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Abstract. We provide a new computation of the K-theory of the group C∗-algebra
of the solvable Baumslag–Solitar group BS(1, n) (n �= 1); our computation is based on
the Pimsner–Voiculescu 6-terms exact sequence, by viewing BS(1, n) as a semi-direct
product �[1/n] � �. We deduce from it a new proof of the Baum–Connes conjecture
with trivial coefficients for BS(1, n).
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1. Introduction. The Baum–Connes conjecture with coefficients for G, BCcoef ,
proposes that for every C∗-algebra A on which G acts by automorphisms, the analytical
assembly map

μG,A : KKG
i (EG, A) → Ki(A �r G) i = 0, 1

is an isomorphism; where KKG
i (EG, A) denotes the G-equivariant K-homology with

G-compact supports and coefficients in A, of the classifying space EG for G-proper
actions; and Ki(A �r G) denotes the analytical K-theory of the reduced crossed product
A �r G. Although BCcoef failed to be true in general, it has been proved for several
classes of groups. Among them are one-relator groups, see [1, 11, 12]. Furthermore,
Higson–Kasparov [7] established BCcoef for the class of amenable groups. Let A = �,
we come up with the original Baum–Connes conjecture [2] that was strengthened by
Baum, Connes and Higson [3] to the above formulation.

Our interest is to understand better the Baum–Connes conjecture through known
examples and to go beyond the abstract isomorphism of Higson–Kasparov [7].
From this perspective, we consider the solvable Baumslag–Solitar groups BS(1, n) =
〈a, b|aba−1 = bn〉 for n ∈ �\{0}.

These groups are both one-relator and amenable hence the conjecture is known
for them. Moreover, computations related to the K-theory of C∗(BS(1, n)) appeared
in [5]; however, they are situated in the more general setting of solenoid algebras and
are less explicit at the same time. Our (direct) approach toward proving the conjecture
for these groups provides us with an elementary proof for which we do not need to use
KK-theory or any advanced theory. Furthermore, not only we compute the K-groups
but also we specify their generators and show their relevance for the Baum–Connes
assembly map.
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Precisely, as a result of our computations we get the following description for the
K-theory and the Baum–Connes conjecture of the solvable Baumslag–Solitar groups.

K0(C∗(BS(1, n))) = �.[1]

and

K1(C∗(BS(1, n))) = � ⊕ �/|n − 1|.�, n �= 1

with the generators [a] (of infinite order) and [b] (of order |n − 1|). The assembly map
μG,� is an isomorphism, identifying the generators of both sides.

To prove this result, we view BS(1, n) as a semi-direct by �, hence C∗(BS(1, n)) as
a crossed product by �, and we compute the analytical K-groups of BS(1, n) thanks
to the Pimsner–Voiculescu 6-terms exact sequence [13]1.

Finally to reach the Baum–Connes conjecture with trivial coefficients for BS(1, n),
we appeal to two useful facts: on one hand, for G, a torsion-free group, we have
KG

i (EG) = Ki(BG), the K-homology with compact supports of a classifying space
BG for G; on the other hand for G one-relator torsion-free, there is a simple two-
dimensional model for BG, namely the presentation complex of G, see [9].

2. The C∗-algebra of BS(1, n). For n �= 1, there is a faithful homomorphism from
BS(1, n) to the affine group of the real line, given by

BS(1, n) → Aff1(�) :
{

a 
→ (x 
→ nx) (dilation by n)
b 
→ (x 
→ x + 1) (translation by +1)

.

It realizes an isomorphism

BS(1, n) � �[1/n] �α �,

where �[1/n] = { m
n� ∈ � : m ∈ �, � ∈ �}, viewed as an additive group; and α is

multiplication by n.
It is well-known that if a discrete group G decomposes as a semi-direct product

G = H �α �, with H a normal abelian subgroup, then

C∗(G) = C∗(H) �α � = C(Ĥ) �α̂ �,

where Ĥ denotes the Pontryagin dual of H (so Ĥ is a compact abelian group), and α̂

is the dual automorphism.
In the case of BS(1, n), we have H = �[1/n], viewed as the inductive limit of

�
i0−→ �

i1−→ �
i2−→ . . . ,

where ik : � → � (for k ≥ 0) is multiplication by n. So îk : � → � is raising to the
power n, and Ĥ is the projective limit of

. . .
î2−→ �

î1−→ �
î0−→ �,

1For n = −1, i.e. the Klein bottle group, a computation based on the Pimsner–Voiculescu sequence appears
in Proposition 2.1 of [14], apparently not aware of previous results on the subject.
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which we identify with the solenoid2

Xn = {z = (zk)k≥0 ∈ �� : zn
k+1 = zk,∀k ≥ 0}.

