC{T,R):\x{t)\ > a) < if;

(ii) For each e > 0 and t] > 0 there exists 6 > 0 suc/i </ia< /or all n

Pn I x e C{T,R): sup |x(s)-x(t) | >e ) <r\.
\ s,t6T,d(s,t)<« )

Then the sequence {Pn}%Li is tight.

PROOF. Suppose that r\ > 0 is given. Using (ii) we may find 6 > 0 such that

> l ) <Pn [x: sup |x(»)-x(*)| > 1 I <t?/2.
\ d(s,t)<6

Let {<!,...,£m} be a £-net on T. Using (i) we may find a > 0 such that

sup Pn(x: \x(tj)\ > a) > r}/2m
<j<

for all n and hence Pn(x:sup1<J<m \x(tj)\ > a) < r)/2 for all n. Thus we have
Pn(x: supt€T |x(<)| > a + 1) < rj. In the presence of (ii) we therefore see that (i)
is equivalent to the condition:

(i') For each r) > 0 there exists a > 0 such that for all n

Pn (x:sup|x(*)|>a) < v.

We can now follow the proof of Theorem 8-2 in Billingsley (1968). Let r) > 0
be given. Using (i') choose a > 0 so that if

B= ]x:sup|x(*)| <a\
I ter J

then Pn(B) > 1 - r//2 for all n. Using (ii) choose 6{k) > 0 so that if

\= \x: sup |
[ d(s,t)<S{k)

then Fn(Bfc) > 1 -r]/2k+1. Let F denote the closure of Bf"l|Xli Bk in C{T,R),
then Pn(^) > 1 — V f°r a u n a11^ by the Arzela-Ascoli Theorem F is compact.
Hence the sequence {Pn}%L1 is tight.
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COROLLARY ( 2 - 6 ) . Let {Xn}^L1 be a sequence of continuous class Q pro-

cesses. Assume that

(i) supnsupt6P* EXn(t)
2 < oo;

(ii) There exists a non-decreasing function f: [0,1] —> R such that

(E(Xn(s) - Xn{t))2)1'2 < ${\s - t\), s, t e DN, all n,

and

f
JO
f
O

for some e > 0.
Then, letting Pn denote the image measure induced by Xn on C(DN,R), we

have that the sequence {Pn}^=1 is tight.

PROOF. Condition (i) of Lemma (2-5) follows easily from (i) and Chebyshev's
inequality. Condition (ii) of Lemma (2-5) follows immediately from Lemma (2-4),
Theorem (2-3) and Markov's inequality.

Finally, we will require a general upper bound on the tail of the maximum of
a continuous process X € Q (see Corollary (9-2) of Evans (1988)).

LEMMA (2-7). Let X € § be a continuous process. Suppose that

for some continuous, nondecreasing function £: {<7~fc}fceN U {0} —• R- Set

t€PN

Then for a > (2(2N + I))1/2 and m € {1,2,... } we have

P I max |*(*)| > a L+ (1 + (2m\ogq)-1)l/2f^(\ogn[m,r})1/2an[rn,r]-1)

< 2{q2Nm + (qm - I)"1) exp(-a2/2),

where n[rn, r] = qm2'.

3. A sojourn limit theorem

Suppose that X € Q is a jointly measurable process. For a sequence
of Borel subsets of R we may define a corresponding sequence of sojourn times
by

L(n) = \{t e PN: X(t) e A(n)}\, n = 1 ,2 , . . . .
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We wish to show that under suitable conditions there exists a sequence {c(n)}^L1

of constants and a non-increasing function F:]0, oo[—> R such that

(c(n)L(n)

at each continuity point x of F
Results of this kind for processes indexed by subsets of RN have been devel-

oped over a long period of time in the researches of Berman (see, for example,
Berman (1985) for a brief history and bibliography). Our approach follows that
to be found in Berman (1985).

LEMMA (3 -1 ) . / / there exists a non-decreasing function G:]0, oo[—» R such
that

r fZydP(c(n)L(n)<y)
hm — n , , . , , „ = G(x)

at each continuity point x of G then

.. P(c(n)L(n) >x) _ , ,
n-><x> E(c(n)L(n))

at each continuity point x of F, where F:}0,oo[—• R is given by

F(x)= Hy-UGiy).
Jx

PROOF. See Lemma 2-2 of Berman (1985).
From now on in this section we assume that our process X is stationary

and the sequence {^4(n)} is such that P(X(0) € A(n)) > 0 for each n and
limn^oo P(X(0) E A(n)) = 0.

NOTATION. For r > 0 set

L(n;r) = \{teDN,\t\<r:X(t)eA(n)}\.

