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Abstract. The following Chen’s bi-harmonic conjecture made in 1991 is well-
known and stays open: The only bi-harmonic submanifolds of Euclidean spaces are
the minimal ones. In this paper, we prove that the bi-harmonic conjecture is true for bi-
harmonic hypersurfaces with three distinct principal curvatures of a Euclidean space
of arbitrary dimension.
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1. Introduction. The study of submanifolds with harmonic mean curvature
vector field was initiated by B.Y. Chen in 1985 and arose in the context of his theory
of submanifolds of finite type. For a survey on submanifolds of finite type and various
related topics was presented in (cf. [3, 4]). Let Mn be an n-dimensional, connected
submanifold of the Euclidean space Em. Denote by �x, �H, and � respectively the
position vector field of Mn, the mean curvature vector field of Mn, and the Laplace
operator on Mn, with respect to the Riemannian metric g on Mn, induced from the
Euclidean metric of the ambient space Em. Then, as it is well known, (cf. [1])

��x = −n �H. (1.1)

This shows, in particular, that Mn is a minimal submanifold of Em if and only if its
coordinate functions are harmonic (i.e., they are eigenfunctions of � with eigenvalue
0). We also see that every minimal submanifold of Em satisfies

� �H = 0. (1.2)

A submanifold Mn of Em satisfying this condition (1.2) is said to have harmonic
mean curvature vector field. In view of (1.1), submanifolds with harmonic mean
curvature vector field are equivalently characterised by the condition

�2�x = 0. (1.3)

Therefore, submanifolds satisfying (1.2) are also called bi-harmonic submanifolds.
As remarked, minimal submanifolds are immediately seen to be bi-harmonic.
Conversely, the question arises whether the class of submanifolds with harmonic mean
curvature vector field is essentially larger than the class of minimal submanifolds.
Otherwise stated, we consider the problem to determine, if there exist bi-harmonic
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submanifolds of Em, other than the minimal ones. Concerning this problem B. Y. Chen
conjectured the following:

Conjecture The only bi-harmonic submanifolds of Euclidean spaces are the
minimal ones.

In Euclidean spaces, we have the following results, which indeed support the
above mentioned conjecture. B. Y. Chen proved in 1985 that every bi-harmonic surface
in E3 is minimal. Thereafter, I. Dimitric generalised this result [7, 8] and proved that
a bi-harmonic submanifold Mn of a Euclidean space Em is minimal if it is one of the
following:
(a) a curve,
(b) a submanifold with constant mean curvature,
(c) a hypersurface with at most two distinct principal curvatures,
(d) a pseudo-umbilical submanifold of dimension n = 4,
(e) a submanifold of finite type.

In [9] it was proved that every bi-harmonic hypersurface in E4 is minimal. Further,
Chen and Munteanu [5] proved that the bi-harmonic conjecture is true for δ(2)-ideal
and δ(3)-ideal hypersurfaces of a Euclidean space of arbitrary dimension. Recently,
it was proved that every bi-harmonic hypersurfaces with three distinct principal
curvaturesn in E5 is minimal [10]. In this paper we have proved that Chen’s conjecture is
true for bi-harmonic hypersurfaces with three distinct principal curvatures in Euclidean
spaces En+1 of arbitrary dimension.

2. Preliminaries. Let (M, g) be a n-dimensional hypersurface isometrically
immersed in a (n + 1)-dimensional Euclidean space (En+1, g) and g = g|M .

Let ∇ and ∇ denote linear connections on En+1 and M, respectively. Then, the
Gauss and Weingarten formulae are given by

∇X Y = ∇X Y + h(X, Y ), ∀ X, Y ∈ �(TM), (2.1)

∇Xξ = −Aξ X, ∀ ξ ∈ �(TM⊥), (2.2)

where h is the second fundamental form and A is the shape operator. It is well known
that the second fundamental form h and shape operator A are related by

g(h(X, Y ), ξ ) = g(Aξ X, Y ). (2.3)

The mean curvature vector is given by

�H = 1
n

trace h. (2.4)

The Gauss and Codazzi equations are given by

R(X, Y )Z = g(AY, Z)AX − g(AX, Z)AY, (2.5)

