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Spherical Functions for the Semisimple
Symmetric Pair

(
Sp(2,R), SL(2,C)

)
Tomonori Moriyama

Abstract. Let π be an irreducible generalized principal series representation of G = Sp(2,R) induced
from its Jacobi parabolic subgroup. We show that the space of algebraic intertwining operators from π

to the representation induced from an irreducible admissible representation of SL(2,C) in G is at most
one dimensional. Spherical functions in the title are the images of K-finite vectors by this intertwining
operator. We obtain an integral expression of Mellin-Barnes type for the radial part of our spherical
function.

0 Introduction

In our previous paper [Mo1], we study certain generalized spherical functions for
the semisimple symmetric pair

(
Sp(2,R), SL(2,R) × SL(2,R)

)
in connection with

automorphic forms. In this paper, we treat the same problem as [Mo1] for the pair(
Sp(2,R), SL(2,C)

)
.

Let us give the precise definition of our spherical functions and formulate our
problem in a general setting. Let G be a linear reductive group with Lie algebra g

and R a (non-compact) reductive subgroup of G. For an irreducible continuous rep-
resentation (η,Vη) of R, we form a C∞-induced representation C∞-IndG

R (η) with
representation space

C∞η (R \ G) := {F : G→ Vη | C∞-class, F(rg) = η(r)F(g) ∀(r, g) ∈ R× G},

on which G acts by right translation. For a continuous representation π of G, we
denote its underlying (g,K)-module by π0. Here K is a maximal compact subgroup
of G. For a standard representation π of G, we consider the space of algebraic inter-
twining operators Hom(g,K)

(
π0,C∞η (R \ G)0

)
. Let (τ ,Wτ ) be a K-type of π. For

Φ ∈ Hom(g,K)

(
π0,C∞η (R \ G)0

)
and a specification of K-type i ∈ HomK (τ , π), the

composite Φ · i can be considered as a Vη ⊗W ∗τ -valued function on G. We call this
function a spherical function of type (π, η, τ ). Our concern is the following mutually
related two problems:

(A) Is the dimension of the intertwining space Hom(g,K)

(
π0,C∞η (R \ G)0

)
at most

one?
(B) What kind of functions appear as the spherical functions of type (π, η, τ )?
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In this paper, we discuss these problems for the semisimple symmetric pair
(G,R) =

(
Sp(2,R), SL(2,C)

)
and obtain the following:

Main Results (see Theorems 7.2 and 7.5 for details) (1) Suppose that π is an ir-
reducible generalized principal series representation of G induced from the maximal
parabolic subgroup corresponding to the long simple root. Then, for an arbitrary
irreducible admissible Hilbert representation (η,Vη) of R, we have an inequality

dimC Hom(g,K)

(
π0,C∞η (R \ G)0

)
≤ 1.

(2) Suppose that π and η be as in (1). Then the radial parts of spherical functions
attached to (π, η) can be expressed in terms of integrals of the form

∫ σ+
√
−1∞

σ−
√
−1∞

4∏
k=1

Γ(ck − s)

Γ(1− ak − s)
ys ds.

Here the constants ak (resp. ck) depend on the defining parameters of η and π (resp.
of π) and σ ∈ R is taken so that σ < Re(ck) (1 ≤ k ≤ 4).

The integrals of Mellin-Barnes type in (2) are solutions of fourth-order general-
ized hypergeometric differential equations and known as Meijer’s G-functions (see
[Er, Ch. IV]). The appearance of such functions is quite natural from the viewpoint
of automorphic L-functions. In fact, if the generalized principal series representation
π is even (see Definition 2.6), our spherical functions are nothing but archimedean
local Shintani functions on orthogonal groups in the work of Murase and Sugano
[M-S] on automorphic L-functions. Our explicit formulae in (2) enable us to com-
pute archimedean local components of the zeta integrals introduced by them. We
shall deal with this in a future paper. We should also remark that Meijer’s G-function
and its generalization to several variables appear in explicit formulae of (generalized)
Whittaker functions (e.g. [B, Ch. II], [H3], [I], [Mo2]).