LEMMA ( 3 - 2 ) . Suppose that {u(n)}£°=1 c P\{0} is such that

lim limsup Hn)\~N f P{X{t) E A(n)\X{0) E A(n)) dt = 0.
»—oo n^oo J{|*l>r|t>(n)|}

Set

^_S[Ox]ydP(\v(n)\-NL(n)<y)
a{X;n}- E(\v{n)\-»L(n))

and
b(x; n; r) = P(\v(n)\-NL(n; r\v(n)\) < x\X(0) € A(n)).
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Assume that there exists a non-decreasing function B:]0,oo[—>] — oo,oo[ such
that limr_oo limn_oo 6(1; n; r) = B(x) whenever x is a continuity point of B.
Then if z is a continuity point of B we have that lim,,-,,*, a(z; n) = B(z).

PROOF (see Lemma 6-1 in Berman (1985)). From Fubini's Theorem and
stationarity we have

fXydP(\v(n)\-NL(n) < y) = E(\v(n)\-NL(n); \v(n)\-N*L(n) G [0,*])
Jo

= \v(n)\-NE ( | ^ IA{n)(X(t))I[O}X](\v(n)\-NL(n))dt^

= \v(n)\~NE [I lA(n){X(t))Il0,x](Hn)\-N J IA{n)(X(s + t))ds)

= \v(n)\-NP(\v(n)\-NL(n) < x,X(0) G A(n)).

As

E(\v(n)\-NL(n)) = \v{n)\-NP(X(0) G A(n))

we therefore have that

a(x;n) = P(\v(n)\-NL(n) < x\X(0) G A(n));

and, since L(n;r|t;(n)|) < L(n), it is clear that

limsupa(a;;n) < lim Iimsup6(x;n;r).
n—>oo r—»oo n—>oo

Conversely, observe that if e G]0,1[ then

P(\v(n)\-NL(n;r\v(n)\) < x(l - e)\X(0) G A(n))

< {\v(n)\~NL(n) < x\X{0) G A(n))

+ P(\v(n)\-N[L(n) - L(n; r\v(n)\)} > xe\X(0) G A(n)).

Applying Markov's inequality, the last member above is at most

(\v(n)\-N/xs) I P{X{t) G A{n)\X{0) G A(n)) dt
J{teDN:\t\>r\v(n)\}

and so, by assumption,

lim Iiminf6(x(l — e);n;r) < liminf a(x;n).
r-»oo n->oo n-»oo

Thus

B(x—) < liminfa(i;n) < lim sup a(x;n) < B(x+)
n->oo n-+oo

and the lemma follows.
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T H E O R E M ( 3 - 3 ) . Suppose that
(i) v(n) —>• 0, as n —> oo, and
(ii) l im^oo l imsup , ,^^ \v(n)\~N /{ | t | > r | u ( n ) |} P{X(t) G A{n)\X{0) G A(n)) dt

= 0.
Suppose, moreover, that on some probability space (we will, with an abuse of

notation, also denote probabilities and expectations on this latter space by P and
E) there exists a jointly measurable stochastic process {ri(t):t G KN} such that
ri(t) G {0,1} for all t G KN and

(*) Er](si) • • • r)(sm) = lira P(X(v(n)si) E A(n),i = l,...,m\X(0) E A(n))
n—>oo

form = 1,2,... and si,...,sm€KN. If for x > 0

r)(t)dt <x)
IKN )

then
f[OiZ]ydP(\v(n)\-NL(n)<y)

n™oo E(\v(n)\-»L(n)) ~ °{z)

whenever z is a continuity point of G.

PROOF (see Theorem 7-1 of Berman (1985)). Define

e ( s . n ) = i nX(v(n)s) G A(n)), \s\ < \v(n)\~\
I 0, otherwise;

so that

lim E{t{ai; n) • • • £(sm; n)\X(0) G A(n)) = E(r,(Sl) • • • r,(sm))
n—^oo

by assumption. Now if r|v(n)| < 1 we have that

\v(n)\-NL(n;r\v(n)\)= f t{t;n)dt
J{t€K":\t\<r)

and so for m G {1,2,... }

E((\v(n)\-NL(n;r\v(n)\)r\X(0)eA(n))

= f •• [ E(Z(Sl;n) • • • £(sm; n)\X(0) G A(n)) dSl-- dsm

J\si\<r J\sm\<r

E
.Vl*l^r

n(t)dt asn -» oo.

