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A B S 1 R A C T . Sea iee on the large scale is characterized by leads and ridges that typ­
ically have a given orientation. Because of various Maws, we would expect thai ilie iee will 
form oriented leads and ice-thickness characteristics that control the heat and moisture 
fluxes into the atmosphere. Prediction of these oriented leads, ridges and slip lines is rele­
vant lo understanding the role of ire mechanics in global climate change as they can play a 
significant role in the ice-thickness distribution. 

In this paper we develop a model lor the dynamical treatment of leads and oriented 
flaws in large-scale sea-ice models. Two particular isotropic realizations of this model 
relevant to climate studies are examined: (a) an isotropic composite with oriented leads 
in all directions imbedded in thick ice. and b a simple ""strain hardening" isotropic 
model where (inly oriented leads having the potential to open rapidly are allowed. Under 
applied stress both models yield preferential deformation along a symmetric pair of inter­
secting leads or ridges with the intersection angles dependent on the confinement stress. 
The "uniform-orientation" model results in a yield curve that approximates a sine lens. 
while the "strain hardening" model has a teardrop-like yield curve. How the resulting 
fracture-baaed yield curves and non-normal How rules may he east in a form usahle in 
numerical investigations of climate is discussed. 

I N T R O D U C T I O N 

Sea iee on the large scale is characterized by leads and 
ridges thai typically have a given orientation, Because of 
various Haws we would expect that the ice w ill form oriented 
leads and ice-thickness characteristics that control the heat 
and moisture lluxes into the atmosphere. Moreover the How 
of sea ice and open water created under compact ice condi­
tions are largely control led by these oriented weaknesses, 

Present large-scale sea-ice models e.g. Hiblcr, 1979; 
Stossel and others, 1990; Flato and Hiblcr. 1992; Holland 
and others. 1993) are based on smooth-continuum failure 
criteria thai do not explicitly lake into account the forma­
tion of leads and cracks. Observations both on the large 
scale Marko and Thompson, 1977> and in the laboratory 
Schulson and Nickolayev. 1995) indicate thai the failure of 

ice typically lakes place by fracturing, especially under 
divergent conditions. Also the similarity of results between 
different scales | Schulson and Hiblcr. 1991 and observations 
on the large scale suggest that similar mechanisms may 
apply il'appropriate scaling can be carried mil. 

To describe completely I his composite system would 
require an anisotropic model 'see e.g. Coon and others, 
1992) with a memory of past oriented leads. However, many 
aspects of the fracture-based failure of sea ice may be deter­
mined by examining the response of a system beginning 
Initially with a uniformly oriented set of weak thin-ice leads 
embedded in ihicker iee. The principle here is thai while 
lead formation is locally anisotropic, such a composite is iso­
tropic in the sense I hat its mechanical response will be the 
same regardless of which direction the external stresses are 
applied. Also such an approach may be particularly relc-

2(i 

vant to climate studies where we are more concerned with 
predicting the statistical characteristics of leads rather than 
particular occurrences. 

In this paper we present a model lor the treatment of 
leads and oriented (laws in large-scale sea-ice models rele­
vant lo climate studies. While the theoretical framework is 
anisotropic in character, we here examine isotropic realiz­
ations of the model, beginning initially with uniformly 
oriented leads or Haws in all directions. While we do not 
consider how these leads were formed, we note that frac­
tures ai almost all scales are ubiquitous features in pack ice. 
In addition, an approximate si rain-hardening extension is 
proposed where only oriented leads having the potential to 
open rapidly are allowed. Both these isotropic models yield 
preferential deformation along a particular set ofintersect-
ing leads with the particular deformation and "lead pair" 
depending on the confinement siress. The resulting yield 
curves and How characteristics form two archetypal frac­
ture-based theologies that should have utility in current 
numerical investigations of climate. 

T H E O R Y 

The essential idea is, following Coon and others ;1992i, lo 
make use of oriented Haws or weak leads in thicker ice. How­
ever, rather than assume an orientation and intersection angle 
for leads we only assume that the thick and thin ice obey vis­
cous-plastic constitutive laws. The anisotropic How and yield 
characteristics, as well as lead orientation and intersection an­
gles, then become part of I he model predictions. 

