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Abstract

Assume that m and n are two positive integers which do not divide each other. If the set of conjugacy
class sizes of primary and biprimary elements of a group G is {1,m, n,mn}, we show that up to central
factors G is a {p, q}-group for two distinct primes p and q.
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1. Introduction

Throughout this paper all groups considered are finite and G always denotes a group.
For an element x of a group G, we denote by xG the conjugacy class of x and by |xG |

the conjugacy class size of x. We say that x is a primary element if its order is a prime
power and x is a biprimary element if its order has exactly two distinct prime divisors.
All unexplained notation and terminology are standard, as in [11].

A classical problem in group theory is to study how the set of its conjugacy class
sizes controls the solvability of a group. For instance, groups with two class sizes are
nilpotent and groups with three class sizes are solvable. However, if a group has four
conjugacy class sizes, it may be simple, such as PSL2(5). Beltrán and Felipe studied
groups G whose set of conjugacy class sizes is {1,m, n,mn}, where m and n are two
coprime positive integers. They claimed in [3, 4] that G is nilpotent with m and n two
prime powers. Further, they proved in [5] that G is solvable if m and n are two arbitrary
numbers which do not divide each other.

On the other hand, many authors considered the influence of conjugacy class sizes
of certain elements in a group. This seems still to keep control of the structure of
a group. For example, we showed in [13] that a solvable group is nilpotent if the
set of the conjugacy class sizes of its primary and biprimary elements is {1,m, n,mn}
with m and n two coprime integers. In [9, Theorem C], Kong and Liu proved that
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a p-solvable group G is solvable if the set of conjugacy class sizes of primary and
biprimary elements of G is {1, pa, n, pan}, where p divides the positive integer n but
pa does not divide n. Then G is, up to central factors, a {p, q}-group with p and q
two distinct primes. In this present paper, we first prove the following theorem, which
generalises the result above without considering the p-solvability of G.

Theorem A. Let G be a group and a and n be integers. If the set of conjugacy class
sizes of primary and biprimary elements of G is {1, pa, n, pan} with prime p and integer
n such that p divides n while pa does not divide n, then G is solvable. In particular, up
to central factors, G is a {p, q}-group.

There are errors in Cases 1 and 2 of the proof in [9]. The error in Case 2 was
corrected in [10]; our method of the proof of Theorem A corrects the error in Case 1.
Furthermore, we prove a more general result.

Theorem B. Let G be a group and m and n be integers. If the set of conjugacy class
sizes of primary and biprimary elements of G is {1,m, n,mn} such that m and n do
not divide each other, then G is solvable. In particular, up to central factors, G is a
{p, q}-group with distinct primes p and q.

2. Preliminaries

We collect some results which will be used in the sequel.

Lemma 2.1 [8, Lemma 2.4]. Let G be a group. A prime p does not divide the conjugacy
class size of any primary element of G if and only if G has a central Sylow p-subgroup.

Remark 2.2. This is an immediate corollary of the result in [12].

Lemma 2.3 [6, Corollary B]. Let N be a normal subgroup of a group G and p a fixed
prime. Suppose that |xG | = 1 or m for every q-element in N and for every prime q , p.
Then N has nilpotent p-complements.

Lemma 2.4. Let G be a group. If each primary p′-element of G has conjugacy class
size 1 or m, then m = paqb, where a, b are two integers and q is a prime distinct from p.
Moreover, G = PQ × A, where P is a Sylow p-subgroup of G, Q is a Sylow q-subgroup
of G and A ≤ Z(G). In particular, if b = 0, then G has abelian p-complements; if a = 0,
then G = P × Q × A.