Since \v(n)\ NL(n;r\v(n)\) < rN we may apply the Moment Convergence The-
orem to see that

lim P(\v{n)\-NL(n;r\v(n)\)<x\X{O)eA{n)) = P\ [ ri{t)dt<x)
"^°° \J\t\<r J

at all continuity points i > 0 of the right-hand side. The theorem now follows
upon letting r —* oo and then applying Lemma (3-2).
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COROLLARY (3 -4 ) . Let X € Q be a jointly measurable stationary process
with covariance kernel given by (s, t) *—> 7(s — t) for some function 7: DN —> R
with 7(0) = 1. Assume that there exist sequences {v(n)}^L1 C P\{0} and
{u(n)}%'=1 c]0, oof and a continuous function i/>:KN —• [0, oo[, such that

(i) v(n) —> 0 as n —* oo;

(i) i> # 0;
(iii) x/,{t) = limn^oo u(n)2(l - i{v{n)t)), t e tf";
(iv) limd-.oo l i m s u p , , ^ / d < | s | < W n ) | - i exp(-u(n)2( l - 7(v(n)s))/4) ds = 0.

Then (s, t) >-* i/)(s) + il>(t) — ip(s — t) is a continuous covariance kernel on KN x
KN; and so we may construct on some probability space a centred, measurable
Gaussian process V with this covariance kernel and an independent exponential
random variable r with Er = 1. / / we set A(n) =]u(n), oo[ then

\v(n)\NP(\v(n)\-NL(n) > x)
n"So P(X{0) > u(n))

(f ^ I(V{t) - tf(f) + r > 0) dt < y\

at each continuity point x > 0 of the right-hand side.

PROOF (see Theorem 8-1 in Berman (1985)).
Observe that (s, t) H+ 7(3 — 0 ~ lis) ~ 7(0 + 1, s, t e DN, is the covariance

kernel of the process {X{t) - X(0): t € DN}. Thus T:KN xKN ^R given by

- 0 - TOO - 7(0 + 1. s,t€DN,rr <\ f f(1 (s,t) = <
I. 0, otherwise,

is a covariance kernel. From condition (iii) we have

lim u(n)2T(v{n)s, v{n)t) = ip(s) + ip(t) - 0(s - 0
n—>oon—>o

and so it is clear that the function on the right-hand side is a covariance kernel
as claimed.

We now check conditions (i) and (ii) of Theorem (3-3). Condition (i) is obvi-
ous. As on page 16 of Berman (1982) we have

P{X(s) > u\X(0) >u)< /cex P (-u 2 ( l - f(«))/4)

for some constant K and so condition (ii) follows from condition (iv) above.
In order to be able to apply Theorem (3-3) it will suffice to show that the

condition (*) holds with rj(t) = I{V(t) - ip(t) + r > 0). Let <p and $ denote,
respectively, the standard normal density and distribution function. Then if
supi<t<m \si\ < K n ) | - X we have

P(X(v(n)si) > u(n),Vi|X(0) > u{n))

= /
Jo
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where
_ <P("(") + * / " ( " ) )

I[Z'n) u(»)(l-*(«(„)))•

Now

= Dm
«->oo u( l -lim !l

u-+oo u(l - $(«))
= exp(-*)

by a familiar approximation (see, for example, Lemma 2, Section VII. 1 of Feller
(1957)), so we need only show for each z > 0 that if we set

Y{t)=<x(t)-x(0), teD",
{ 0, otherwise,

then the finite dimensional distributions of u(n)Y(v(n)-) given X(0) = u(n) +
z/u{n) converge to those V(-) — */>(•)• Since the processes with which we are
dealing are all Gaussian and Y(0) = 0, it suffices to observe that

E{u{n)Y(v(n)t)\X(0) = u(n) + z/u{n))

= uWWvWt) - l)(u{n)+z/u(n))J(\t\ < Hn)]'1)

—> —ip(t) as n —• oo,

and when \s\, \t\ < Hn)^1

V&r(X(v(n)s) - X(v{n)t)\X(0) = u(n) + z/u{n))

so that

Var(w(n)F(u(n)s) - u(n)Y{v{n)t)\X(0) = u(n) + z/u(n))

-• 2T/>(S -t) = Vax{V{s) - V[t)) as n -* oo.

We may now apply Theorem (3-3) and thence Lemma (3-1) to complete the
proof.

EXAMPLE. If X(-;a, /?, k) is a member of the class of continuous processes
described in the Example following Lemma (2-4) then it is easy to check that
the conditions of Corollary (3-4) hold with v(n) = pn and u(n) = qn<*/2.

