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THE OPTIMUM PROCESSING OF CLIPPED SIGNALS:
AN APPROACH BASED ON A LIKELIHOOD RATIO STATISTIC

R. G. KEATS, WINIFRED FROST and ANNETTE DOBSON1

(Received 9 March 1981; revised 3 September 1981)

Abstract

The likelihood ratio approach to (he detection of small signals in the presence of noise is
investigated in the case where the available data have been clipped. The statistic obtained
is the ratio of orthant probabilities and appears intractable; accordingly an approximation
to this statistic is developed by truncating an appropriate Taylor expansion. Approxima-
tions are obtained for the mean and variance of this modified statistic and compared with
those obtained from computer simulations.

1. Introduction

For many years there has been interest in signal processors which operate on
clipped inputs; the input, /,(*)> from each receiver, Rn being first transformed to
sgn[/,(O] before any processing is carried out. Early work in this field was
described by Faran and Hills [4] since when the performance of such processors
has been discussed by many authors (see, for example, [2, 3, 8, 13, 15]). Recently
this work has been generalised [10] and extended to cover the optimum processing
of clipped inputs [9]. Three approaches to such optimisation were mentioned in
[9] and one approach, namely minimum signal distortion, was discussed in some
detail.

Another approach, mentioned in [9], is based on maximum signal to noise ratio.
This approach has proved useful in the case of linear processing, but is less
helpful when non-linear processing is used. One difficulty lies with the definition
of signal to noise ratio; definitions which are equivalent in the linear case are, in
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121 A likelihood ratio statistic for clipped signals 263

general, no longer equivalent when the processing is non-linear. Various defini-
tions of signal to noise ratio have been suggested; see, for example, Blachman [1].
An optimum processor based on a signal to noise criterion will, in general,
depend on the definition adopted; accordingly that criterion is not likely to prove
generally useful.

One firmly based criterion for optimum signal detection is the likelihood ratio
arising from the Neyman-Pearson lemma [5]. At first glance the application of
that lemma to the present problem appears intractable, but some progress has
been made in the case where the signal power is much less than the noise power;
this progress is reported below.

2. Notation and assumptions

The input to the /th of n receivers, R,, consists of a signal 5,, plus noise, Nr

These inputs

are clipped to give

A,(t) = sgn[/,(0]
and then sampled at equal time intervals, k= \,...,m. It is assumed that the
signal and noise are both normal, ergodic random processes with zero mean and
the signal is not correlated with the noise. Thus in the presence of signal the input
to the /th receiver at time k is

Nlk

and the covariance is

where o,s and af are the standard deviations of 5, and N, respectively, pfy(/ — A:)
is the correlation coefficient of Slk and Sjh and p^l — k) is the correlation
coefficient of Nlk and Njt. The correlation coefficient corresponding to E[IlkI t] is

where

a, - i
•, signal present,

0, signal absent.
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264 R. G. Keats, Winifred Frost and Annette Dobson (3)

We now define two random vectors I and A each having nm elements with

Ilk as the [(/ - \)m + k]th element of I

and

Alk as the [(;' — \)m + k]th element of A.

A realisation of A will be denoted by a which is a vector with elements aik equal
to + i or - 1 ; one or more of these vectors a wiil be used to decide between the
simple hypotheses:

(i) signal is absent;
(ii) signal is present.

3. The likelihood ratio

The likelihood ratio for each realisation a is

LR(a) ~ L ^ =
 f [ A = a I s i S n a l i s Pr e s e n t l /2x

L0(a) P[\ = a | signal is absent]

The Neyman-Pearson lemma requires that the realisations a be allotted to one of
two disjoint classes according to the value of LR(a). A constant K is chosen
based on an acceptable probability of false alarm and if LR(a) > K we decide
that signal is present, otherwise we decide signal is absent.

Consider first the case where each of the nm elements of a is +1 . Then the
denominator of LR(a), the probability that all the Ilk are positive, is

where Ro is the correlation matrix with entries given by equation (1) when signal
is absent; that is, the («, u)th element of Ro is

Pf*,,/= < ( ' " * ) .
where u = (/ — \)m + k and v = (j — \)m + 1. Similarly the numerator of LR(a)
is

where the (u, t>)th element of /?, is given by equation (1) when signal is present.
In general a has entries +1 and - 1 , corresponding to some of the Ilk being

positive and some negative. The orthant probabilities L, and Lo are then, after
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some re-arrangement, of the form

265

where R is either Ro or Rx and the elements of R* are

P',k,jh *f a!k an<^ ajinave t n e same sign,

~Pik.jh otherwise.