To develop the basic theory lei us first consider a single 
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weak lead embedded in thick ice. We assume, as in Figure 1, 
that within the plane of the ice sheet the lead goes comple­
tely through the geographical region of interest. Consider 
that the lead has area .4 and strength F' and is embedded 
in thick ice of strength /-' and area I - A as shown in Figure 
1. We consider that within the plane of the sheet, both the 
lead ice and thick ice obey an Isotropic constitutive law with 
a yield curve described by a truncated ellipse a> discussed in 
the Appendix. Envelopes oft his kind characterize compres­
sive failure ot'columnar sea ice when hiaxially luaded across 
the columns (Sclmlson and Nirkolayev. 1935). For this con­
stitutive law (sec Appendix the stress may be expressed in 
terms of the strain rate by the Reiner Rivlin constitutive 
law (e.g. Hunter. 1983 which for Cartesian tensors is given 
by: 

ex,, - 2,,f\, + ((,- iiHnd,, - 0.5(P)6,j 

where //. ( and P are functions of the strain-rate invariants, 
repeated subscripts arc summed over 1,2 and <\, is the 
kronecker delta. 

J V 

°xu continuous 

Ojfjf continuous 

a„„ : not continuous 
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Fig. /. Schematic view of oriented thin ice lead embedded in 

thick ice. 

We consider a strain rate cm" with the same value in both 
the leads and thick ice: fmt' = (ml = c,,,/'. We now consider a 
strain rate c.rj", which is composed of r . r / in the thin ice. 
and r r , in the thick ice in a manner such that 

r , , ' ,H ( l - , l ) r „ = f „ " (1) 

and a shear-strain rale f.(l/" such l hat 

cVA+(1-.4)r,,, = f,,/'. (2) 

We insist thai the stress is continuous at the thin-ice thick-
ice boundary, which implies that rr,,,. and a,.,,, the compres­
sive and shear stresses across a lace with normal in the ./' 
direction, are continuous. Using the truncated ellipse con­
stitutive law this condition leads to two equations: 

fa+ <)*** + (9 -C)e w
, J - / ' (3) 

2?]'f.ni' = 2//r.,.,,. (4) 

These conditions basicalh yield lour non-linear equat­

ions with four unknowns: the shear and compressive strain 
rates in the thick and thin ice across a face with normal in 
the J'direction: c,rA , fr„ . cAS. f,ni. 

We may soke these equations numerically by specifying 
an external strain for the whole system, and then iterating 
the system until a plastic equilibrium is obtained: or if the 
strain rates are small enough until the system goes to a creep 
state, which in the viscous-plastic approximation Hibler. 
1979' is used to approximate rigid How. In solving these 
equations we use the semi-implicit (iredicior corrcclor 
method of Hibler 1979 whereby at each iteration the non­
linear viscosities >/and ( a n d the pressure P 'e.g. Hibler and 
lp. [995i in both the thin and thick ice are linearized, and 
the equations solved commensurate with the external strain. 
Once this is done, we proceed to the updated strain rates in 
11it- thick and ihiu ice (although die external strain remains 
fixed] and update the non-linear viscosities in the next 
iteration. 

Single-lead yield character is t ics 

A resulting vield surface for this single-lead anisotropic sys­
tem ill the coordinate system shown hi Figure 1 is given in 
Figure 2. The calculations were made for P'/P — 0.01. 
P = 10' N in ' and A, the area of the lead, taken to be I % 
of the total area. These stress states were obtained by taking 
a si rain-rule ratio and numerically determining a consistent 
plastic-stress stale. Because of the symmetry of the system, if 
the principal components of the strain rales are in ihe.r and 
II directions and hence aligned with the thin ice. then the 
principal stress components will also be in this coordinate 
system, However, il is clear from Figures I and 2 that even 
though the principal axes in ihis special case are aligned, 
the response of the system will be different depending on 
whether the stress is larger in the x or the y direction. We 
emphasize that, for this composite system, the normal How 
rule no longer applies the model yields non-normal flow 

-looo er_„(Nm"') o 

Fig. 2. 1 hid surfacefor a single lead embedded in thick ice 
with orientation as shown in Figure 1. All stresses have units 
o/.Ym .The thick ice has strength P — III'. Xnt andcom-
/iri.ses 99% of the area, 'the thin ice lias a strength equal to 
I % of the thick ice strength and com/irises I % of the area. 
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rules automatically}. Also the limiting behavior where one 
of the principal stresses goes to zero (especially trm —• 0) is 
not precisely represented in Figure 2. as this would require 
considerable local-scale enlargement. 