(∇X A)Y = (∇Y A)X, (2.6)
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respectively, where R is the curvature tensor, A = Aξ for some unit normal vector field
ξ and

(∇X A)Y = ∇X (AY ) − A(∇X Y ) (2.7)

for all X, Y, Z ∈ �(TM).
A bi-harmonic submanifold in a Euclidean space is called proper bi-harmonic if

it is not minimal. The necessary and sufficient conditions for Mn to be bi-harmonic in
En+1[1] is

�H + Htrace A2 = 0, (2.8)

2A(grad H) + nHgrad H = 0, (2.9)

where H denotes the mean curvature. Also the Laplace operator � of a scalar valued
function f is given by [1]

�f = −
n∑

i=1

(eieif − ∇ei eif ), (2.10)

where {e1, e2, . . . , en} is an orthonormal local tangent frame on Mn.

3. Bi-harmonic hypersurfaces with three distinct principal curvatures. In this
section we study bi-harmonic hypersurfaces Mn of En+1. We also assume that mean
curvature is not constant. From (2.9), it is easy to see that grad H is an eigenvector of
the shape operator A with the corresponding principal curvature −nH

2 . We choose e1

in the direction of grad H and therefore shape operator A of hypersurfaces will take
the following form with respect to a suitable frame {e1, e2, . . . , en−1, en}

AH =

⎛
⎜⎜⎜⎜⎜⎜⎝

−nH
2

λ2

· · ·
· · ·

λn−1

λn

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.1)

The grad H can be expressed as

grad H =
n∑

i=1

ei(H)ei. (3.2)

As we have taken e1 parallel to grad H, consequently

e1(H) 	= 0, e2(H) = 0, e3(H) = 0, . . . , en−1(H) = 0, en(H) = 0. (3.3)

We express

∇ei ej =
n∑

k=1

ωk
ij ek, i, j = 1, 2, . . . , n. (3.4)
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Using (3.4) and the compatibility conditions (∇ek g)(ei, ei) = 0 and (∇ek g)(ei, ej) = 0,
we obtain

ωi
ki = 0, ω

j
ki + ωi

kj = 0, (3.5)

for i 	= j, and i, j, k = 1, 2, . . . , n.
Taking X = ei, Y = ej in (2.7) and using (3.1), (3.4), we get

(∇ei A)ej = ei(λj)ej +
n∑

k=1

ωk
ij ek(λj − λk).

Putting the value of (∇ei A)ej in (2.6), we find

ei(λj)ej +
n∑

k=1

ωk
ij ek(λj − λk) = ej(λi)ei +

n∑
k=1

ωk
jiek(λi − λk),

whereby for i 	= j = k and i 	= j 	= k, we obtain

ei(λj) = (λi − λj)ω
j
ji, (3.6)

(λi − λj)ω
j
ki = (λk − λj)ω

j
ik, (3.7)

respectively, for distinct i, j, k = 1, 2, . . . , n.

Since λ1 = −nH
2 , from (3.3), we get

e1(λ1) 	= 0, e2(λ1) = 0, e3(λ1) = 0, . . . , en−1(λ1) = 0, en(λ1) = 0. (3.8)

Using (3.8), we have

[ei, ej](λ1) = 0, i, j = 2, . . . , n,

whereby using (3.4), we find

ω1
ij = ω1

ji, (3.9)

for i 	= j and i, j = 2, . . . , n.
Now we show that λj 	= λ1, j = 2, 3, . . . , n. In fact, if λj = λ1 for j 	= 1, from (3.6),

we find

e1(λj) = (λ1 − λj)ω
j
j1 = 0, (3.10)

which contradicts the first expression of (3.8).
Since Mn has three distinct principal curvatures, we can assume that λ2 = λ3 =

. . . = λn−1 = λ 	= λn. From (2.4), we obtain that

λn = 3nH
2

− (n − 2)λ, λ 	= −nH
2

,
2nH
n − 2

,
3nH

2(n − 1)
. (3.11)

Putting i, j = 2, 3, . . . , n − 1, and i 	= j in (3.6), we get

ej(λ) = 0, for j = 2, 3, . . . , n − 1. (3.12)