Proof. By Lemma 2.3, G has a nilpotent p-complement, say H. Write G = PH. Then
G is solvable as it is a product of two nilpotent groups. If H ≤ Z(G), there is nothing
to prove. Suppose that H � Z(G) and v ∈ H is a noncentral q-element for some prime
q , p. It is easy to see that the conjugacy class size of v is a {p, q}-number, yielding
that m is a {p, q}-number. Write m = paqb with a, b ≥ 0.

https://doi.org/10.1017/S0004972714000495 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972714000495


252 Q. Jiang and C. Shao [3]

Let r , p, q be a prime and u ∈ H \ Z(G) be an r-element. Since H is nilpotent,
we have that |uG | = m is a {p, r}-number, forcing |uG | = 1 and thus u ∈ Z(G). This
contradiction forces G = PQ × A, where P is a Sylow p-subgroup of G, Q is a Sylow
q-subgroup of G and A ≤ Z(G).

If b = 0, then each q-element has a p-number conjugacy class size, yielding that Q
is abelian, so that G has abelian p-complements and the conclusion holds. Assume
then a = 0. Then each q-element has a q-number conjugacy class size, yielding that
G = P × Q × A, which completes the proof of this lemma. �

Remark 2.5. This is a generalisation of the main results in [1, 2].

Lemma 2.6. Let G be a group with a subgroup A. Assume that every noncentral
primary element x ∈ A has centraliser A and π := π(A/A ∩ Z(G)) such that |π| > 1.
Then either:

(i) NG(A)/A is a π′-group; or
(ii) |NG(A)/A| = p for some p ∈ π.

Proof. Let v ∈ A \ Z(G) be an arbitrary element, which exists as |π(A/A ∩ Z(G))| > 1.
Consider the primary decomposition of v = v1, . . . , vn, where the orders of v1, . . . , vn
are powers of distinct primes and v1, . . . , vn commute pairwise. Since CG(vi) = A or G
for all i ∈ {1, . . . , n}, we obtain that CG(v) = A as v < Z(G). Then the lemma holds by
[7, Proposition 1]. �

3. Proof of Theorem A

Proof. According to Lemma 2.1, we may assume that G is a π(n)-group, as p divides
n. Clearly, if n is a power of p, the conclusion holds. In the following, we assume that
|π(n)| ≥ 2 and split the proof into two cases.

Case 1. There exists no p-elements of conjugacy class size pa.
Let x be an element of conjugacy class size pa. By considering its primary

decomposition, we may assume that x is a q-element for some prime q , p.
For an arbitrary primary q′-element y of CG(x), we see that the conjugacy class size

of y in CG(x) must be 1 or n, since pa does not divide n.
If the conjugacy class size of y in CG(x) is n, it follows by Lemma 2.4 that CG(x) has

a nilpotent q-complement H, yielding that CG(x) is solvable. Moreover, n = prqt with
r > 0. On the other hand, Lemma 2.1 shows that G = PQ × A with a Sylow p-subgroup
P, a Sylow q-subgroup Q and A ≤ Z(G).

If the conjugacy class size of y in CG(x) is 1, then CG(x) = Q0 × H, where Q0 is a
Sylow q-subgroup of CG(x). If H ≤ Z(G), then the proof is finished. Now consider the
case that H � Z(G). Note that p divides the order of CG(x). Then we may take some
noncentral p-element z ∈ CG(x), which exists as p < panp ≤ |G : Z(G)|p. In this case,
z ∈ H is of conjugacy class size pa, which is a contradiction.

Case 2. There is a p-element of conjugacy class size pa.
A similar argument as in [10] will complete the proof. �
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4. Proof of Theorem B

Proof. According to Lemma 2.1, we may assume that G is a (π(m) ∪ π(n))-group.
Suppose that x is a primary or biprimary element of conjugacy class size m. By
considering its primary decomposition, x can be assumed to be a primary element.
In the following, we fix x as a p-element for some prime p ∈ π(G).

Step 1. Either CG(x) is abelian or CG(x) = PxQx × Tx, where Px is a Sylow p-
subgroup of CG(x), Qx is a Sylow q-subgroup of CG(x) and Tx ≤ Z(CG(x)) is a Hall
{p, q}′-subgroup of CG(x). In particular, if CG(x) is nonabelian, then n = paqb for some
prime q distinct from p with positive integers a and b.

Symmetrically, if y is a primary element of conjugacy class size n, then either CG(y)
is abelian or m is a product of two distinct primes.

