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SUMMING UP THE DYNAMICS
OF QUADRATIC HAMILTONIAN SYSTEMS
WITH A CENTER

JANOS PAL AND DANA SCHLOMIUK

ABSTRACT. Inthiswork westudy the global geometry of planar quadratic Hamilto-
nian systems with a center and we sum up the dynamics of these systemsin geometrical
terms. For this we use the algebro-geometric concept of multiplicity of intersection
In(P, Q) of two complex projective curves P(x.y, 2) = 0, Q(x,y,2) = 0 at a point p of
the plane. Thisis aconvenient concept when studying polynomial systems and it could
be applied for the analysis of other classes of nonlinear systems.

1. Introduction. Thegenera structureof planar quadratic vector fieldsisnot known
and attempting to classify all such systemsisquite acomplex task. Ultimately onewould
like to obtain the bifurcation diagram of this class. The plane quadratic vector fields
form a family QV which depends on twelve parameters but due to the group action
of affine transformations and positive time rescaling, the class ultimately depends on
five parameters. Bifurcation diagrams were constructed for small parts of this class (for
examplecf. [A], [S1], [S2)]). In this article we study quadratic Hamiltonian systemswith
a center. Although such systems are discussed in a number of works in the literature,
a satisfactory, geometric analysis of this classis still missing. Indeed, while in [V] and
[AL] we see phase portraits of these systems, they are not assembled in a bifurcation
diagram so asto allow usto easily see how systems change as parameters vary. In [A],
aPh.D. thesis which appeared in russian and was not published, the bifurcation diagram
of all quadratic systemswith a center was given, hencein particular for the Hamiltonian
case, but these diagrams were not realized in the adequate parameter space which is a
four-dimensional real projective space and for the Hamiltonian case, the real projective
plane. Doing the analysis over the projective plane puts all the parameters on an equal
footing and also yields a more condensed picture: it is very convenient to follow the
changes in the systems as parameters vary on a disk, representing the real projective
plane when the opposite points on the circumference are identified. In [A] the invariant
algebraic curves are mentioned but their role in the dynamics and in the integrability of
the systems does not appear in this work. Whilein [S2] thisrole is highlighted, in [S2]
the Hamiltonian caseis not discussed. A goal of thisarticleisto give amore satisfactory
analysis for the class of Hamiltonian systems with a center. This is one of the simplest
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classesof nonlinear integrable systems, and it makes agood case study for ageometrical
viewpoint. It gives an opportunity to observe basic geometrical properties of systems
with arational (in this case a cubic) first integral. The problem of determining when a
polynomial system has arational first integral is open. Poincaré posed this problem (cf.
[P91]) and he obtained partial resultsin [P97].

Our work sums up in geometric terms the dynamics of quadratic Hamiltonian systems
with a center. We spell out by using in the discussion the algebro-geometric notion of
intersection multiplicity at a point of two complex projective curves, the bifurcation
phenomena encountered. The treatment of bifurcation of singular points here could be
applied to other classes of polynomial systems, nonintegrable quadratic systems, cubic
Hamiltonian systems, etc.

The article is organized as follows: in Section 2 we describe the canonical forms for
the systemswe consider. In Section 3 we briefly describe the Poincaré compactification
which is used for the systems. In Section 4 we discuss the singular points in the finite
plane using the intersection multiplicity at a point of two complex projective curves.
The singular points at infinity are studied in Section 5. In Section 6 we determine the
curvesin the parameter space, on which saddle connections occur. In Section 7 we sum
up the main facts concerning the global geometry and the dynamics of the quadratic
Hamiltonian systems with a centre and we draw their bifurcation diagram.

2. Canonical forms and symmetry for the Hamiltonian vector fields with a
centre. Theparameter space. A center of aplanar vector field isanisolated singularity
surrounded by closed solution curves. In a quadratic system, a center is necessarily a
weak focusi.e. asingularity with pure imaginary eigenvalues (cf. [B], [DT] and [J]). So
let usfirst consider quadratic systems with a weak focus. Such a system can be brought
by affine coordinate transformations and positive time rescaling to the form:

(2.1) %(=—y+kx2+mxy+ny2. %’=x+ax2+bxy+cy2.

Theform (2.1) isinvariant under rotations of axes. A rotation of axesof an angle 6 brings
the system to one of the same form but in coefficientsk’, nt, n’, &, b/, ¢’ and we have

¢/ =ccos’f — (b — n)cos?fsiné + (m+a) cosdsin’§ — ksin> 4.
Thus, if ¢ # 0we can find 0 such that ¢’ = 0. So we shall only consider systems:

(2.2) %:—y+kxz+mxy+ny2. %:x+ax2+bxy.

A system (2.2) isHamiltonian if and only if m = 0 = 2k +b. So we consider only systems

(2.3) %:—y+kxz+ny2, %/:x+ax2—2kxy.

The system corresponding to the parameter A = (a, k. n) has the following Hamiltonian:

aXS_ny3+kx2y— X2 +y?