The duality between Xn and �[1/n] is given by (z, m) = zm
� , where m belongs to the �th

copy of �; this is well defined as (z, i�(m)) = zn.m
�+1 = zm

� = (z, m). For m
n� ∈ �[1/n], this

corresponds to (z, m
n� ) = zm

� for z = (zk)k≥0 ∈ Xn.
The automorphism α is given by α(m) = i�(m), where m lies in the �th copy of �.

So α̂ is the automorphism of Xn given by the backwards shift: (α̂(z))k = zk+1 for k ≥ 0.
So C∗(BS(1, n)) = C(Xn) �α̂ �. This crossed product can be viewed as the universal

C∗-algebra generated by two unitaries u and v satisfying the relation uvu−1 = vn, where
u is the unitary of C∗(�) corresponding to the generator +1 of � acting on C(Xn), while
v ∈ C(Xn) is given by the function z 
→ z0 on Xn. This crossed product description of
C∗(BS(1, n)) appears already in [6, 8].

LEMMA 1. K0(C(Xn)) = �.[1] (the infinite cyclic group generated by the class of
1 ∈ C(Xn)) and K1(C(Xn)) � �[1/n].

Proof. We have C(Xn) = C∗(�[1/n]) = lim−→(C∗(�), ik) (where we also denote by
ik the ∗-homomorphism C∗(�) → C∗(�) associated with the group homomorphism
ik). Since K-theory commutes with inductive limits, we get Ki(C(Xn)) =
lim−→(Ki(C∗(�)), (ik)∗) (i = 0, 1). Since K0(C∗(�)) = �.[1] and ik is a unital ∗-
homomorphism, we have K0(C(Xn)) = lim−→(�.[1], Id) = �.[1]. On the other hand,
let v be the unitary of C∗(�) corresponding to the generator +1 of � (so that
K1(C∗(�)) = �.[v]). Then ik(v) = vn, i.e. (ik)∗[v] = n[v], and the inductive system
(K1(C∗(�)), (ik)∗) is isomorphic to the original system (�, ik), so they have the same
limit �[1/n]. �

3. K-theory for C∗(BS(1, n)). Let A be a unital C∗-algebra and α ∈ Aut(A).
We can define the crossed product A �α � associated with the action α of � on
A. Let u ∈ A �α � be the unitary that implements this action in the construction
of crossed product. Abstractly, the crossed product A �α � is generated by
{A, u : uau∗ = α(a), a ∈ A}. The Pimsner–Voiculescu 6-term exact sequence [13] gives
us a tool to calculate the K-theory of A �α � via the following cyclic diagram with
6-terms:

K0(A)
Id−α∗−→ K0(A)

ι∗−→ K0(A �α �)
∂1 ↑ ↓ ∂0

K1(A �α �)
ι∗←− K1(A)

Id−α∗←− K1(A)

Here ι : A → A �α � denotes inclusion. We will need some understanding of the
connecting map ∂1; namely, we observe in the next lemma that ∂1([u]) = −[1]. This will
help us in later computations.

LEMMA 2. The connecting map ∂1 : K1(A �α �) → K0(A) maps [u] to −[1].

Proof. Let C∗(S) be the C∗-algebra generated by a non-unitary isometry S and
let P = I − S∗S. Now TA,α, the Toeplitz algebra for A and α, is the C∗-subalgebra of

2Strictly speaking, it is a solenoid only for |n| > 1, while it is � for |n| = 1.
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(A �α �) ⊗ C∗(S) generated by u ⊗ S and A ⊗ I . Let K be the C∗-algebra of compact
operators on a separable Hilbert space, with the corresponding system of matrix units
(eij)i,j≥0. Consider the Toeplitz extension associated with A �α � as in [13]:

0 → A ⊗ K ϕ→ TA,α

ψ→ A � � → 0,

with ϕ(a ⊗ eij) = uiau∗j ⊗ SiPS∗j
and

ψ(u ⊗ S) = u, ψ(a ⊗ I) = a

for any a ∈ A and i, j ∈ �.
The map ∂1 : K1(A �α �) → K0(A ⊗ K) is then the boundary map associated

with the Toeplitz extension, we compute ∂1([u]) following the description given in

[4], 8.3.1. Consider first
(

u 0
0 u∗

)
. This matrix can be lifted via ψ to a matrix

M =
(

u ⊗ S 1 ⊗ P
0 u∗ ⊗ S∗

)
, where M ∈ U2(TA,α). For p1 := (1 ⊗ I) ⊕ 0 ∈ M2(TA,α), we

have

Mp1M∗ − p1 = (1 ⊗ SS∗ − 1 ⊗ I) ⊕ 0 = (−1 ⊗ P) ⊕ 0.