The product alka , will perform the required change of sign so, from equation (1),

pj;(/ - k)\ (4)

There is a large literature on orthant probabilities which is discussed in
Johnson and Kotz [7, pages 45-58]. Approximate methods for evaluating such
probabilities exist and exact calculations are possible in a number of special cases.

Since the expression for LR{a) will generally be intractable, we need to use
some approximation method. In most cases of interest the a, are small, so we
expand Lx(a) — 3>(a) as a Taylor series in a = (a, , . . . ,an) about a = 0 to give

(a) = *(a) = $(0) + 2 ap\~-
P=\ L /'Ja=O

+

' p=\

+ higher order terms,

dal

a = 0

where

Also

$(0) =

and

VI

— = s
9^

3
3a,u<v\\ daF

3 ^
3a,

| * ) + ( | * ) ( -

fin this paper we follow Plackett [12] and use the symmetry of Ro, R, and R* so that there are only
\n(n — 1) distinct off-diagonal elements ruo to consider.
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From equation (4), [druv/dap]a=0 = 0, so that, omitting higher order terms

(3)

The expression involving the derivatives of $ can be further simplified using a
result of Plackett[ 12],

(6)

In the sequel the higher order terms in the approximation for L,(a) have been
omitted, but we will not change the notation. Thus the statistic hereafter called
LR() is not strictly the likelihood ratio.

4. An example

The following example is of theoretical interest and also may be of practical
importance; accordingly it is discussed in some detail.

We assume that the noise processes are uncorrelated so that

pN(l- k) = (
'A ' lO, otherwise,

and the signals at each input are identical, that is,

pfj(l -k) = P S (T) for all i andy,

where T =\l — k\ takes the values 0,1,2,... ,m — 1, and ps(0) = 1.
In this case if signal is absent, then by equation (4) R% is the identity matrix so

that L0(a) = I'""1.
When signal is present we have, from (4),

J
3a,2 [o, otherwise,

and
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Also from (4), at a = 0, R* is the identity matrix so (6) yields:

Hence (5) becomes

Lx(a) = 2-m» + (l/7r)2-m" £ a? 2 2a,ka,lP
s(l - k)

1=1 k<l
m m

+ (2/n)2-m" 2 a,aj 2 2 «,*«,,P5(/ - *)•

Note that u < v requires k < I when / =j, but when / =£j, since 0 < | k — / | <
w — 1, M < u requires /' <j only; also the a, are non-zero since signal is present
for L|. Therefore

n

i=\

m-\
2 V Si

Zi P '
T = l

2P'(

m — T

k=\

»h,k«jk -

kai,k + T

m - 1

f 2 P 5 (
r = l

m — T2

w

To simplify the right hand side write q% — 2"=, a,a,k and note p5(0) = 1 so that

** m i / n \ ~ m— 1 m — r

) = 1 + | 2 | ( ? f - 2«,2) + | 2 ?(*) 2

Hence L/?(a)> AT if

f (7)
i t = l / = 1 / W T = 1 A = l

m— 1 m — r

2 PS(O 2 rtrt+r>Xi, (8)
T = l * = 1

where 2A", = w(A" - 1) 4- w2f=, a,2.
The terms on the left hand side of (8) may be written as vTu where the elements

of v depend only on the correlation function of the signal, and

The elements of u are closely related to the estimate of the correlation function of
the sequence {q*}, the terms of which are the sums of weighted clipped inputs at
the times A: = \,...,m.
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To simplify the problem further we take af = as and of = aN for all /, so

a, = a for all /

signal present,
,>s + o2y/2

0, signal absent.

If we write qk = 2f=) alk, equation (7) then becomes

a2

LR(a) = 1 + —
m-\

2 qj ~ mn + 2 2 PS(r) 2 (9)
k=\ T=1 k=\

(where a is non-zero, since it arose in L,). Thus if the standard deviations and
correlation functions of the signal and noise are known and satisfy the assump-
tions made in deriving (7), then LR(a) may be calculated for each observed value
a of A.

LR(a) is an observed value of the statistic LR(\) which is defined as follows:
if

n

and

then

Ql
k=\

m-\

T = l k=l

LR(\) = 1 + {c2/ir)(T - mn)

where the constant c is the value of a when signal is present.