@4) Hi(y) = —2— .
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We study systems (2.3) which are nonlinear i.e. A = (a, k,n) # 0. For (a, k,n) # 0 the
systems can be rescaled, hence the parameter space needed for the bifurcation diagram
is actually the real projective plane P,(R) and not R3. P»(R) could be pictured as a
disk with opposite points on the circumference identified. We may place n = 0 on the
circumference of the disk. Since for n # 0 we can rescale the system, we may assume
n > 0. Furthermore we observe that the following identity holds for the systems (2.3):

(2.9) Hakn (% Y) = Hakn (=X Y).

In view of (2.5) it is sufficient to discuss the systems (2.3) in a semidisk corresponding
toa > 0 (ora < 0), sincethe casea < 0 (resp. a > 0) can be recuperated from the
symmetry.

3. ThePoincar & compactification. For systems

@) H=prey. =y

dt

with P, Q polynomials with coefficients in R we use the Poincaré compactification (cf.
[P81] and [GV]). Thisis obtained as follows: we identify the (X, y)-plane with the plane
Z = 1in R with coordinates (X, Y, Z). We project this plane by a central projection on
the sphere & = {(X,Y,2Z) € R® | X2 + Y2 + Z? = 1}. The point (x, y) is sent on two
opposite points of the sphere. The central projection associates to our vector field (3.1)
avector field on the complement of the equator of the sphere. In [GV] it was shown that
this vector field can be extended to an analytic vector field A(S) on the whole sphere.
Our vector field is diffeomorphic to the vector field obtained by restricting A(S) to the
upper hemisphere. A compactification Ay(S) is obtained by considering the restriction
of A(S) to the upper hemisphere completed with the equator. Projecting the vector field
An(S) vertically on the plane Z = 1 we obtain avector field on the disk of radius 1in the
(X, y)-plane. The phase portraits of the systems (2.3) will thus be pictured on disks.

4. The study of the singular points of the systems (2.3) in thefinite plane. The
finite singular points of (3.1) are the intersection points of the curves P(x,y) = O,
Q(x,y) = 0. For the nonlinear quadratic case (2.3) i.e. for (a, k, n) # 0, these two curves
are:

4.1) Px,y) = —y+ké+ny? =0, Q(x.y)=x+ax?— 2kxy=0.

(0,0) is a common point of the curves (4.1) for all values (a, k,n) but for all values
(a. k, n) # O the curves (4.1) have at least one other common point in R?.

NOTATION 4.1. We denote by N(a, k. n) the number of distinct (finite) singular points
of (2.3) for the parameter (a, k,n). Equivalently N(a, k, n) is the number of distinct
common points of (4.1).

For two systems(2.3) correspondingto (a. k, n) and (&, k', '), which aretopologically
equivalent N(a, k, n) = N(&, K, n’). For (a, k. n) # 0, we can rescale the coefficientsin
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(2.3), hence the parameter spaceis actually the real projective plane P»(R) and N yields
afunction on P,(R), N[a, k, n], which describes part of the the dynamics of the systems.
To determine the function N it is convenient to take into consideration the full projective
completions of the curves (4.1) in the complex projective space P,(C) i.e. the curves over
C given by the homogenized equations corresponding to (4.1):

4.2) —yz+ké+ny? =0, xz+ax —2kxy=0

and to consider their intersection points, counted with multiplicities, over C. Roughly
speaking the intersection multiplicity 1,(P, Q) of two algebraic curvesP =0,Q=0at a
point p indicates how many pointsthe curves have in common at that point. For example
the intersection multiplicity of y = 0 with y — x? = 0 at (0, 0) is two, since the line is
tangent to the parabolaat (0, 0). At the same time the intersection multiplicity of xy = 0
withy — x? = 0 at (0,0) isthree since x = 0 and y = 0 are components of xy = 0 and
x = 0 intersects the parabolay — x? = 0 transversely. For a quick understanding of the
concept of intersection multiplicity and of its properties the reader is advised to consult
[G] or [Ki]. We look if there are values of the parameters for which the curvesin (4.2)
have common components. The second curvein (4.2) has two components:

4.3 x=0, z+ax—2ky=0.

Thefirst curvein (4.2) is reducible if and only if k = 0 and then clearly x = 0 cannot be
a component of thefirst conicin (4.2). If k = 0 the second line in (4.3) is a component
of thefirst coniciin (4.2) if and only if z+ax = 0isz— ny = 0 which only occurs when
a =0 = nyielding alinear system. So the curvesin (4.2) have no common component
for al (a, k, n) #Z (0. 0, 0) and the same holds true for their affine parts (4.1). By Bézout's
theorem (cf. [Ki]) the number of intersection points of (4.2) in P,(C), counted with
multiplicities, is four. We therefore have 1 < N(a, k, n) < 4. The intersection points of
the curves (4.2), counted with multiplicities are given by the intersection points (counted
with multiplicities), of each one of the straight lines in (4.3) with the first conic in (4.2).
We consider the intersections of each of the following two sets of curves:

(4.4) —yz+kE+ny?=0, x=0

(4.5) —yz+ké+ny’ =0, z+ax—2ky=0.