Let us explain the contents of this paper. In Section 1 we introduce and fix some
notation about Lie groups and Lie algebras. In Section 2 we recall some represen-
tation theory: the finite dimensional representations of K ∼= U (2); an infinitesimal
description of the non-unitary principal series representations of R ∼= SL(2,C); the
multiplicity formulae for K-types of generalized principal series representations of
G. In Section 3 the spherical functions of type (π, η, τ ) are introduced. We discuss
the restriction of spherical functions to a one-dimensional split torus A, which satis-
fies G = RAK. Our main results are proved in Section 7. The computations needed
for our proof are done in Sections 4, 5 and 6. Firstly, in Section 4, we construct
systems of differential equations satisfied by the spherical functions using two kinds
of differential operators. One of them is shift operators, which are defined by means
of the Schmid operator, and the other is the Casimir operator. Then, in Section 5
(resp. Section 6), we reduce the above system of differential equations for even (resp.
odd) generalized principal series representations into fourth-order ordinary differ-
ential equations (Theorem 5.6 (resp. 6.8)). Although the computation in this process
is rather long, the resulting differential equations are quite simple. The main results
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follow from these differential equations together with a result of Nörlund [N] on
generalized hypergeometric functions.

Finally we mention several works treating the problems (A) and (B). Hirano in-
vestigates the case of

(
GL(2, F),GL(1, F) × GL(1, F)

)
(F = R,C) [H1], [H2]. For

groups of real rank one, there is also a general study by Tsuzuki [T1], [T2] for the case(
U (n, 1),U (1)×U (n−1, 1)

)
. In both cases, there appear Gaussian hypergeometric

functions as spherical functions in the above sense.

Acknowledgement I would like to express my profound gratitude to Professor
Takayuki Oda for suggesting me this problem and giving much valuable advice.

1 Basic Notation

1.1 Lie Groups, Lie Algebras and a Root System

Let G be the real symplectic group Sp(2,R) of rank two, which is defined by

Sp(2,R) :=
{

g ∈ M(4,R)

∣∣∣∣ t g J4g = J4 =
(

0 I2

−I2 0

)}
.

Here I2 is the identity matrix of degree 2. A Cartan involution θ of G is given by
θ(g) = t g−1 (g ∈ G). The corresponding maximal compact subgroup K of G is

K =
{(

A B
−B A

)
∈ Sp(2,R)

∣∣∣∣ A,B ∈ M(2,R)

}
.

It is isomorphic to the unitary group U (2) := {g ∈ GL(2,C) | t gg = I2}. We fix an
isomorphism u : U (2)→ K by

u : U (2) 3 A +
√
−1B 7→

(
A B
−B A

)
∈ K,

(
A,B ∈ M(2,R)

)
.

We denote the Lie algebras of G and K by g and k, respectively. It is easily checked
that

k =
{(

A B
−B A

) ∣∣∣∣ A,B ∈ M(2,R), t A = −A, t B = B

}
.

The (−1)-eigenspace p of θ is

p = {X ∈ g | θ(X) = −X} =
{(

A B
B −A

) ∣∣∣∣ A,B ∈ M(2,R), t A = A, t B = B

}
,

which gives a Cartan decomposition g = k⊕ p. The differential of the isomorphism
u, which is also denoted by u, is given by

u : u(2) 3 A +
√
−1B 7→

(
A B
−B A

)
∈ k,

(
A,B ∈ M(2,R)

)
.

https://doi.org/10.4153/CJM-2002-032-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-032-2


Spherical Functions for the Semisimple Symmetric Pair
(

Sp(2,R), SL(2,C)
)

831

For an arbitrary Lie subalgebra l of g, we denote its complexification l⊗ C by lC. We
also write the dual space HomC(lC,C) of lC by l∗C. A C-basis of kC is given by

Z := u

((
1 0
0 1

))
; H ′ := u

((
1 0
0 −1

))
;

X := u

((
0 1
0 0

))
; Y := u

((
0 0
1 0

))
.

The simple Lie algebra g has a compact Cartan subalgebra h := RT1⊕RT2, where

T1 := u

((√
−1 0
0 0

))
; T2 := u

((
0 0
0
√
−1

))
.