The pullback of this element via ϕ is z := (−1 ⊗ e00) ⊕ 0 ∈ M2(A ⊗ K). So ∂1([u]) =
−[−z]. Via the isomorphism K0(A ⊗ K) ∼= K0(A), the element [−z] = [1 ⊗ e00]
corresponds to [1]. Hence, ∂1([u]) = −[1]. �

THEOREM 1. K0(C∗(BS(1, n))) = �.[1]. For n �= 1:

K1(C∗(BS(1, n))) = � ⊕ �/|n − 1|.�,

with generators [a] (of infinite order) and [b] (of order |n − 1|).

Proof. We view C∗(BS(1, n)) as the crossed product C∗(BS(1, n)) = C∗(�[1/n]) �α

�, and apply the Pimsner–Voiculescu 6-terms exact sequence to it. Denoting by the
ι : C∗(�[1/n]) → C∗(BS(1, n)) the inclusion, and appealing to Lemma 1, we get:

�.[1]
Id−α∗−→ �.[1]

ι∗−→ K0(C∗(BS(1, n)))
∂1 ↑ ↓

K1(C∗(BS(1, n)))
ι∗←− �[1/n]

Id−α∗←− �[1/n]

Since α(1) = 1, the upper-left arrow is the zero map. The bottom-right arrow is
given by multiplication by 1 − n on �[1/n], so it is injective; hence, the right vertical
arrow is zero. This shows that ι∗ : �.[1] → K0(C∗(BS(1, n))) is an isomorphism.

Turning to K1, we observe that the relation [b] = [aba−1] = [bn] implies (n −
1).[b] = 0, i.e. the order of [b] divides |n − 1|. To prove that this is exactly |n − 1|, we look
at the bottom line of the Pimsner–Voiculescu sequence. Since �[1/n]/Im(Id − α∗) =
�/|n − 1|.�, we get a short exact sequence:

0 → �/|n − 1|.� → K1(C∗(BS(1, n)))
∂1→ �.[1] → 0.
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which splits to give K1(C∗(BS(1, n))) = � ⊕ �/|n − 1|.�, with [b] a generator of order
|n − 1|. Since ∂1([a]) = −[1] by Lemma 2, we see that [a] is a generator of infinite
order. �

COROLLARY 1. Set Gn =: BS(1, n). For n �= 1, the Baum–Connes conjecture
without coefficients holds for Gn, i.e. the Baum–Connes assembly map
μGn,� : Ki(BGn) → Ki(C∗(Gn)) (i = 0, 1) is an isomorphism.

Proof. We appeal to a result of Lyndon [9]: for a torsion-free one-relator group
G =< S | r > on m generators, the presentation complex (consisting of one vertex, m
edges and one 2-cell) is a two-dimensional model for the classifying space BG. By
Lemma 4 in [1]:

K0(BG) = H0(BG, �) ⊕ H2(BG, �) and K1(BG) = H1(BG, �).

Let F(S) denote the free group on the set S of the generators. If r is not in the
commutator subgroup of F(S), then we have that H2(BG, �) = 0. In order to see this,
we consider the boundary operator ∂2 : C2(BG, �) = �[r] → C1(BG, �) = �[S] which
takes the 2-cell [r] to its boundary obtained by running along r and summing up the
letters appearing in r with a sign equal to the exponent (which corresponds to their
orientation as you run along the boundary of the 2-cell). If r is not in the commutator
subgroup of F(S), then the sum of all exponents of r is non-zero, so ∂2 is injective,
and therefore H2(BG, �) = Ker ∂2 is zero. This argument applies to Gn, as we assume
n �= 1. Then, K0(BGn) = H0(BGn, �) = �, generated by the inclusion of a base point.
By Example 2.11 on p.97 of [10], the image of this element under μGn,� is [1], the class
of 1 in K0(C∗(Gn)). The result for K0 then follows from Theorem 1.

Now, for any group G, identify H1(BG, �) with the abelianized group Gab. There is
a map κG : Gab → K1(C∗

r (G)) obtained by mapping a group element g ∈ G first to the
corresponding unitary in C∗

r (G), then to the class [g] of this unitary in K1(C∗
r (G)). We get

this way a homomorphism G → K1(C∗
r (G)), which descends to κG : Gab → K1(C∗

r (G))
as the latter group is abelian. By Theorem 1.4 on p.86 of [10], for G torsion-
free, the map κG coincides with μG,� on the lowest-dimensional part of K1(BG).
Here, μGn,� : K1(BGn) → K1(C∗(Gn)) coincides with κGn : Gab

n = � ⊕ �/|n − 1|.� →
K1(C∗(Gn)), which is an isomorphism by Theorem 1. �

REMARK 1. Let τ : C∗(BS(1, n)) → � be the canonical trace on C∗(BS(1, n)). This
induces the homomorphism τ∗ : K0(C∗(BS(1, n))) → � at the K-theory level. Since τ

is unital, by Theorem 1 we have τ∗(K0(C∗(BS(1, n)))) = �.
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