Correspondingly we have the affine curves obtained by letting z = 1 in (4.4) and (4.5)
i.e.:

(4.6) —y+kZ+ny?=0, x=0

4.7 —y+ké+ny?=0, 1+ax—2ky=0.

We shall write Ip(4.i) in place of I5(P, Q) if the curves are those of (4.i) with i =
1,2.4.5.6.7. Clearly, for each intersection point p of either (4.4) or (4.5) we have
Ip(4.0) < 2,i=4,5.1f p=(xy) wealso write p = [x,y, 1] identifying p with its image
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[x,y, 1] inthe projective plane. N(a, k, n) = 4if and only if the curves (4.2) have no point
of intersection “at infinity” (i.e. for z = 0) and there is no singular point p of (2.3) with
Ip(4.1) > 1.N(a, k, n) = 3if the curves(4.2) havefour distinct points of intersection, one
of them a point at infinity for the curvesin (4.1) or if (4.2) have three distinct points of
intersection, none ét infinity for (4.1) and one and only one of them, p, with 1,(4.2) = 2.
Thus determining N is related to determining the intersection points at infinity of (4.1)
and to the intersection multiplicities of the curves (4.2). Wefirst look at the intersection
points at infinity for (4.1) (or of (4.2) with z = 0) and at their multiplicity of intersection:

PrROPOSITION 4.1. Thecurves(4.2) intersect “ at infinity” (i.e. for z = 0) if and only if
nC = 0, where C = na? + 4k3, in which case they have a unique point p of intersection at
infinity.

i) fn=0#C,p=[0.1 0] with1,(4.2) = 1and N[a, k. 0] < 3.

i) fC=0#%n,p=1[2a0] if (a k) # 0, with 15(4.2) = 1, N[a.k.n] < 3 and

p=1[1,0,0] if (a k) = 0inwhich casel,(4.2) = 2,N[0,0, 1] = 2.
iii) fn=0=C,p=[0.1,0], Ip(4.2) =2and N[a,0,0] = 2.

PrOOF. For (4.4) thepointsof intersection are[0, 0, 1] and [0, 1, n]. Hencethe curves
in (4.4) intersect for z= 0if and only if n = 0. If n=0we havelp1(4.4) =1(x=0is
not tangent to —yz+ kx? = 0 at [0, 1. 0]). The curvesin (4.5) have a point of intersection
at infinity if and only if ax — 2ky = 0 and kx? + ny> = 0 have a common nontrivial
solution in R2. We distinguish the casesk # O and k = 0. If k # 0, y = ax/(2k) and
hence (k+na? / (4k?))x? = 0. This equation has a nontrivial solution if and only if C = 0.
Simple calculations yield the remaining part of the proposition.

PROPOSITION 4.2. The systems (2.3) have four distinct singular points (real or com-
plex) if and only if NC5(n — 2k) # O, where § = a® — 4kn + 8k%. These are: (0, 0),
Pn=(0.1/n) and Py = (x..y.) where

(ak—antk-sgn(a)-51/2 4kz+32i\a\51/2 if a 7_{ 0
(48) (X:ts yi) = 2k_ncl/2 1 * ) i =
(1(4,(3) %) ifa=0
(If a # 0, sgn(@) = |a|/a). These points are real if and only if 6 > 0 in which case
N(a, k,n) = 4.

ProOF. If C # 0, wehave (a.k) # 0. If a# O thenreplacingx = (2ky — 1)/a,z=1
into the first equation of (4.5) we obtain the equationiny

(4.9) (na? + 4k%)y? — (a® + 4k?)y + k = 0.
If a=0,sinceC # 0, wehavek # 0, so replacing z= 1 and y = 1/(2Kk) in the first
equation of (4.5) we get the equation

n—2k _

2
(4.10) kx® + e

0.
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Thediscriminant of the equation (4.9) isa?. If nCs(n— 2k) # 0 andif a # 0 we cansolve
the equation (4.9) for y and if a = 0 # k we can solve the equation (4.10) for x obtaining
(4.8). Theequation (4.9) hasreal solutionsif andonly if6 > 0.1f a= 0,6 = —4k(n— 2K).
The equation (4.10) appliesin this case and (4.10) has two real solutionsif and only if
6> 0.

PropPosITION 4.3. If pisasingular point of (2.3) for A = (a, k, n), then1,(4.1) < 3.
Thereexistsasingular point pg of (2.3) suchthat I, (4.1) > 2if and only if 6(n— 2k) = 0.
Ifo6=0#n—2korifé #0=n—2kandk # 0, then N(a, k. n) = 3, we have two
singular points p with [,(4.1) = 1 and one po with 1p,(4.1) = 2. 1f 6 = 0 = n — 2k, then
N[a, k.n] = N[0,1,2] = 2, the two singular points being (0. 0) and P, = (0,1/n) with
|(o_o) =1and |pn(4.2) =3.