Define a C-basis {β1, β2} of h∗C by βi(T j) =
√
−1δi j (1 ≤ i, j ≤ 2). For each β ∈ h∗C,

set
gβ := {X ∈ gC | [H,X] = β(H)X,∀H ∈ hC}.

Then the root system ∆ = ∆(gC, hC) for the pair (gC, hC) is given by ∆(gC, hC) =
{±2β1,±2β2,±(β1 ± β2)}. We fix a positive system ∆+ of ∆ as ∆+ := {2β1,
β1 + β2, 2β2, β1 − β2}. Denote by ∆c the set of compact roots in ∆: ∆c =
{±(β1 − β2)}. Set ∆n := ∆ \ ∆c, ∆+

c := ∆+ ∩ ∆c and ∆+
n := ∆+ ∩ ∆n. For

each positive root β = b1β1 + b2β2 = (b1, b2), the root space gβ is spanned by the
following root vector Xβ :

X(2,0) =


1 0

√
−1 0

0 0 0 0√
−1 0 −1 0
0 0 0 0

 ;

X(1,1) =


0 1 0

√
−1

1 0
√
−1 0

0
√
−1 0 −1√

−1 0 −1 0

 ;

X(0,2) =


0 0 0 0
0 1 0

√
−1

0 0 0 0
0
√
−1 0 −1

 ;

X(1,−1) =


0 1 0 −

√
−1

−1 0 −
√
−1 0

0
√
−1 0 1√

−1 0 −1 0

 .

For each negative root −β, the root space g−β is spanned by the root vector X−β :=
Xβ . Set p+

C :=
⊕

β∈∆+
n

gβ and p−C :=
⊕

β∈∆+
n

g−β . Then pC = p+
C ⊕ p−C . For each

root β = b1β1 + b2β2 = (b1, b2), we put ‖β‖ =
√

b2
1 + b2

2.
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We define an involution σ of G by

σ : G 3 g 7→ g0gg−1
0 ∈ G, with g0 :=

(
g̃0

g̃−1
0

)
, g̃0 :=

(
0 1
−1 0

)
.

Then σ commutes with the Cartan involution θ. We set

R := {g ∈ G | σ(g) = g}, r := Lie(R) and q := {X ∈ g | σ(X) = −X}.

Then (G,R) is a semisimple symmetric pair. Since the multiplication by g0 is a com-
plex structure on the space R4 of four dimensional column vectors, the subgroup R
is isomorphic to Sp(1,C) ∼= SL(2,C). To avoid confusion, we write entries of the
group SL(2,C) and its Lie algebra sl(2,C) in the form x + j y (x, y ∈ R, j2 = −1).
Let ϕ0 : C ↪→ M(2,R) be the ring homomorphism defined by ϕ0(x + j y) :=

( x y
−y x

)
,

(x, y ∈ R). We fix an isomorphism ϕ from SL(2,C) to R by

ϕ

((
a b
c d

))
:=

 ϕ0(a) ϕ0(b)

(
1 0
0 −1

)
(

1 0
0 −1

)
ϕ0(c)

(
1 0
0 −1

)
ϕ0(d)

(
1 0
0 −1

)
 .

Set K ′ := K ∩R. Then K ′ is a maximal compact subgroup of R, whose inverse image
by ϕ coincides with the special unitary group SU(2) := {g ∈ SL(2,C) | t gg = I2}.
Multiplication by j ∈ C defines a complex structure on sl(2,C) ∼= r. This complex
structure and its C-linear extension to rC := r ⊗ C are both denoted by J. We take a
R-basis of r as follows:

ξ0 := ϕ

((
j 0
0 − j

))
; ξ1 := ϕ

((
0 1
−1 0

))
; ξ2 := ϕ

((
0 j
j 0

))
;

Jξ0 = ϕ

((
−1 0
0 1

))
; Jξ1 = ϕ

((
0 j
− j 0

))
; Jξ2 = ϕ

((
0 −1
−1 0

))
.