If we consider a strain rate with principal axes not 
aligned with the thin ice, then the stress and strain rale prin­
cipal axes are no longer aligned and the behavior is more 
complex. Clearly, in general we need a yield surface i as 
shown in Figure 2). not just a yield curve to describe the sys­
tem completely. What we see from I he yield surface is that as 
fijf, increases, <r,.,. for compressive failure decreases. How­
ever, because of the extreme weakness of the lead in this 
ease, there is little change in n!m at failure. 

lit the work described here we are ultimately interested 
in isotropic response that takes into account the fracture 
and How character of sea ice laced with cracks and leads. 
Consequently in the remainder of the paper we will consider 
only eases where the principal axes of stress and strain are 
aligned even though the system may be anisotropic. In this 
special case the yield characteristics may be described by a 
yield curve rather than a full yield surface. 

Two o r m o r e l e ads 

1<> consider the case of more than one lead is a straightfor­
ward extension of the single-lead equation. In particular, in 
this case, we simply need to rotate the strain to the lead 
coordinate system. The main difference, however. Is that 
the strain along the lead is no longer the same as for the 
thick ice, hut is now equal to the external compressive strain 
along this direction applied to the whole system. Also, the 
numerical solution requires a solution of linear equations 
at each iteration. Failure stresses may be obtained by speci­
fying strain rates and solving for the stresses, or by specify­
ing confinement-stress ratios as described in the next 
section. 

The configuration for two leads is shown in Figure 3. 
Again, since we are interested in the most symmetric res­
ponse, if we consider strains with principal axes aligned 
along the I and .(/directions as shown in Figure 3, the prin­
cipal axes of stress will also be aligned in these directions. 
But, as in the single lead ease, the response is decidedly ani­
sotropic. The resulting yield curve tor this system is shown 
in Figure 4. in the case of leads at an angle of ±18 relative 
to the y axis. We chose 18 because similar angles have often 
been observed for intersecting leads ;e.g. Marko and 
Thompson. 1977). Note that for this ease, the leads open up 

-1 .5 o-^txicr N m-1) 0 V 
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Fig. 1 Schematic view of turn intersecting leads oriented sym­

metrically about the y axis. 

( N m " 1 

Fig. I. Field curve and flow rule fur two symmetric intersect­
ing leads oriented at III relative In the y axis (see Fig. 3) Joi 
(T.,.,1 — 0. Each lead comprises t)A% of the area and has a 
strength equal to I % of the thick ice strength P. u hich is equal 
to !(/',\ m . (a) Field curve where circles with plusses 
indicate the thin ice leads are closing and open circles denote 
opening leads. (l>) Angle between the strain-rale Viclm and 
the yield curve for a,, fcrmi < L The/tow angle is measured 
clockwiscjmm the strain-rale vector to the tangent of the yield 
curve. Hence, angles < 90 correspond to greater convergence 
than the normal'/low rule. 

under lower confinement R — vr, /alw < ~ 0.32 denoted by 
open circles and close under higher confinement (denoted 
by © .With regard to asymmetric strength, the asymptotic 
strengths for very low confinement may be understood in 
terms of a greater compressive stress on the lead leading to 
a greater shear stress needed for failure when awl ~ 0 as 
compared to a.rj «v (J. However, as is the case in Figure 2, 
the precise limiting behavior for zero confinement is not 
well represented in figure 4a. Also with this model, in con­
trast to the single-lead model, the thick-ice strength effec­
tively plays no role in the failure stresses. 

Some of the How characteristic! for this two-lead com­
posite are shown in Figure lb, where we have plotted the 
angle between the strain-rate sector and yield curve for 
K M | < K.i/.i/l- As can be seen up to confinement ratios of 
about 0.09, the How is more convergent than a normal (low 
rule would yield. The effective discontinuity at this confine­
ment ratio arises from the truncated ellipse assumption for 
the thin ice see Appendix , and occurs when the lead ice 
failure stress changes from uniaxial to biaxial. After this 
stress point, the How is essentially more divergent than for 
normal How with the maximum deviation from normality 
occurring where \am\ becomes maximum. 
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FAILURE AND FLOW O F CRACKED SEA ICE RELE­