4. A maximum limit theorem

Our first aim in this section is to prove the following result.
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THEOREM ( 4 - 1 ) . Let X be a continuous process satisfying the conditions of
Corollary (3-4). Suppose, moreover, that

</>(•)= lim u(n)2(l-n(v(n)-))
n—>oo

uniformly on DN, and that if we set

*(u) = sup supu (n ) 2 ( l - ~i(v(n)t)), u>0,
| |

then

/
Jo
/

Jo
for some e > 0. Under these conditions

P(X(O) > u(n))
f°° i / f \

= / y~1dP[ I{V{t)-rl>{t) + T>O)dt<y) < oo .
yo+ \JKN /

The proof of Theorem (4-1) will be via a sequence of lemmas and we use the
techniques of Sections 13 and 14 in Berman (1982). Assume for the rest of this
section that X, V and r are fixed as above.

LEMMA ( 4 - 2 ) . Define

Yn{t) = u(n){X{v(n)t) - X(0)), t € DN.

For fixed z e R let Pn denote the image measure on C(DN,R) induced by the
process Yn conditioned on X(0) = u(n) + z/u{n). Then the sequence {.P,,}^!
converges weakly to the image measure induced by the process

): t&Dn).

PROOF. In the proof of Corollary (3-4) we have seen that the finite dimen-
sional distributions of Pn converge to those of {V(t) — ip(t): t € DN} so we need
only show that the sequence {Pn} is tight. Since E(Yn(t)\X(0) = u(n) + z/u(n))
converges uniformly to — i>(t) on DN as n —• oo, it suffices to check the conditions
of Corollary (2-6) for the sequence of processes defined by

Zn(t) = Yn(t) - E(Yn(t)\X(0) = u(n) + z/u(n)), t € DN',

conditioned on X(0) = u(n) + z/u(n). Now from the proof of Corollary (3-4) we
have that

supE{Zn{t)2\X{0) = u{n) + z/u{n)) <

and it is clear that condition (i) of Corollary (2-6) holds. Similarly,

5 ) - Zn(t))
2\X(0) = u(n) + z/u{n)) < 2*( | s - t\)
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and hence that condition (ii) of Corollary (2-6) also holds.
NOTATION. Set

M(n) = max X(v(n)t)
teDN

and, in the notation of Section 3,

for A(n) —]u(n), oo[.

LEMMA (4-3). For almost all z

lim lim sup P(M(n) > u{n), A(n) < x\X(0) = u{n) + z/u{n)) = 0.
*-»0 n->oo

PROOF. Fix a continuous function g: ] — oo, oo[—» [0,1] such that g(] -oo, 0]) =
{0} and g(]0, oo[) c]0,1]. In the notation of Lemma (4-2) the conditional prob-
ability above is at most

P (max Yn(t) > -z, f g{Yn(t) + z)dt< x\X{Q) = u{n) + z/u{n)) .
\t€DN JpN )

Whenever z is a point of continuity of the distribution of maxt(V(t) - ip(t)) it
follows from Lemma (4-2) that the lim sup as n —• oo of the last expression is at
most

P (max(K(*) - VM) > -*,f 9{V(t) -

The conclusion of the lemma is then clear from the continuity of V.

LEMMA (4-4). There exists a function R: [0,oo[-» [0,1] such that

R(x) = o(exp(—ex2)) as x —> oo

for some c > 0 and for each n and u' < u we have

P(M(n) > u, X(0) < «') < fU R(u(n)(u - y))p(y) dy.
J

PROOF. Since \E(X(t)\X(0))\ < \X{0)\ we have that

P{M{n)>u,X{0) <u')

< T
J-

sup \X(v(n)t) - E(X(v(n)t)\X(0) = y)\

>u-y\X(0)=y\<p{y)dy.

By now familiar calculations observe that

n)s) - X{v{n)t)\X{0) = y) < 2u(n)-2*(|s - t\).
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It is straightforward to check from the conditions of Theorem (4-1) that

r=l

(see, for example, equation IV-1-14 in Jain and Marcus (1978)) and the lemma
follows readily from Lemma (2-7).

LEMMA (4-5). We have

.. .. P(X(0) < u{n) - Qluin), M(n) > u(n)) „
lim limsup v w ~ K '—Z.' ) '!—(—+ y-^- = 0.

Q-oo n-,00^ l -$ (u(n) )

PROOF. From Lemma (4-4) we see that the general term above is bounded
by

/•u(n)-Q/u(n)
/ R(u(n)(u(n) - y))<p(y) dy(l - ^(u(n)))-1

J-oo

= uin)-1 f R{z)<p{u{n) - z/u{n)) dz(l - ^(u(n)))-1

JQ

«(n)(l - *{u{n))) JQ

and the result follows from the properties of R and the approximation to the
normal tail used in the proof of Corollary (3-4).