4.1 The expectation and variance of LR(A).

From equation (10),

1=1

and

2 AlkA.

j k + T .

, = 1 y = l

(10)

For distinct pairs (/, k), (_/, /), we have from (1), using a well known result (which
can be readily obtained from [12]),

E{AikAjt) = (2/7r)arcsinpf,,y/= (2A)arcsin{a2ps(T)},
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since a, = a and p?k(k - /) = 0 when (/, k) ¥= (j, /); so that

E(Ql) = n + (2/v)n(n - l)arcsina2,

and

E(QkQk+T) = (2n2/^TCsm{a2ps(r)}.

Using Taylor expansions for the arcsin terms and omitting terms which are o(a4),
we obtain

f m-\ ]
E(T) = mn + (2a2n/v)\m(n - 1) + 2/i 2 (iw - r){ps(r)}2[.

Therefore

E{LR(\)}= 1 + (2a2c2n/n2)lm(n - 1) + In 2 (m - T){P 5 (T)}H (11)

and when signal is absent E{LR(A)} — 1 since a — 0. The variance of LR(\) is

The derivation of E{T2} is outlined in the Appendix; a full account will appear in
[6].

The result, omitting terms in a of degree 4 and higher, is
m - l

E{T2} = mn{mn + 2n - 2} + 4/J2 2 ("» ~ T)p5(T)2

T = l

^T C4 I / • \ / IA * \ * f **77
2« - 4)+ {2mn3 + \2n\n - 1)} 2

2 (m - 2r)ps(2r)ps(r)2

T = l

( m - l T - 1

2 2 (m - r)ps(r - \)ps(r)ps(\)

[m/2] T - 1

+ 2 2 (m - T - X)P
S(T + \)ps(r)ps(\)

T = 2 X = l

m — 1 m — T— 1

22
X = l

(12)
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T = l

m - 1 T - 1

2 2
T = 2 A = l

/ ] T l

2 2 (m-T-

m —2 m — T — 1

2 2
A = l
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where [ • ] means " integer part o f in the summation limits. Squaring the result
for E{T), again omitting terms in a of degree 4 and higher, gives

E2{T) = m2n2 + (4a2/v)mn2\m(n - 1) + 2/i 2 (« ~ OPS(T

These two results give

f m - l

mn(n-\)+2n2 2 (m - r)P
5(r)2

f m - l

mAi(n - l)(n - 2) + 6/I2( / I - 1) 2 ("« ~ T ) P S ( T

T = l

(13)

In the absence of signal a — 0 so the expression (13) becomes

I T=l J

4.2 Computer simulation results.

Simulation of the signal and noise processes was carried out using the parame-
ter values n = 6, m - 10, aN - 1.0, as = 0.1 and p5(r) = (0.9)T so that c =
0.1/(1.01)l /2. Realisations of the noise process were obtained using the polar
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method of Marsaglia and Bray [11] to transform uniformly distributed random
numbers to independent normally distributed random numbers. An extension of
this method was used to produce realisations of the signal process. First a
sequence {£•}, being a realisation of a process which was uncorrelated and
iV{0, (1 — (p5(l))2}a2S), was generated. The sequence of signal values {Sn} was
then obtained using the recurrence relation (first order autoregression):

Providing the early terms in {£„} are discarded this procedure generates a
sequence having the required signal characteristics.

The simulated noise and signal at each receiver were then added and clipped to
produce the realisation a and hence LR(a) from equation (9). Table 1 shows the
empirical means and standard deviations of LR(A) obtained in 12 trials each of
1000 observations of LR(A).

TABLE 1

Empirical mean and standard deviation of LR (A)

Trial

1
2
3
4
5
6
7
8
9

10
11
12

Signal
Mean

1.005
.996
.986

1.002
.986
.989
.997
.994
.994

1.006
1.000
.993

absent Signal
S.D. Mean

.198

.194

.171

.196

.175

.185

.193

.196

.185

.205

.187

.201

.045

.035

.037

.045

.024

.028

.034

.027

.031

.044

.041

.025

present
S.D.

.242

.237

.230

.261

.231

.231

.244

.238

.232

.258

.244

.229

These results compare well with the corresponding theoretical moments calcu-
lated using equations (11) and (13), namely,

E{LR(A)) = { ^ signal absent,
signal present,
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and

{0.197, signal absent,
0.242, signal present.