VANT T O CLIMATE 

The main goal here is to consider how fracture and How of 
cracked sea ice ailects die constitutive behavior of sea id-
relevant to large-scale climate simulations. Consequently, 
utilizing die above theory, we wish to consider Initially iso­
tropic realizations with (he main provision being that the 
failure and How are dictated by the thin lead and/or crack 
structure. An implicit assumption here is that the strength 
of the aggregate is essentially controlled b\ the ihin tec. 
Two cases of isotn >pic response can be considered. The most 
straightforward case is to consider a uniform distribution ol 
equally strong leads in all directions. In this case the res­
ponse must clearly be isotropic, although the How lor the 
composite as a whole will be considerably different than a 
normal isotropic yield curve with normal How rule. Also, 
as discussed below, depending on the stress state, the system 
will fail with the concomitant formation of two preferred 
leads or ridges. 

A second case, which we Icel is closer to laboratory meas­
urement.-, of the biaxial failure of fresh- and salt-water 
columnar ice, is the case where we allow "strain hardening" 
in the sense that only leads thai have the potential to open 
rapidly are considered. The other leads are considered to 
have become stronger relative to the rapidly opening leads 
by freezing, or simply by opening less rapidly. In this strain-
hardening case the orientation of the selected leads will 
depend on the orientation of the applied stress state. How­
ever, since strain-hardened leads or ridges are generated by 
the stress state, the system is isotropic in the sense that it will 
behave the same under any direction of sustained loading, 
because the leads or cracks thai become active will be 
picked out by the applied stress. 

Since we are mainly interested in the response to a spec­
ified stress, to examine these two cases we will e a r n out 
numerical experiments in a manner similar to those con­
ducted in the laboratory Schulson and N'ickolayev, 1995). 
Specifically we consider a biaxial experiment with a fixed 
confinement stress ratio /? = Tjr/^uii and a fixed strain rate 
along the direction of the larger stress. The other strain rate 
is adjusted ai each iteration so that the stress ratio remains 
fixed at each iteration. As in the laboratory, the numerical 
experiment then determines the magnitude of the stresses 
and strain-rale ratio. 

U n i f o r m l y o r i e n t e d l eads 

'lb approximate numerically the case of uniformly oriented 
leads of cental strength we consider a partition of 4(1 thin-ice 
leads at 4.5 intervals centered at values of 8 ranging from 
0= 833 loS=90", Clearly, because of symmetry, we 
only need to consider a distribution spanning 180 .We then 
subject this system to different biaxial stress forcing as des­
cribed above. 

What we expect to happen with this configuration is 
that certain preferred orientations of leads or ridges) will 
form depending on the stress confinement ratio. The con­
cept is illustrated in Figure 5. where we use only two leads 
as illustrated in Figure 3, and numerically examine the 
stress component (Tm at failure as a function of lead-iuterscc-
liott angle for different fixed-stress confinement ratios 
R = OXJI#W Basically, for a given confinement ratio there 
is a lead-intersection angle that yields a minimum eotupres-
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Fi& 1 Failure stress Jin lift) symmetric intersecting leads 
intersecting at angle 2ti j'oi different \lres\-ttmftnemenl ratios 
/? — n,, /IT,,,, . The tenth eaelt comprise 0.4 % of the area mid 
have a strength equal to I % oj the thick tee strength P which 
isn/nal to 10' \m . 

sive stress for failure,This failure stress is lowest for low con­
finement ratios with the angle of intersecting leads at the 
minimum stress increasing as the confinement ratio 
increases. 

An interesting feature of Figure 5 is that for Intermediate 
confinement ratios of about 0.055 there are two minima — 
one at about 18 and one at 3(i . At lower and higher con­
finement ratios, one of these minima disappear, without 
passing through an intermediate minima in between. As a 
consequence, with this uniform tliin-ice-strength model, it is 
verv difficult to get leads with angles 20.5 < 0 < 36". 