Putting i 	= 1, j = 1 in (3.6) and using (3.8) and (3.5), we find

ω1
1i = 0, i = 1, 2, 3, . . . , n. (3.13)
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Putting i = 2, 3, . . . , n − 1, j = n in (3.6) and using (3.12), we obtain

ωn
ni = 0, i = 2, 3, . . . , n − 1. (3.14)

Putting i = 1, j = 2, 3, . . . , n − 1, n, in (3.6), we have

ωn
n1 = e1(3nH − 2(n − 2)λ)

−4nH + 2(n − 2)λ
, ω

j
j1 = − 2e1(λ)

nH + 2λ
, j = 2, 3, . . . , n − 1. (3.15)

Putting i = n, j = 2, 3, . . . , n − 1, in (3.6), we find

ω
j
jn = 2en(λ)

3nH − 2(n − 1)λ
, j = 2, 3, . . . , n − 1. (3.16)

Putting i = 1, j 	= k, and j, k = 2, 3, . . . , n − 1, in (3.7), we obtain

ω
j
k1 = 0, j 	= k, and j, k = 2, 3, . . . , n − 1. (3.17)

Putting i = n, j 	= k, and j, k = 2, 3, . . . , n − 1, in (3.7), we have

ω
j
kn = 0, j 	= k, and j, k = 2, 3, . . . , n − 1. (3.18)

Putting i = n, j = 1, and k = 2, 3, . . . , n − 1, in (3.7), and using (3.9) we get

ω1
kn = ω1

nk = 0, k = 2, 3, . . . , n − 1. (3.19)

Putting i = 1, j = n, and k = 2, 3, . . . , n − 1, in (3.7), and using (3.9) we find

ωn
1k = ωn

k1 = 0, k = 2, 3, . . . , n − 1. (3.20)

Now, we have the following:

LEMMA 3.1. Let Mn be an n-dimensional bi-harmonic hypersurface with non-constant
mean curvature in Euclidean space En+1, having the shape operator given by (3.1) with
respect to suitable orthonormal frame {e1, e2, . . . , en−1, en}. Then, we obtain

∇e1 e1 = 0, ∇ei e1 = −αei, i = 2, 3, . . . , n − 1, ∇en e1 = βen, (3.21)

∇ei ei = αe1 +
n−1∑

i 	=j,j=2

ωj
iiej − 2en(λ)

3nH − 2(n − 1)λ
en, i = 2, 3, . . . , n − 1, (3.22)

∇ei ej =
n−2∑

i 	=j,k=2

ωk
ij ek, i, j = 2, 3, . . . , n − 1, (3.23)

∇e1 en = 0, ∇en en = −βe1, ∇ei en = 2en(λ)
3nH − 2(n − 1)λ

ei, i = 2, 3, . . . , n − 1, (3.24)

where ωk
ij satisfies (3.5) for i, j, k = 1, 2, 3, . . . , n − 1, n, and α = 2e1(λ)

nH+2λ
, β =

e1(3nH−2(n−2)λ)
−4nH+2(n−2)λ .

Using Lemma 3.1, Gauss equation and comparing the coefficients with respect to
a orthonormal frame {e1, e2, . . . , en−1, en}, we find the following:
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� X = e1, Y = e2, Z = e1,

−e1(α) + α2 = nHλ

2
. (3.25)

� X = e1, Y = e2, Z = en,

e1

(
2en(λ)

3nH − 2(n − 1)λ

)
− α

2en(λ)
3nH − 2(n − 1)λ

= 0. (3.26)

� X = e1, Y = en, Z = e1,

e1(β) + β2 = nH
2

(
3nH

2
− (n − 2)λ

)
. (3.27)

� X = e3, Y = en, Z = e1,

en(α) + 2en(λ)
3nH − 2(n − 1)λ

(α + β) = 0. (3.28)

� X = en, Y = e2, Z = en,

en

(
2en(λ)

3nH − 2(n − 1)λ

)
− αβ −

(
2en(λ)

3nH − 2(n − 1)λ

)2

= −λ

(
3nH

2
− (n − 2)λ

)
.

(3.29)
Using (2.8), (2.10), (3.1) and Lemma 3.1, we find

−e1e1(H) + [(n − 2)α − β]e1(H) + H

[
n2H2

4
+ (n − 2)λ2 +

(
3nH

2
− (n − 2)λ

)2
]

= 0.