PrROOF. Since (0, 0) isanonsingular point of both curvesin (4.1), and the curves are
transversal at (0, 0), l(o)(4.1) = 1 and hence for any other singular point p of (2.3) we
must have 1,(4.1) < 3. We could have 1,(4.1) > 2 only if a point p of intersection of
the curves (4.1) is at the same time the point of intersection of the linesin (4.3) (i.e. if
p = [0, 1, 2k]) and in addition one of the linesin (4.3) is tangent at p to the first conic
in (4.2). Clearly x = 0 cannot be tangent to the first curve in (4.2). p = [0, 1, 2K] lies
on the first conic of (4.2) so 1,(4.1) > 2. The tangent at p of the first conic in (4.2) is:
2(n—K)y—z=0. Thisline coincideswith z+ ax— 2ky = Oif andonly if a=0=n— 2k
inwhichcaseé =0, p = P, and [,(4.2) = Ip,(4.1) = 3. For &l other singular points p we
have 15(4.1) < 2. We have equality if either [0, 1, 2K] lies on the first curvein (4.2) i.e.
whenn—2k =0buta# 0i.e. whené # 0 or when apoint p on the second line in (4.3),
p # [0, 1, 2K], isthe point at which thislineistangent to thefirst curvein (4.2). Sincefor
(& k) =0, theline z+ ax — 2ky = O is the line at infinity, we must consider (a. k) # 0.
z+ax — 2ky = O istangent to the conicin (4.5) if and only if 6 = 0.

COROLLARY 4.1. The bifurcation set for the systems (2.3) due to a change in the
number of (finite) singular pointsof (2.3) isthe set defined by the equation nCo(n—2k) = 0
i.e
(4.11) B ={[a k,n] € P2(R) | nC§(n — 2k) = 0} = B, U Bc U Bs U Bp_x

where we put
(4.12) B, ={[akn] € P2(R) | » =0}, v e{n.Cb. (n—2k)}.

To study the singular points we use the matrix of the linearized system at a point
(x.y):

(4.13) Lxy) = ( _Hﬁxxx _Hﬁyxy) - (_(1 + 22ng — 2ky) Ziyzixl)

and its characteristic polynomial

(4.14) p(\) = A% + DetL(x, )
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where DetL(x,y) is the determinant of L(x,y). A singular point (x,y) for which
DetL(x,y) # Oiseither aweak focus or a saddle according to whether Det L(x,y) > 0 or
DetL(x,y) < 0. Sincethe systemis Hamiltonian, if DetL(x,y) > 0, the singular pointis
acenter.

OBSERVATION 4.1. Each singular point (xo, o) of the system (2.3) is also a double
point of the Hamiltonian level curve
(4.15) H(x.y) — H(xo, Yo) = 0.
the equations of the tangent lines at (xo, Yo) to the curve (4.15) being given by

(4.16)  HuXo. Yo)(X — X0)” + 2Hy(X0. Yo) (X — X)(y — Yo)
+Hy, (%0 Yo)(y — Yo)° = 0.

We describe the nature of the singular points starting with P, = (0.1/n), n Z 0.

PROPOSITION 4.4. Supposen # 0.

i) 1f n— 2k # 0 thesingular point P, = (0. 1/n) isasaddle or a center according to
whether or not (2k — n)n < 0 or (2k — n)n > 0.

ii) If n—2k =0, thesingular point P, = (0,1/n) isacuspif§ #0(i.e. a # 0) and it
isasaddleif5 =0 (i.e. a= 0).

ProoOF. i) Followsfrom (4.14) and the fact that DetL(0.1/n) = (2k — n)/n.
i) If n =2k, Det(P,) = Det(0.1/n) = 0. Thelevel curve of the Hamiltonian passing
through P, is:

(417) H(xy) — H(0.1/r) = _¥ . x2(n); -1

Ly —1)*Cny+1)
6n2 -

and the equation (4.17) yields two coincident tangent lines at P, = (0,1/n):

0

(4.18) (y— %)2 =0.

Fora # 0, ny — 1 = 0is not a component of (4.17) and therefore P, = (0. 1/n) isacusp
for (4.17) which yields a cusp for the system. If a = 0 the equation (4.17) can be written

1\ _ ¥ ¥y 1
(4.19) H(x,y)—H(O,ﬁ) —(ny—l)(5+§—§—@) = 0.
ny — 1 = O istangent to the second component of (4.19) and P,, isatopological saddle. =

ProPOSITION 4.5. If n6C(n — 2k) # 0 and § > O we have:
i) The paints P.. are both saddlesif and only if nC < 0 or n(n — 2k) < 0.
ii) One of the points P. is a center and the other a saddleif and only if nC > 0 and
n(n — 2k) > 0.
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PROOF. Using (4.8) we get

—+sgn(@x. -6Y2 ifa£0

(4.20) DetL(P:) = A2, )2 ifa=0.