Lead delbrmations resulting from the numerical exper­
iments for a uniform distribution of equal strength leads are 
shown in Figure (i Since with many leads the confinement-
ratio experiments can, under certain circumstances, pro­
duce solutions at a local stress minima, in all the reported 
results, solutions corresponding to the lowest compressive 
stress were used. There multi-lead results confirm our 
expectations, namely that for this uniformly oriented set of 
leads, the deformation will occur preferentially across a spe­
cified set of intersecting leads. For low confinements, this 
deformation will take the form of rapidly opening pairs ol" 
leads with intersection angles decreasing to zero in the limit 
of no confinement. For higher confinement, this deform­
ation takes the form of convergence, and hence ridge form­
ation across a pair of leads with the intersection angle going 
to zero for high enough confinement. This low-confinement 
stress ratio for lead formation Is consistent with stress obser­
vations by RicliUT-Mcngc il997). which indicate low con­
finement ratios, especially during major stress events. Both 
these divergent patterns are accompanied by substantial 
concomitant shear across the same two particular leads. 
Note also that for both ridging (closing) and faulting (open­
ing deformation the rate of convergence (or divergence I is 
greater for smaller intersection angles. 

The yield curve corresponding to this suite of numerical 
biaxial-confinement experiments is shown in Figure 7. 
These stresses are effectively Independent of strain-rate 
magnitudes except for very small strain rales in keeping 
with the behavior of ice in the laboratory Schulson and 
Nickolayev, 1995). We emphasize that the normal How rule 
does not apply to this composite system, although it is not 
drastically dillercnt. Note that the yield curve does intersect 
the principal stress axes at a non-zero value, which is sub­
stantially smaller than the intersection of the truncated 
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- 5 0 + 50 ' 

Pig. ft. I a I Rates of opening of leads vs angle/or two different 
confinement ratio* R = arj /ami — 0.025 (circles) and 
R = 0.251 plusses I. In order to do a logarithmic plot, a una/1 
constant (10 t ) has been added to the divergence rates so 
the ordinate is actually divergence rate + 10 s . t b) Rates 
of lead closing vs angle for confinement ratios of R = 0.44 
(plusses) and R — 0.75 (circles l In all cases the overall 
strain rate im/iosed on the composite system along the y axis 
was fml = —0.5 x 10 '' i . The composite consists of 40 
leads with a uniform spatial distribution: i.e. 0 ranging from 

115.5 to 'JO . Each lead comprises 0.4 % of the area and lias 
a strength ecpial to 1% if the thick ice strength P. which is 
equal to 10' .V m . 

ellipse for the thin ice i see Appendix |, The general shape of 
the yield curve is close to the sine lens yield curve proposed 
by Bratchie |li)84i, based on kincmatical considerations of 
discrete How collisions. However, there is a slight asymmet­
ry in the result here, with the yield curve being narrower 
near the origin. 

An approx imate s tra in-hardening yie ld curve and 
flow rule 

A key feature of the uniformly oriented multi-lead results 
was that certain leads open much more rapidly than others. 
Il'all the leads are of equal strength and penetrate through 
the same geographical region, then the slower opening 
leads would still fail. However for a larger region with leads 
of different orientations and in different locations with a 
distribution of strengths, we would expect higher confine­
ment ratios to produce also opening of lower intersection 
angle leads that can open faster, ultimately forming cracks 
through the whole system. For example, let us imagine a 
region of ice with a set of weak 18 leads and slightly stron-

o: Lead Formation 

• : Ridging 

-t .S c^fx lO N m-1) 0.0 

Fig, 7. Failure stresses for a composite consisting of10 leads 

with a uniform spatial distribution (see Fig. f>caption). 

gcr 'Mi leads, so that both leads may open under the same 
confinement stress. As the strain proceeds the IK leads will 
open rapidly and likely propagate. Consequently the 'Mi 
leads will effectively become "stronger" relative in the IK 
leads as the strain proceeds. Hence we can consider, under 
strain, the '.W leads to be strain hardened relative to the 18 
leads. The effective yield curve resulting from sustained 
loading, over say one day, would therefore be similar to that 
obtained if the 36' leads were removed to begin with. This 
concept, plus the results of Figure 5 indicating a "barrier" at 
about 20 . suggest a model where we consider only leads 
with an orientation = 18 relative to the main applied stress. 
As we shall see below, t his assumption also generates a yield 
curve that is substantially similar to that obtained from 
laboratory experiments. 