(3.30)
From (3.3) and Lemma 3.1, we obtain

eie1(H) = 0, i = 2, 3, . . . , n − 1, n. (3.31)

Differentiating α = 2e1(λ)
nH+2λ

, β = e1(3nH−2(n−2)λ)
−4nH+2(n−2)λ along en, we get equations

(nH + 2λ)en(α) + 2αen(λ) = 2ene1(λ),

(−4nH + 2(n − 2)λ)en(β) = −2(n − 2)ene1(λ) − 2(n − 2)βen(λ)

respectively and eliminating ene1(λ), we have

(−4nH + 2(n − 2)λ)en(β) = −(n − 2)(nH + 2λ)en(α) − 2(n − 2)(α + β)en(λ).

Putting the value of en(α) from (3.28) in the above equation, we find

en(β) = 4en(λ)n(n − 2)(α + β)(λ − H)
(−4nH + 2(n − 2)λ)(3nH − (2n − 2)λ)

.

Differentiating (3.30) along en and using (3.31), (3.28) and en(β), we get

en(λ)
[

4(α + β)e1(H)
−4nH + 2(n − 2)λ

+ H((2n − 2)λ − 3nH)
]

= 0. (3.32)
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We claim that en(λ) = 0. Indeed, if en(λ) 	= 0, then

4(α + β)e1(H)
−4nH + 2(n − 2)λ

+ H((2n − 2)λ − 3nH) = 0. (3.33)

Now, differentiating (3.33) along en, we have

8(α + β)(nH(14 − 5n) + 4(n − 2)(n − 1)λ)e1(H)

(−4nH + 2(n − 2)λ)2( 3nH
2 − (n − 2)λ)

+ H((2n − 2) = 0. (3.34)

Eliminating e1(H) from (3.33) and (3.34), we obtain

2(n − 1)λ − 3nH = 0

which is not possible since λ 	= 3nH
2(n−1) , consequently, en(λ) = 0. Therefore, (3.29) reduces

to

αβ = λ

(
3nH

2
− (n − 2)λ

)
. (3.35)

Now, eliminating e1e1(H) and e1e1(λ), using (3.35), (3.30), (3.27) and (3.25), we obtain

[(10n − 2n2)α − 4nβ]e1(H) = 21n3H3

2
+ 6(n3 − 2n2)Hλ2 + (−15n3 + 18n2)H2λ.

(3.36)
Differentiating (3.36) along e1 and using (3.35), (3.30), (3.27), (3.25) and (3.36), we get

[(
13n3 + 11n2

2

)
H3 + (4n3 − 14n2 + 2n + 20)Hλ2 + (−15n3 + 18n2 + 24n)H2λ

]
α

+ [−31n2H3 + (−16n2 + 36n − 8)Hλ2 + (42n2 − 60n)H2λ]β

= e1(H)
[

69n2H2

2
+ (24n − 30n2)Hλ + (6n + 4n2 − 28)λ2

]
. (3.37)

Also, we have

3ne1(H) = α(n − 2)(nH + 2λ) + β(−4nH + 2(n − 2)λ) (3.38)

Combining (3.37) and (3.38), we obtain

[
(9n3 + 171n2)H3 + (16n3 + 40n2 − 244n − 200)Hλ2 + (−30n3 − 198n2 − 516n)H2λ

−
(

16n2 − 8n − 160 + 224
n

)
λ3

]
α +

[
90n2H3 + (56n2 − 72n − 80)Hλ2

+ (−126n2 + 108n)H2λ −
(

16n2 − 8n − 160 + 224
n

)
λ3

]
β = 0. (3.39)
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For simplicity, we denote by

p1 = (9n3 + 171n2)H3 + (16n3 + 40n2 − 244n − 200)Hλ2

+ (−30n3 − 198n2 − 516n)H2λ −
(

16n2 − 8n − 160 + 224
n

)
λ3

p2 = 90n2H3 + (56n2 − 72n − 80)Hλ2 + (−126n2 + 108n)H2λ

−
(

16n2 − 8n − 160 + 224
n

)
λ3.