It suffices to prove the proposition for n > 0. Proof of i): Assume C < 0. We need
sgn(Det(Pi)) and straightforward calculations for casesa # O and a = 0 yield:

(4.21)
sgn(Det(P-.))
{ — 4 sgn(C) - sgn{sgn(k — n) x |k — n| |a| £ sgn(K) - |k|#*/?} ifa#0

-1 ifa=0.

If C < 0,na® < —4k3 Forn > 0, k < 0. So sgn(k — n) = sgn(k) = —1 and hence
sgn(Det(P..)) = — = sgn{|k—n| |a £ |K| - 8*/2}. Clearly sgn(Det(P.)) = —1 and hence
P. is a saddle. For P_ we compare |k — n||a| with || - §*/2. Squaring these, since
n— 2k > 0we have (k — n)?a® < k?%. Hence sgn(Det(P-)) = —1 and P_ isasaddle. If
C>0andn—2k>0,k—n < —k. If k> 0, sgn(k — n) = —1. Then P, isacenter and
P_isasaddle. If k < 0, sgn(k — n) = —1, P, isacenter and P_ isasaddle.

THEOREM 4.1. Consider a nonlinear system (2.3) i.e. for A = (a. k. n) # 0. We have:

[4 iff nCo(n— 2k) ZO0andé > 0.
3 iff only one of the equationsn = 0,6 =0, C =0,
(4.22) N(a.k,n)= n— 2k = Ois satisfied.
2 iff 6 < 0or two distinct ones of the equationsn = 0,
6=0,C=0,n— 2k =0aresatisfied.

When N(a, k, n) = 4 we haveacenter and three saddlesif and only if nC < 0 and two
centers and two saddlesif and only if nC > O.

PrROOF. LetBn ={p € P2(R) | Iv1,v2 € {n.C,6,n— 2k}, v1 #v2,p €B,, NB,,}.
Then
(4.23) B~ = {[1.0.0].[0,1,2].[0.0.1]}.

More precisely we have:
i) [a, k, n] satisfiesé =0 = Cif and only if [a, k,n] = [0, 0. 1].

i) [a k. n] satisfiesé =0=n—2kif and only if [a, k., n] =[O0, 1, 2].
In both casesi) and ii) the system has only two singular points: (0, 0) and P,,.

iii) [a,k, n] satisfiesC = 0 =n— 2kif and only if [a, k,n] = [1,0,Q]. In this case we

have only two singular points: (0, 0) and (—1/a. 0).

iv) Theequationsn=0=C, orn=0=n— 2k hold only for [a, k,n] =[1,0,Q].
In both cases we have only two singular points: (0,0) and (—1/a.0). § = 0 = n cannot
occur for areal nonlinear system. We look at the number of singular points for systems
in B, — B, withv € {n,C.§,n — 2k}. We have: On Bs; — B, the singular points are:
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(0.0), P+ = P_, P, = (0,1/n). On By, — B, there are three singular points: (0, 0) and
P..OnBc — Bn, ak # 0, (4.9) is afirst degree equation in y yielding only one singular
point: P; = (X, ;). When we approach C = 0, one of the two singular points P.. runsto
infinity and on C = 0 we are left with only one of them in the finite plane, point which
we denote P = (X, y;). We have:

a2 + 2k? k )

(4.24) Pr = (%. yr) = (_ a(a2 + 4k?)" a2 + 4k2

In this case the singular points are: (0, 0), Ps, Pn. On B_2 — B~ the singular points are:
(0,0), P, = P, and P_. Propositions 4.3 and 4.4 yield the remaining part of the proof.

We consider now the nature of thesingular points P, and P_, and of P, if nC(h—2k) =
O withé > 0.

PrROPOSITION 4.6. If nC(n— 2k) = 0and$ > 0, for the singular points P.. (if C # 0),
respectively Ps (if C = 0) we distinguish the following possibilities:
I. For systemswith [a, k, n] in B, — B, we haven — 2k # 0 and the singular points
P_. aretopological saddles.
1. If [a,k,n] € Bc — Bn, P; isatopological saddle.
I, If [a.k,n] € Bp_x — Bn, P— isatopological saddleand P, = P, and itis a cusp.
IV. If [a, k., n] € B~ we have two singular points (0, 0) and P, except for [a. k,n] =
[1. 0. 0] when the singular points are (0,0) and Py = (—1/a, 0) which is a topo-
logical saddle.

PrOOF. |. For this case we use (4.20) and (4.21).
To prove ll. we use (4.24) obtaining

a? + 4k?
(4.25) DetL(Ps) = — 7z
To prove lll. wefirst obtain:
at(a2+8k2)1/2 2+4K2+(a2+8Kk2)1/2

(4.26) (Xi~yi)={ | (2;” ) ]’[f s ) forazo

(£[801Y2, %) fora=0.
Thisyields

_ | —£x.(a2+8k)Y?2 fora#O0

(427) Det L(Xi. yi) = { Lk_n fora=0.