Numerical experiments with this i 18 model result in a 
yield curve very similar to that in Figure 4, and with the 
deformation almosi always occurring across the 18 leads 
except for very small confinement ratios. However, since 
we are postulating that far-field applied slress induces the 
orientation of leads, the response will be symmetric rather 
than anisotropic as in Figure 4. Also, at some point for suffic­
ient confinement, when out-of-plane failure likely occurs, it 
is expected that there will be no preferred direction for the 
leads. Where this confinement occurs is not clear, so we arbi­
trarily pick the confinement where the convergence and 
maximum shear in the 18 leads are approximately equal. 
( Picking a tower confinement would not, however, change 
the essential features of the following results.; This confine­
ment ocrtirs around R = crrr/crm -~ 0.5. For higher confine­
ment, the convergence in the leads exceeds the shear 
deformation and we would expert it to be difficult for the 
lead to maintain itself or to propagate. In the laboratory, 
the failure mechanisms for high confinement are different 
from the crack-shear mode i.e. out-of-plane spoiling instead 
of in-plane macroscopic shear faulting I. 

lei allow biaxially convergent strain rates to be modeled 
we need to close the yield curve past this critical confine* 
tuenl point, lo do this we may fit an elliptical yield curve 
i not necessarily with a normal How rulei to the fracture-
based yield curve in a way that allows both the stress and 
How to vary smoothly. This can be done by the appropriate 
choice of eccentricity, strength and pressure. Once this is 
done, the eccentricity and pressure can be adjusted lo obtain 
lilt" slress rales on the fracture-based yield curve corres­
ponding to a given strain rale. Hence a set of bulk and shear 
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viscosities and pressure as a function of strain-rate invar­
iants can be constructed thai map out the isotropic frac­
ture-based yield curve. 

Results of carrying out this luting procedure at one 
[joint are shown in Figures 8 and 9. The How characteristics 
are shown in Figure 8 by plotting the ratio of strain-rate 
invariants vs stress-invariant ratios for the sirain-liartletiiug 
yield curve, These particular Invariants were chosen in or­
der to obtain a single valued function over the yield curve. 
For comparison, we have also plotted the flow characteris­
tics of the truncated ellipse see Appendix >. The lead-based 
model has a greater opening rate than the truncated ellipse 
model when leads are opening, and a greater closing rale 
when convergence is occurring, 'lo extend the How and fail­
ure curves past the point where there is biaxial convergence. 

• fracture model 
• truncated ellipse 
a fitted ellipse 

Stress Ratio (S) 

Fig.ll. Stmio-raleinvariants (f.,:, + (m,)j (•'w~ + ip~)' — E 
vsslrtss invariants 0.r., - 0"!/w)/ (<rrr

2 +• crm-): — SJor 
isotropic truncated elliptical yield curve (pluses) end for 
"slrain-lundening" lead model t zeros) consisting oj'leads 
i 18 relative to the principal applied stress direction. In the 
strain-hardening model each lead comprises D.4% of the area 
anil has a strength equal to l"« of the thick ice slienglh P, 
which is equal to It)' Xm . In nil cases arll = e nl = 0 
and i lw < 0. The circles denote an elliptical yield curve that 
has been smoothly Jilted to the "strain-hardening "noidet at the 
point where irr changes from positive to negative values, i.e. 

i » 1 » 

_ 1 5 o „ ( x l 0 3 N m-l) 

Fig. 9. Isotropic yield curve for the "strain-hardening" model 
conshlingofweak leads at angles < 18 relative to the princip­
al applied stress direction (see Fig. 8 caption). An elliptical 
yield curve has been jilted to the fracture-based yield curve 
beginning approsimately at the maximum compressive stress 
in the y direction (for R — crTJ./cTm < I) and at a sym­
metric point for R > 1. 

we have fitted an elliptical yield curve to this stress point in 
such a manner that the stress and strain rates vary smoothly. 

The composite-stress failure curve resulting from I his 
fitting procedure is shown in Figure 8, where the points past 
the minimum value of |(TMtl| for R = arxfam < i denote 
the lined ellipiical curve. Other values are taken entirely 
from die < 18 lead model. This type of yield curve bears a 
substantial resemblance lo that obtained in die laboratory 
for conditions where cracking dominates the failure process. 
For large-scale simulations, it has a number of useful char­
acteristics, not least of which being that it will predict inter­
secting lead orientation and intersecting slip lines. Since the 
failure characteristics are now based on an anisotropic lead-
based theory, the opening rales should be more realistic. 
Moreover, the system is isotropic in character, so that it can 
be modeled within existing model formulations. 