Therefore, (3.39) can be rewritten as

αp1 + βp2 = 0. (3.40)

On the other hand, combining (3.38) with (3.36) and using (3.35), we find

α2(n − 2)(10 − 2n)(nH + 2λ) − 4β2(−4nH + 2(n − 2)λ) = R, (3.41)

where R is given by

R = 63n3H3

2
+ (28n3 − 106n2 + 100n)Hλ2 + (102n2 − 51n3)H2λ

− (4n3 − 28n2 + 64n − 48)λ3.

Using (3.40) and (3.35), we get

α2 = −λp2

p1

(
3nH

2
− (n − 2)λ

)
, β2 = −λp1

p2

(
3nH

2
− (n − 2)λ

)

Eliminating α2 and β2 from (3.41), we obtain

(
3nHλ

2
− (n − 2)λ2

) [
(14n − 2n2 − 20)(nH + 2λ)p2

2 − 4p2
1(−4nH + 2(n − 2)λ)

]
= Rp1p2, (3.42)

which is a homogeneous equation of degree 9 in terms of λ and H. Here, we point
out that λ 	= 0. In fact, if λ = 0 then (3.42) gives H = 0, which is contradiction to our
assumption. We put Y = H

λ
, then (3.42) will reduce to an algebraic equation of degree

8 in Y

(
3nY

2
− (n − 2)

) [
(14n − 2n2 − 20)(nY + 2)q2

2 − 4q2
1(−4nY + 2(n − 2)

] = rq1q2,

(3.43)
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where

q1 = (9n3 + 171n2)Y 3 + (16n3 + 40n2 − 244n − 200)Y

+ (−30n3 − 198n2 − 516n)Y 2 −
(

16n2 − 8n − 160 + 224
n

)
,

q2 = 90n2Y 3 + (56n2 − 72n − 80)Y + (−126n2 + 108n)Y 2

−
(

16n2 − 8n − 160 + 224
n

)
,

r = 63n3Y 3

2
+ (28n3 − 106n2 + 100n)Y + (102n2 − 51n3)Y 2

− (4n3 − 28n2 + 64n − 48),

and without having solve to (3.43) explicitly, even in the case of the existence of a real
solution, H will be proportional to λ with a numerical factor μ, where μ be the root of
the equation (3.43). Hence, we can assume that H = μλ and substituting it in (3.25),
(3.27), (3.30), we obtain

−2e1e1(λ) + e2
1(λ)
λ

[
4

μn + 2
+ 2

]
= nμ(nμ + 2)λ3

2
, (3.44)

e1e1(λ) + e2
1(λ)
λ

[
3nμ − 2n + 4

−4μn + 2n − 4
− 1

]
= nμ(−4nμ + 2n − 4)λ3

4
, (3.45)

−e1e1(λ) + e2
1(λ)
λ

[
2(n − 2)
μn + 2

+ 3nμ − 2n + 4
4μn − 2n + 4

]

= −λ3

[
n2μ2

4
+ (n − 2) +

(
3nμ

2
− (n − 2)

)2
]

. (3.46)

From (3.44)–(3.46), we find

e2
1(λ) = (4nμ − 2n + 4)(nμ + 2)λ4

4
, (3.47)

e2
1(λ) = ( 7μ2n2

2 − μn2

2 + nμ(7 − 3n) + (n − 2) + (n − 2)2)(μn + 2)λ4

μn − 2n + 6
. (3.48)

Using (3.47) and (3.48), we get (5n2μ2 − 2μn2 − 2n − 8)(nμ + 2) = 0. Since λ 	= −nH
2 ,

gives nμ + 2 	= 0. Therefore, we have

5n2μ2 − 2μn2 − 2n − 8 = 0. (3.49)

On the other hand, differentiating (3.47) along e1, we obtain

2e1e1(λ) = (4nμ − 2n + 4)(nμ + 2)λ3, (3.50)

From (3.44), (3.47), and (3.39), we find

5nμ − 2n + 6 = 0, (3.51)

which gives μ = 2n−6
5n . However, this contradicts the equation (3.49).
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Now, we have main result as follows:

THEOREM 3.2. There exist no proper bi-harmonic hypersurfaces with three distinct
principal curvatures in the Euclidean space of arbitrary dimension.
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