To prove V. we use Det L(Ps) = DetL(—1/a,0) = —1.

5. The study of the singular points at infinity. To study the singular points at
infinity it sufficesto usetwo charts: one obtained by projecting the hemisphere X > 0 of
& on the plane X = 1 (we denote the coordinates Y, Z in this plane by u, ) and another
one by projecting the hemisphere Y > 0 on the plane Y = 1 (we denote the coordinates
X, Z by v, 2). Projecting the plane Z = 1 (with coordinatesx, y) on the upper hemisphere
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and then on the two planes X = 1 and Y = 1 we pass from coordinates (x. y) to (u, 2),
respectively to (v.2):z = (1/x), u = y/xand z= 1/y, v = x/y. We obtain in this way,
after time rescaling, the two systems of equations:

(5.1) g—Tz=z(—k+uz—nu2). %: =(1+u)z+a— 3ku—nu’
(5.2) %Z = —z(—2kv+vz+a), 3_\7/ = —(1+V)z+n+3k/?—as.

The singular points of (5.1) having the form (z, u) = (0. u) are given by the equationin u
(5.3) G(u) =nu+3ku—a=0.

We recall an algebraic result needed to discuss the number of real roots of this equation:

PrOPOSITION 5.1. All the roots of the equation agu® + a;u? + a,u + ag = 0 arereal if
and only if its discriminant D = a2a3 — 4apa — 4adas — 27a3a3 + 18apa; apas is positive
or zero. The equation hasthree distinct real rootsin the case D > 0. The equation hasa
singlereal root if and only if D < 0. In particular for G(u) = 0 we have

(5.4) D = —27Cn.

When nC # 0, the sign of D depends on the sign of nC. The matrix of the linearized
system for (5.1) at singular points of the form (z, u) = (0, u) is given by

_(—nu? —kK 0
(53) AQ.u) = ( @+l -3 — 3k)

with eigenvalues

(56) M= =3P +K) =G, h2=—(P+K) = —ﬁ'
We have o
(5.7) Mg = 32+ K2 = C gu)] '

Clearly, the singular points (0, u) are of node type whenever u is a simple root of G(u).
The nature of the singular pointsis given by the following proposition:

THEOREM 5.1. |. IfnC # 0, therearethreesingular pointsat infinity or oneaccording
to whether nC < 0 or nC > 0. In both situationsthe singular points at infinity are nodes.

Il.(a) If C =0 # n, then either (a, k) # (0,0) and we have two singular points at
infinity, a node and a singular point with an elliptic region, or (a, k) = (0. 0) and the only
singular point at infinity isu = 0 = zwhich is of node type.

I1.(b) If n=0 # C we havetwo singular points at infinity: z= 0 = v which iswith an
elliptic regionand z = 0, u = a/(3k) which isa node.

Il. If n=0=C, thereis only onesingularity at infinity whichisz=0=vanditisa
node.
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ProoF. |I. Follows from Proposition 5.1, from (5.3), (5.4) and (5.7). All nondegen-
erate (i.e. such that G'(u) # 0) singular points (0, u) are nodes due to formula (5.7). It
remains to consider the singular points (0, u) with G'(u) = 0 and if n = 0, the singular
pointz=0=v.

I1.(a) Assume first that ak # 0 = C. We may assume n > 0 and because of the
symmetry (2.5) we may assume a > 0. In this case since C = 0 we have a°n =
—4k® and hence k < 0. We aso have a = —2k(—k/m)¥? and G(u) =
n(u+(—k/ n)l/z)z(u—Z(—k/ n)*/2). Hencethesingular pointsat infinity are(z u) = (0. u)
with u = —(—k/n)¥2, or u = 2(—k/n)*/2. By (5.7), z= 0, u = 2(—k/n)*/? is a node.
The pointz=0,u = —(—k/n)l/z, has as its linear part a nilpotent 2 x 2 matrix and
the standard blow up technique [BM] or application of resultsin [ALGM, Chapter 1X],
yields a point with an elliptic region (cf. [PS]). If a = k = 0 # n, the first integral is
H(x,y) = —(x® +y?)/2 +ny3/3. All the curves H,(x.y) — K = 0, K a constant, have
only one point at infinity: z = 0 = u. Clearly the projective completions of the curves
H, (X, y) — K = 0 are all tangent to the line at infinity at this point. Only two singular
real curvesarein thisfamily, one passing through (0, 0) and another one passing through
the singular point (0, 1/n) whichis H,(x.y) — H(0, 1/n) = 0. This curve can be traced
easily; itisanodal cubic with only one point at infinity. The phaseportraits are thus clear
and the point at infinity in this caseis anode.