CONCLUDING REMARKS 

The main purpose of this paper has been to develop a con­
ceptual base for the inclusion of fracture-based (low in sca-
icc rhcologies relevant to numerical investigations of climate. 
The essential idea is to make use of oriented weak leads or 
flaws embedded in thicker ice. By assuming a viscous-plastic 
Constitutive law for both die thin and thick ice and insisting 
on continuity of stresses, anisotropic yield and flow charac­
teristics of this composite system may be numerically 
obtained. 

To examine some of I lie characteristics ol collections ol 
oriented weak leads embedded in thick ice. lun isotropic 
realizations of this composite model were examined: an iso-
iropic-lead model with uniformly oriented leads in all dir­
ections, and an approximate strain-hardening model where 
only oriented leads that have the potential to open rapidly 
were allowed. The uniform -orientation model resulted in a 
vield curve that approximates a sine lens. The strain-hard­
ening vield curve i-. more ol teardrop shape, and bears a 
substantial similarity to laboratory-based biaxial yield 
curves. In both these isotropic cases, simulations naturally 
predict preferential opening and/or closing of different or­
iented pairs of leads depending on the nature of the stress 
state. Specifically, opening occurred up to strcss-conline-
inent ratios R = er,, /crm of about 03, whereas higher con­
finement ratios led to ridging and shearing. Also, the precise 
amount of opening and closing of individual leads which 
may differ from the overall deformation is accounted for. 

While these isotropic cases incorporate fracture-based 
failure mechanisms, they can. in principle, be relatively 
straightforwardly used in existing large-scale sea-ice dy­
namics models developed tor climate studies by utilizing 
the appropriate dependence of the non-linear viscosities 
and pressure on the strain-rate invariants. The coupling of 
I he dynamical etjuations with ice-thickness evolution equat­
ions could then be carried out in the same manner as cur­
rently used in most large-scale models isee e.g. Hibler. 107**; 
Flalo and Hibler. 1992- where one strength is assigned to the 
whole composite. How this dynamical fitting procedure 
might be carried oui was outlined in the case of the strain-
hardeuiug model. 

Simulations using variations of this model to solve the 
full sea-ice-dynamics equations ami predict lead patterns 
for the Arctic Basin are currently underway More complete 
numerical comparisons to laboratory observations are also 
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needed to establish a more precise physical hasis For the 
idealized strain-hardening model. We hope the work des­
cribed here will provide the motivation and Framework lor 
other similar investigations. 
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APPENDIX 

For the constitutive law applying lo the thin and thick ice we 
make use of an elliptical yield curve modified lo have no ten­
sile stress. For an elliptical yield curve following Hibler 
(1979) the stress is given by: 

ft,, = 2,;e',j 4- (C - Tf)iuk ~ f 

where repeated subscripts are summed over and ;/ and C are 
functions of the strain rate according to: 

C = P * / 2 A 

where 

A=[(.1r
, + ^2)(i + l ) 

P* is the ice si length i equal to the pressure P for high strain 

• 
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fig, 10. Truncated elliptical yield curve for isotropic thin ice 
having a strength oj P = 10'. \'m . 

rales) and e is a constant taken to he 2 in all simulations 
done here. To approximate rigid stress states inside the yield 
curve, C and // are capped at some large maximum value 
isee Hibler, 1979) lor small strain rates. 

The basic principle in the truncated ellipse is lo reduce 
the shear viscosity in such a wray that the maximum shear 
stress is reduced to prevent any tensile stress from occurring. 
Referring to Figure 10, the condition we wish to enforce is: 

ki 
hi such a way that 

ffjj < |fT| +(T-2\ 

tr\ < 0 , 

(Al) 

Willi the viscous-plastic rheology P\ is given by: 

rr, = 2 f 1 + ( C - / ; ) ( r , + f , ) - f (A2) 

where i\ and i± are the principal components of the strain-
rate tensor. 

If we choose ?; such that 

'!< 
$ - C ( f | + f a ) 

\(h-h)\ 
(A3) 

then the condition in inequality Equation (Al)) will always 
he met. To ensure that there is no stress at zero strain rates 
we insist the P — 2AC where 

= H l i l l | ^ C a m x | 

When plastic flow is occurring. P will be a constant (P*), 
but for (, = (,„HX the stress state will lie on a smaller geomet­
rically similar truncated ellipse to Figure 10 going through 
llie origin. 

This overall procedure will generate a theology with no 
tensile stress and a substantially reduced ice-shear stress 
under divergent conditions llian occurs with the conven­
tional elliptical yield curve. 
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