Proof of Step 1. It is not difficult to see that each primary p′-element y of CG(x)
has conjugacy class size 1 or n, as |xG | = m and m, n do not divide each other. If the
conjugacy class size of y is n, it follows by Lemma 2.4 that the second statement holds;
if the conjugacy class size of y is 1, then CG(x) = Px × Hx, where Hx is an abelian Hall
p′-subgroup of CG(x).

Suppose that Hx ≤ Z(G). Then |CG(x)/Z(G)| is a p-power, yielding that |G/Z(G)| =
mpα for some positive integer α. Notice that mn divides |G/Z(G)|. Then n is a power
of p, and the proof is finished according to Theorem A.

Consequently, we may assume that Hx � Z(G). Take a noncentral q-element z ∈ Hx.
Clearly, CG(x) = CG(z), as CG(x) is maximal in G. Further, each primary q′-element y
has conjugacy class size 1 or n in CG(z). If the conjugacy class size of y is n in CG(x),
then it follows that each p-element of CG(x) has conjugacy class size 1 or n in CG(x),
yielding that n is a power of p; then theorem holds by Theorem A. If the conjugacy
class size of y is 1 in CG(x), then CG(z) = Qz × Hz with an abelian Hall q′-subgroup
Hz of CG(z) and a Sylow q-subgroup Qz of CG(z). As CG(x) = CG(z), we obtain that
CG(x) is abelian, and the claim holds.

Step 2. There exists at least one primary element of conjugacy class size m or n whose
centraliser is nonabelian.

Proof of Step 2. Suppose that the centraliser of each primary element of conjugacy
class size m or n is always abelian. Then, for each primary element u ∈ CG(x) ∩CG(y),
we see that CG(x) ≤ CG(u) and CG(y) ≤ CG(u). As a result, u ∈ Z(G), implying
CG(x) ∩CG(y) = Z(G). Consequently,

|G : Z(G)| = |G : CG(x) ∩CG(y)| = |G : CG(x)||CG(x) : CG(x) ∩CG(y)| ≤ mn,

which is a contradiction to the fact that there is an element of conjugacy class size mn
in G.

Step 3. By the symmetry of m and n, we may assume that CG(x) is nonabelian. Then
Tx ≤ Z(G), where Tx is as in Step 1. In particular, |G : Z(G)|{p,q}′ = m{p,q}′ .
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Proof of Step 3. By Step 1, we have CG(x) = PxQx × Tx, where Px is a Sylow
p-subgroup of CG(x), Qx is a Sylow q-subgroup of CG(x) and Tx ≤ Z(CG(x)) is a Hall
{p, q}′-subgroup of CG(x).

We show that Tx is central. Otherwise, there exists a noncentral s-element v ∈ Tx

for some prime s. Easily, CG(x) ≤ CG(v) and thus CG(x) = CG(v), as CG(x) is maximal
in G. Further, each primary s′-element of CG(v) has conjugacy class size 1 or n in
CG(v). Again by the argument in Step 1, we see that CG(v) = RvS v × Tv, where Rv is
a Sylow r-subgroup of CG(v), S v is a Sylow s-subgroup of CG(v) and Tv ≤ Z(CG(v)).
Since CG(v) = CG(x) is nonabelian, we see that r = p. Furthermore, CG(x) is nilpotent,
yielding that n is a power of p or q; then the theorem holds by Theorem A. Hence, we
may assume that Tx ≤ Z(G).

Step 4. If z is a primary or biprimary element of conjugacy class size mn, then
CG(z) = PzQz × Hz, where Pz is a noncentral Sylow p-subgroup of CG(z), Qz is a
noncentral Sylow q-subgroup of CG(z) and Hz ≤ Z(G) is a Hall {p, q}′-subgroup of
CG(z), respectively.