I1.(b) Two singular points at infinity are present: z= 0 = v and (z u) = (0, u) with
u = a/(3k). Theanalysisfor z= 0 = vis doneby standard blow up techniques (cf. [BM]
or [ALGM]) and the point turns out to have an elliptic region. The point z= 0, u = a/3k
isanode.

Ill. C=0=n#a. Inthiscasethefirstintegra isH,(x,y) = —ax®/3 — (X2 +y?) /2.
We have only two singular real Hamiltonian level curves, one with an isolated singular
point at the origin, the other one passing through the singular point (—1/a, 0) which
isHy(x.y) — Hy(—1/a,0) = —ax®/3 — (x* +y?) /2 + 1/6a% = 0. This curve (as well
as each of the other Hamiltonian level curves) is tangent to the line at infinity at the
point at infinity which isin the direction of y-axis. Trandating the origin at the singular
point (—1/a,0) by X = x+1/a, Y = y the curve H, (X, y) — Hy(—1/a, 0) = 0 becomes
—2aX3 + 3X? — 3Y2 = 0 which is clearly a nodal cubic yielding a homoclinic loop and
this cubic has only one point at infinity which is a node for the system and the phase
portrait is (except for the orientation of theintegral curves) is asindicated in Figure 2.

6. The saddle-connections. These will occur when the Hamiltonian level curve
passing through a saddle, will also pass through another saddle. This cubic curve is
reducible, in view of Observation 4.1, with a straight line component passing through
the two saddles.

DerFINITION 1. We consider a polynomial vector field

6 X =P(xy) + Q)
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with P and Q polynomialswith real coefficients. An algebraic invariant curve of (6.1) is
acurvef(x,y) = 0, with f apolynomial with real or complex coefficients such that for
some polynomial g over R or over C we have

(6.2 P—+Q—=f-.g
An algebraic solution of a polynomial differential equation P(x, y) dy — Q(x,y) dx = Ois
anirreducible invariant algebraic curve for (6.1).

Welook for invariant linesfor the systems (2.3). f (X, y) = rx+sy+t = Oisaninvariant

line for aquadratic field (6.1) if for someg(x,y) = r'x+ s’y +t’ we have:

(6.3 rP(X.y) + sQ(x,y) = (rx + sy + t)(r'x + sy +t').
Straightforward calculations yield:

PROPOSITION 6.1. The systems (2.3) admit invariant straight lines if and only if
(a, k, n) satisfy one of the following two conditions:
i) an # 0and (a, k, n) is on the curve (6.4) of saddle connectionswhose equation is:

(6.4) an— (n+k)?(n—2k) = 0.

Asystems(2.3) with (a. k, n) onthe curve(6.4) hasonly oneinvariant linewhoseequation
iss L(x,y) =anx—n(n+Kky+n+k=0.

i) Ifa=0#Kk, thelinef(x,y) = —2ky+1=0isinvariant andif n+k = 0, the lines
+(3)Y2nx — ny + 1 = 0 arealso invariant.

Inthecasei), (n+k)(n—2k) # 0and P, = (0, 1/n) liesontheinvariant line L (x. y) = 0.
Let C(Py) = H(x,y) — H(0.1/n) = 0. Calculations yield the factorization for C (Py,):

L (x. y)[—2an(n + K)x? — 2an?y? + 2n(n + k)(2k — n)xy + (2k — n)(n + K)x + any + a]
The conic componentintersectsL (x, y) = 0 at P, and at another singular point g. g cannot
be the origin or apoint at infinity. Hence g = P-. and when C = 0 the line contains Ps.

The affine type of the conic component is determined by its corresponding quadratic
form and the value of the determinant A of its associated matrix:

—2na(n +Kk) n(n+Kk)(2k — n)
(6:6) ( n(n +k)(2k — n) —2rfa )

Since on (6.4), a?n = (n + k)(2k — n)?, simple calculations yield that on (6.4) we have:
(6.7) A = 3n?(n +k)?(n — 2k)(n + 2K).

For the nature of the conic component it sufficesto assumen > 0 and its affine type is
easily obtained.
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7. Thebifurcation diagram of quadr atic Hamiltonian systemswith acentre. As
seen in Section 2, the parameter space for nonlinear systems (2.3) is the real projective
plane P,(R). Since the systems (2.3) are Hamiltonian, they have no limit cycle. We sum
up the dynamics of quadratic Hamiltonian systemswith a center as follows:

THEOREM 7.1. A = (& k, n) is a bifurcation point for the family (2.3) if and only if
[a. k, n] lies on the projective curve C: nCs(n — 2k)alan — (n + k)(n — 2k)] = 0 and if A
isona=0thens > 0. Let Sing(C) be the set of singular points of the projective curve
C . The codimension one stratumis made of pointsin C \ Sing(C) and they are grouped
asfollows:

I. N[a, k,n] = 3. Thisoccursif and only if nC6(n — 2k) = 0 in which case we have a
bifurcation of singular points.

I1. N[a, k,n] = 4. Thisoccursif and only if afJan — (n+k)(n— 2k)] =0andifa=0

then § > 0. Thisis a saddle-connection bifurcation.
The codimension two stratumis made of the pointsin

Sing(C) = {[1.0,0],[0.,0.1],[0, 1, 2], [0, 1, —1].[0, 1. O], [+/2.1. —2]}.
For these points N[a, k, n] = 2.