Note that {ξ0, ξ1, ξ2} is a R-basis of the Lie algebra of K ′. We also define a C-basis
for (r ∩ k)⊗ C by

h := ξ1⊗
√
−1; e+ := (ξ0⊗ 1− ξ2⊗

√
−1)/2; e− := (−ξ0⊗ 1− ξ2⊗

√
−1)/2.

Then the set {h, e+, e−} forms an sl2-triple. A maximal abelian subalgebra a in p∩ q

is given by

a := RH1 with H1 :=


1

1
−1

−1

 ∈ g.
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Define a one-parameter subgroup at (t ∈ R) of G by at := exp(tH1) and set A :=
{at | t ∈ R}. In order to state the next lemma (a generalized Cartan decomposition)
we introduce some symbols.

Notation Define rC-valued functions L±, M± and N on R× by

L± := ± Je∓ ∓ e∓

sinh 2t
; M± := ∓ Je± ∓ e±

sinh 2t
; N :=

− Jh

cosh 2t
.

Lemma 1.1 For any t ∈ R×, we have gC = Ad(a−t )rC + aC + kC. To be more precise,
each non-compact root vector Xβ is decomposed as below:

(i) X(2,0) = Ad(a−t ) · L+ − coth 2t · X;
(ii) X(1,1) = Ad(a−t ) ·N + H1 − tanh 2t · Z;
(iii) X(0,2) = Ad(a−t ) ·M+ − coth 2t · Y ;
(iv) X(−2,0) = Ad(a−t ) · L− + coth 2t · Y ;
(v) X(−1,−1) = Ad(a−t ) · (−N) + H1 + tanh 2t · Z;
(vi) X(0,−2) = Ad(a−t ) ·M− + coth 2t · X.

The proof is direct computations.

1.2 The Jacobi Parabolic Subgroup

The semisimple Lie group G = Sp(2,R) has, up to conjugation, two maximal para-
bolic subgroups: one with abelian unipotent radical and the other with non-abelian
unipotent radical. The latter is called the Jacobi parabolic subgroup of G and denoted
by P J . We fix the Jacobi parabolic subgroup P J and its Langlands decomposition
P J = M JA JN J as follows:

P J :=



∗ ∗
0 ∗

∗ ∗
∗ ∗

0 0
0 ∗

∗ 0
∗ ∗

 ∈ G

 ;

M J :=




ε
a b

c
ε

d


∣∣∣∣∣ ε ∈ {±1},(

a b
c d

)
∈ SL(2,R)

 ;

A J := {diag(t, 1, t−1, 1) | t ∈ R>0}; N J :=




1 ∗
0 1

∗ ∗
∗ 0

0 0
0 0

1 0
∗ 1

 ∈ G

 .

Here diag(a1, a2, a3, a4) denotes the diagonal matrix whose (i, i)-components are
given by ai . Put a J := Lie(A J).
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2 Representations of K, R and G

In this section we collect some basic facts about representations of K, R and G. In
Section 2.1 we parameterize the irreducible finite dimensional representations of K
and describe the decompositions of their tensor products with p−C into irreducible
factors. In Section 2.2 we introduce the non-unitary principal series representations
of R and give their infinitesimal descriptions. In Section 2.3 we recall the generalized
principal series representations of G induced from the Jacobi parabolic subgroup P J

and their K-type multiplicities.

2.1 Irreducible K-Modules

The irreducible finite dimensional representations of K are parameterized by the set
of their highest weights relative to ∆+

c :

{λ = λ1β1 + λ2β2 = (λ1, λ2) ∈ h∗C | λi ∈ Z, λ1 ≥ λ2}.

For each dominant integral weight λ = (λ1, λ2), we set d = dλ = λ1 − λ2(≥ 0).
Then the degree of the representation (τλ,Wλ) associated to λ is d + 1. We can take
a basis {wk | 0 ≤ k ≤ d} in Wλ so that the representation of kC associated to τλ is
given by

τλ(Z)wk = (λ1 + λ2)wk; τλ(H ′)wk = (−d + 2k)wk;

τλ(X)wk = (k + 1)wk+1; τλ(Y )wk = (d + 1− k)wk−1.