Proof of Step 4. Let z be a primary or biprimary element of conjugacy class size mn.
Suppose that there exists a prime r dividing the order of CG(z)/Z(G) such that r , p, q.
Since |G : Z(G)| = |G : CG(z)||CG(z) : Z(G)|, we obtain that |G/Z(G)|r > (mn)r ≥ mr,
contrary to the fact that |G/Z(G)|r = mr by Step 3. As a consequence, we may
write CG(z) = PzQz × Hz, where Pz is a Sylow p-subgroup of CG(z), Qz is a Sylow
q-subgroup of CG(z) and Hz is a Hall {p, q}′-subgroup of CG(z).

We assert that neither Pz nor Qz is central. Suppose, to the contrary, that Qz is
central. We claim that q divides the order of CG(x)/Z(G). Otherwise, we see that
CG(x) = Px × Qx × Tx and thus |CG(x) : Z(G)| is a p-number. On the other hand, mn
divides |G : Z(G)| and |G : Z(G)| = |G : CG(x)||CG(x) : Z(G)| = m|CG(x) : Z(G)|, whence
n is a power of p. In this case, the theorem holds by Theorem A.

Consequently, there exists a q-element v ∈ CG(x) \ Z(G). If vx has conjugacy class
size mn, then |CG(vx)/Z(G)| = |CG(z)/Z(G)| is a p-power, as Qz is central, which is
impossible, as v ∈ CG(vx). Consequently, vx has conjugacy class size m, forcing
CG(vx) = CG(x) = CG(v). Therefore, CG(x) = Px × Qx × Tx with an abelian Sylow
q-subgroup Qx by an argument similar to that in the last paragraph in Step 1.

Analogously, if we take a noncentral p-element w ∈ CG(v), by applying an argument
similar to that above, we conclude that CG(wv) = CG(v) = CG(w), yielding that CG(x)
has an abelian Sylow p-subgroup. Therefore, CG(x) is abelian, contradicting our
assumption prior to Step 3.

Similarly, Pz is also noncentral.

Step 5. G is a {p, q}-group.

Proof of Step 5. As m and n are not coprime, without loss of generality, we assume
that p is a common divisor of m and n.

Recall that y is a primary element of conjugacy class size n in G. Now we prove
that CG(y) is nonabelian.
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Suppose CG(y) is abelian. Since mn divides |G : Z(G)| = |G : CG(y)||CG(y) : Z(G)|,
we see that p divides |CG(y) : Z(G)|. Hence, there exists a noncentral p-element
v ∈ CG(y), yielding that CG(v) = CG(y).

Assume that NG(CG(y)) = CG(y). Let P be a Sylow p-subgroup of G containing
v. Notice that p is a common divisor of m and n. Then P is nonabelian. Then we
may take an element z ∈ Z(P/Z(P)). We show that P ⊆ NG(CG(z)). In fact, for each
a ∈ P \ Z(P), we see that [a, z] = 1, yielding that t0 := [a, z] ∈ Z(P) ≤ Z(G). Moreover,
z = za−1

t0, which implies that CG(z) = CG(za−1
t0) = za−1

. Consequently, a ∈ NG(CG(z)),
as desired.

Note that CG(y) = CG(z), as CG(y) is abelian. Then P ≤ NG(CG(z)) = NG(CG(y)) =

CG(y), which is a contradiction. Therefore, NG(CG(y)) 
CG(y). Further, by Lemma 2.6
|NG(CG(y))/CG(y)| = p. Then we may choose a p-element z ∈ NG(CG(y)) \CG(y).

By Step 4, we see that both p and q divide the order of CG(y)/Z(G). Let Qy be a
Sylow q-subgroup of CG(y) and Q be a Sylow q-subgroup of G containing Qy. As p
divides n, we see that Qy � Q. For an arbitrary element w ∈ NQ(Qy) \ Qy, we see that
Qy ⊆CG(y) ∩CG(yw). As CG(y) is abelian, we conclude that CG(y) = CG(yw) = CG(y)w.
This shows that w is a q-element in NG(CG(y)) \ CG(y), which is a contradiction.
Consequently, CG(y) is nonabelian.

Further, we conclude that m = pcqd for positive integers c and d. Therefore, both m
and n are {p, q}-numbers, showing that G is a {p, q}-group, up to central factors. This
completes the proof. �
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