We note that for a = 0, the systems are symmetric with respect to the y-axis. We
spell out the types of bifurcation points in the codimension one and two strata and the
characteristics of the systems as follows:

THEOREM 7.2. Consider the points in the codimension one stratum = C \ Sing(C).
These are of the following types:

I.(a) If nC = 0, one of the finite singular points disappears at infinity becoming a
singular point at infinity (a point with an elliptic region). The only other singular point
at infinity is a node. Thefinite singular points are a center and two saddles.

I.(b) If 5(n — 2k) = 0 there exists a unique singular point p of (2.3) where two finite
singular points coalesce at a finite singular point p. The singularities are: the point p
whichis a cusp, a center, a saddle and only one singular point at infinity, a node.

In the codimension two stratum = Sing(C) we have:

i) Sing(nC = 0) = {[1.0,0],[0.0,1]}. At one of these points a multiple singular

point of (2.3) disappearsat infinity. This correspondsto the equations P = 0 and
Q =0 having a point p at infinity with [5(4.5) = 2.

i) Sing(6(n — 2k) = 0) = {[0,1,2]}. At [0,1.2] we have a coincidence of three
singular points, 1,(P. Q) = 3. In both casesi) and ii) we have N(\) = 2 (a center
and a saddle) and we have only one singular point at infinity, a node.

iii) Sing(a[a?n— (n+k)*(n—2k)] = 0) = {[0. 1. —1].[0. 1. 2]}. At[0. 1. —1] we have
threeinvariant lineswhich are saddleconnections. ([0, 1, 2] wasalready discussed
above.)

iv) {£2, 1, —2}. At these points the situation is similar to the case [0, 1, 0] where we
have a center and two saddlesand two singular pointsat infinity: a node and point
with an elliptic region.
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Thesetheoremsfollow from the results of the preceeding sections. The six bifurcation
curves components of C appear on Figure 1 where we represent the projective plane as
adisk with n = 0 on the circumference, the opposite points being identified. Due to the
symmetry of the Hamiltonian i.e. H_axn(X,¥) = H@akn(—XY) it is only necessary to
draw the bifurcation diagram for systems (2.3) with a < 0, i.e. on the semi-disk with
a < 0. Theédlipseé = 0 dividesthe semi-disk in two regions: itsinterior where there are
two singular points and its exterior wherethere are four finite singular points generically.
The curve C = 0 divides the semi-disk corresponding to a < 0 in two regions: one with
three infinite singular points generically and onewith oneinfinite singular point. Placing
also the saddle connection (6.4) as well as the bifurcation line n — 2k = 0, and al the
phase portraits (except for the orientation of the integral curves which we leave out but
which can easily be drawn) obtained by using the resultsin previous sections, we obtain
the bifurcation diagram pictured in Figure 2. We have ten topologically distinct phase
portraits, eight of which are located on the hifurcation lines and three in the generic
situation:

(a) With two singular cycles which are homoclinic loops;

(b) with just one homoclinic loop and one singular point at infinity;

(c) with one homoclinic loop, three other singular points which are saddles through
which pass three distinct irreducible singular cubic solutions and with three sin-
gular points at infinity.

For fixed A = (a k, n) the solution curveslie on curves of the form:

(7.1 Fkay(y) =Hy(x.y) — K=0.

where K is a constant. All the curves (7.1) for fixed A and variable K pass through the
same points at infinity which are given by the cubic terms of F 5)(X. ).

THEOREM 7.3. All finite singular points of a nonlinear quadratic Hamiltonian system
with a center (2.3) are ordinary double points for the level curves of the Hamiltonian
passing through them except for 6(n — 2k) = 0. In this case there is a unique singular
point p of (2.3) for which Fyy(y, ) (X, y) = O is irreducible having a cusp at p or this
curve is reducible with a line component tangent to the conic component at p. All
singular points at infinity are nonsingular points for the projective completions of the
Hamiltonian level curves(7.1) passing through them. These are points where the curves
(7.1) aretransversal to the line at infinity except if nC = 0 when we have curvesin (7.1)
which are tangent to the line at infinity at the elliptic singular point at infinity of (2.3).
For bifurcation points A on only one of the curves: (6.4), a = 0, one of the singular
curves in the family Fk »(x.y) = 0 is reducible with an irreducible conic component
and a line component which is not tangent to the conic. If A belongs to both (6.4) and
a = 0, then we havea cubicin (7.1) which either hasthreeline componentsor alineand
an irreducible conic component which are tangent.
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