LEMMA (4-6). In the above notation

.. .. P(M(n)>t i (n) ,A(n)<x) . nhm limsup —^——+— ' ' .) = 0.
*-o n_oo l - * ( « ( n ) )

PROOF. From Lemma (4-5) it suffices to show for arbitrary Q > 0 that

(n) > u(n), A(n) < x,X(0) > u(n) - Q/u(n)) =

1 * ( ( ) )

The expression over which we are taking limits is at most

A(n) < x\X{0) = u(n) + y/u{n)) exp(-j/) dy

and the lemma now follows from Lemma (4-3).

PROOF OF THEOREM (4-1). Set

J = ry-1 dp( f I{V(t) - 1>{t) +r>0)dt<y).
Jo+ \JKN /
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It is clear from Corollary (3-4) that

\v(n)\NP(mzxteDN X(t) > u(n))
lim mi r>/v/n\ rr^ ^ >>•

n—oo P{X{0) > u{n))

Conversely, observe that for any x > 0

\v{n)\NP{maxteD* X{t) > u{n))

P(X(0) > u(n))

< \v(n)\NP(\v(n)\-NL(n) > x)(l - ^ ( H ) ) ) " 1

+ \v(n)\NP (max X(t) > u(n), \v{n)\-NL(n) < x) (1 - ^(u(n)))-1.
\t€DN )

By Corollary (3-4) the first term on the right-hand side converges to J as n —> oo
and then x I 0. Splitting P^ into \v(n)\~N balls of diameter |w(n)| we see that
the second term is bounded by

P(M(n) > u(n), A(n) < x)(l - *(u(n)))-\

which converges to 0 as n —> oo and then x [ 0 by Lemma (4-6).
It only remains to check that 0 < J < oo. In order to show that J > 0 we

need to prove that

Since

P

p(f I{V(t)-il>(t)+T>0)dt<oo\>0.

(f I{V(t)-ip{t) + r>0)dt<oo\

>P[f I{V(t)-ip{t) + l>0)dt<oo;T<l\

IKN

and P(T < 1) > 0 it will certainly suffice to show that

P{V{t)>^{t)-l)dt<oo.
KN

This last integral is bounded by

< e 1 / 2 / exp(-^(t)/4)«tt
JKN

= e1/2 / lim exp(-u(n)2(l - i{v{n)t))/4)I{\t\ < Mn)^1) dt
JKN n—*°°

< e1/2 lim sup / exp(—u(n)2(l — i(v(n)
n—>oo

< O O ,
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where the last inequality follows from condition (iv) of Corollary (3-4).

Finally, we show tha t J < oo. Now

P (maxX{t) > u(n)\ < \v(n)\-NP(M(n) > u{n))
\teDN )

< \v{n)\-N{P{X{0) > u{n))+P(M{n) > u{n),X{0) < u(n)))

and so, by Lemma (4-4),

N u{n))

From the properties of R this last integral is seen to be bounded.

EXAMPLE. It is straightforward to check that the processes given in the
Example following Corollary (3-4) satisfy the extra conditions of Theorem (4-1).

By applying Slepian's Lemma to the conclusions of the previous Example we
may obtain some information about the maximum of a process which is no longer
assumed to be stationary.

COROLLARY (4-7). Suppose that X € § is a continuous process for which

EX(t)2 = 1, t e DN,

and

0 < l i m M

E{X(s) - X{t))2

< lim sup v ; ;—, v " < oo.
" i O \ s t \ a

Then

PROOF. We may find /?' > 0 and j € N such that E(X{s) -X{t))2 < f3'\s-t\a

whenever \s —1\ < q~3'. Choose k' > j such that qk a > ft. Consider the process
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X(-; a, /?', k') and note that

EX(s;a, /?',k')X(t;a, ft,k') < EX(s)X{t), s,t€DN.

From Slepian's Lemma (see, for example, Lemma II-4-3 of Jain and Marcus

(1978)) we have

P (maxX{t) >x\ <P (maxX(t;a,/?',k') > x)

for all x € R.

Conversely, we may find /?" €]0,1] and k" € N such that E(X(s) - X{t))2 >

2/3"|s - t\a whenever \s — t\ < q~k". Again applying Slepian's Lemma we have

P [ max X(t) > x ) > P ( max X(t) > x)

>P( max X(t; a, 0", 0) > x]
\t€(8*")" /

> P (maxX(t;a,/3"q-k"a,0) > x)
\t€DN )

for all x € R.

The corollary now follows from the conclusions of the previous example.
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