However the variances of LR(X) are too large relative to the difference between
the means to produce a powerful test for distinguishing between the hypotheses
signal present and signal absent.*

If sufficiently many independent values of LR{\) are averaged to give

i M

LR=jj% LR(\.)
i=\

then, by the Central Limit Theorem, LR will be approximately normal with
variance proportional to M~\ Therefore the appropriate sample size M can be
calculated for a test with probability of false alarm, a, and probability of
detection 1 — /?. For the case where M = 150, Table 2 provides a comparison
between the theoretical mean and standard deviation of LR and empirical values
calculated from 1000 observations of LR.

TABLE 2

Theoretical and empirical means and standard deviations of LR

Empirical mean
E{LR}
Empirical S. D.
Theoretical S. D.

Signal absent

0.999

1.00000
0.016
0.01607

Signal present

1.038
1.03874
0.020
0.01976

Figure 1 shows a histogram for LR with M — 150 in the cases signal absent and
signal present. If a critical region is LR > 1.02 as indicated on the figure then the
corresponding empirical values a = 0.097 and /? — 0.172 agree very closely with
the theoretical values of a = 0.106 and /J = 0.171 based on the assumption that
LRis distributed normally.

"These results may be compared with those for the same problem using undipped data, which gave a
difference between the mean (signal present) and the mean (signal absent) of about 0.2 standard
deviations.

https://doi.org/10.1017/S0334270000002903 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002903


[ 1 2 ] A likelihood ratio statistic for clipped signals 273 

F R E Q U E N C Y S I G N A L A B S E N T 
S I G N A L P R E S E N T 

Figure 1. The histogram of LR 

The above approach involving the averaging of several independent values of 
LR(A) has been adopted here as one method of comparing the performance of 
this processor with theory. Another approach which would probably be more 
effective in a practical situation would involve the techniques of sequential 
analysis [16]. 

5. Conclusion 

Some progress has been made in the development of a statistic, based on a 
likelihood ratio, for the detection of signals in additive noise when the input data 
have been clipped. The main restriction imposed, to simplify the problem of 
validating the theory by simulation, is an assumption that the noise processes are 
uncorrelated. Under such restrictions the results of a simulation trial are in close 
agreement with theoretical approximations to the expectation and variance ob­
tained in Section 4.1. 

In many practical cases, however, the assumption that the noise processes are 
uncorrelated is not realistic and it will therefore be desirable to extend the present 
work to cover such cases. Additional work is also required to determine the effect 
of other assumptions and approximations made in the work presented in this 
paper. 
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Appendix: the derivation of E{ T2}

Immediately before equation (10) a random variable T used in the expression
for L/J(A) was defined as

m m —1 m—T

T= 2QI + 2 1 ps(r) 2 QkQk+T,
k=\ T=1 k=\

where

Qk= l A , k a n d A,k=±l.
1=1

In order to determine the variance of LR(\) we require E[T2].
Now

{ m ~|2 m m—\ m — T (m—\ m — T

2 Ql\ +4 2 Ql 2 Ps(r) 2 Q,Ql+T + 4\ 2 Ps(r) 2 QkQkJ

p

m — r

2Qi+ 2 e,2e,2 + 4 2 PS(T) I i QIQ,QI+T
k=\ k,l=\ T=1 A=l /= l

m— 1 I m — T m — T

+4 2 P S (T) 2 2 G*2G*2
+r+ 2 QkQk+rQ,Ql+r\

T = 1 A:= l A : , / = l

m— 1 m — T m —A

+ 8 2 P 5 (T)P 5 (X) 2 2 QkQk+rQiQl+x- (14)
T,A=1 / t = l /=1

(T>X)

So we require the expectation of

(i) Qt, (\<k*m);

00 QlQf, (k^l,l^k^mand\<l^m);

(iu) QlQiQi+T, (1 ^ * < wand 1 =s / *£ m - T);

(iv) QlQl+T, (\<k<m~r);
(v) QkQk+rQiQi+T, (k*l, \<k<m-T, l < / < m - T ) ;
(vi) QkQk+TQ,Ql+x, (r>\,l^k<m-T,\^Km-X).
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In the expansion of each of these products terms of the form AlkAj,ApqArw occur
in which all the subscript pairs are distinct. It may be proved that in this case the
expectation E{AlkAj,ApqArw] consists of terms in a whose lowest degree is 4.
Consistent with previous practice for LR itself these terms are neglected. If any
two of the subscript pairs are equal, say (i, k) = (p, q), terms of the form

AJkAj,Arw = A)tArw occur;

or if (/, k) = (p, q) and (j, I) = (r, w) we get

if any three of the subscript pairs are equal, say (/, k) = (p,q) = (r, w), terms of
the form

A*Aji = A,kAji occur;

and if all four subscript pairs are equal, we get

A*k=l.

We examine case (vi) only as it is the most complicated. (The other cases may be
done similarly, but care must be taken with the conditions for each.)

i,j,p,r=\
TAplAr,l+\'

the product AlkAj k+TAplArl+x has distinct subscript pairs except in the follow-
ing mutually exclusive cases:

(a) k = /and / = p,
(b) k = / + X and / = r,
(c) k + T = / andy = p,
(d) k + T = 1 + X and 7 = r.

In case (a), for each set of pairs (k, I) and (T, X) there are «3 quadruples
(/, j , i, r) for which

E{A,kAj,k + rAplAr,l+\} = E{Aj,k+rAr,l+\}

= (2/V)arcsin p'jq<rw (where q = k + T and w = I + \)

= (2/w)arcsin{a2ps | q — w |} (by assumptions in the text)

= (2/n)aV(T -X).

The same result is obtained for (d).
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In case (b), for each set of pairs (k, /) and (T, X) there are w3 quadruples
(i, j , p, i) for which

E{-AlkAjtk+7ApiArj+^) — E[Aj k+TApl\

= (2/w)arcsin{a2p51 k + r - I \}

= (2/7r)arcsin{a2ps(T + A)}

= (2/w)a V ' ( T + M> ignoring higher order terms.

The same result is obtained for case (c).
Also since 1 =£ k < m — T and 1 < / «£ m — X,

in (a) k = I for 1 < k < min{m — T, m — X} = m — T;

so there are m — T pairs (k, 1) where k = I for each (T , X);

in (b) k = I + X for 1 + X «£ k < m - T,

so there are w — T — X pairs (/c, /) where k = / + X for each (T , X);

in(c) k + T = /for 1 + T < £ < W - X,

so there are w — T — X pairs ()t, /) where A; + T = / for each (T , X); and

in (d) k + T = I + Xformax{l + T, 1 + X} < k < w,i.e., 1 + T < A: < w,

so there are w — T pairs (k, I) where A: + T = / + X for each (T, X).

In all four cases, since T > X, then T > X + 1 > 2. In cases (b) and (c),
m — T — X must be s» 1, so we have

T < m — X — 1 =£ m — 2;

and also X < r — 1
and X ^ / n — T— 1

i.e., X < min{T — 1, m — T — 1}.

But T— l < m — T— l f o r T < [m/2], and T— 1 > W — T— l f o r r > [nt/2].
So the limits for T, X in cases (b) and (c) are:

1 < X < T - 1 w h e n 2 < r ^ [m/2]

and

1 < X *s m — T - 1 when [m/2] + 1 =s T < m - 2.

The complete result for case (vi) is: for each (T, X) where 2 «£ T < m — 1 and
1 «£ X < T — 1 there are 2(m — T) pairs {k, I) satisfying the given conditions for
which E{QkQk+rQiQi+x) = 2n3a2ps(r — X)/w; and for each (T, X) where either

2 =£ T ^ [m/2] and 1 < X < T - 1

or

[ m/2] + 1 < T < m - 2 and 1 < X < m - T - 1
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there are 2{m — T — X) pairs (k, I) satisfying the given conditions for which

E{QkQk+rQ,Q!+x} = 2 « W (
The results for cases (i).. .(v) are:
(i) There are m values of k for which

E{Qt) = "(3» - 2) + 4a2{n(n -

(ii) There are m(m — 1) pairs {k, I) for which

E{QlQf) =n2 + 4a2n2(n - \)/n.

(iii) For each r there are 4(w — T) pairs (k, I) for which

E{QlQ,Ql+r) = 2 « W ( T ) A + 2«2(« - 1)«

The other (m — 4)(m — T) pairs (k, I) give

E{Q2
kQtQl+7} = 2n*a2ps{T)/TT.

(iv) For each T there are (m — T) values of k for which

(v) For each T where 1 < r < [(m - l)/2], there are 2(w — 2T) pairs (k, /) for
which

Taking expectations in equation (14) and using these results, gives the value of
E{T2} appearing as equation (12) in the main text.
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