We call this basis the standard basis of τλ. If we want to refer explicitly to the dominant
weight λ, we denote wk by wλ

k .
The vector space p−C becomes a K-module via the adjoint representation of K. It

is easily checked that p−C
∼= W(0,−2) and the correspondence of the bases is given by

(X(−2,0),X(−1,−1),X(0,−2)) 7→ (w0,−w1,w2).

Let us consider the tensor products Wλ ⊗ p−C .

Lemma 2.1 The tensor product Wλ⊗p−C has the decomposition into irreducible factors
as

Wλ ⊗ p−C =

{
W(λ1,λ2−2) ⊕W(λ1−1,λ2−1) ⊕W(λ1−2,λ2) if λ1 > λ2;

W(λ1,λ2−2) if λ1 = λ2.

Here we understand W(λ1,λ2) = 0 for λ1 < λ2.

Let Pup , Peven and Pdown be the projectors from Wλ⊗ p−C to the factors W(λ1,λ2−2),
W(λ1−1,λ2−1) and W(λ1−2,λ2), respectively. We shall write these projectors explicitly in
the next lemma.
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Lemma 2.2

(i) Set µ = (λ1, λ2 − 2). Then, up to scalar multiple, the projector Pup is given by

Pup (wλ
k ⊗ w2) =

(k + 2)(k + 1)

2
wµ

k+2 (0 ≤ k ≤ d);

Pup (wλ
k ⊗ w1) = (k + 1)(d + 1− k)wµ

k+1 (0 ≤ k ≤ d);

Pup (wλ
k ⊗ w0) =

(d + 1− k)(d + 2− k)

2
wµ

k (0 ≤ k ≤ d).

(ii) Set ν = (λ1 − 1, λ2 − 1). Then, up to scalar multiple, the projector Peven is given
by

Peven (wλ
k ⊗ w2) = (k + 1)wν

k+1 (0 ≤ k ≤ d);

Peven (wλ
k ⊗ w1) = (d− 2k)wν

k (0 ≤ k ≤ d);

Peven (wλ
k ⊗ w0) = −(d + 1− k)wν

k−1 (0 ≤ k ≤ d).

(iii) Set π = (λ1 − 2, λ2). Then, up to scalar multiple, the projector Pdown is given by

Pdown (wλ
k ⊗ w2) = wπ

k (0 ≤ k ≤ d);

Pdown (wλ
k ⊗ w1) = −2wπ

k−1 (0 ≤ k ≤ d);

Pdown (wλ
k ⊗ w0) = wπ

k−2 (0 ≤ k ≤ d).

Here we understand that wν
k , or wπ

k is zero for k < 0, or k > dν or k > dπ .

2.2 Non-Unitary Principal Series Representations of R

In this subsection, we introduce the non-unitary principal series representations of
SL(2,C). It is well-known that every irreducible admissible representation of SL(2,C)
is infinitesimally equivalent to a subrepresentation of some non-unitary principal se-
ries representations (see [Wa, 3.8.3., 5.7.]).

We fix a minimal parabolic subgroup P ′ of R and a Langlands decomposition
P ′ = M ′A ′N ′ of P ′ as

P ′ :=
{
ϕ(p ′)

∣∣∣∣ p ′ =
(
∗ ∗
0 ∗

)
∈ SL(2,C)

}
;

M ′ :=
{
ϕ

((
α 0
0 α−1

)) ∣∣∣∣ |α| = 1

}
;

A ′ :=
{
ϕ

((
x 0
0 x−1

)) ∣∣∣∣ x ∈ R, x > 0

}
; N ′ :=

{
ϕ

((
1 y
0 1

)) ∣∣∣∣ y ∈ C

}
.
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For l ∈ Z and ν ∈ C, we define a character χl of M ′ and a quasi-character aν of A ′ by

χl(m ′) := αl, m ′ = ϕ

((
α 0
0 α−1

))
∈ M ′;

aν(x̃) := xν , x̃ = ϕ

((
x 0
0 x−1

))
∈ A ′.

Then we understand by a non-unitary principal representation of R the induced rep-
resentation

η(l, ν) = L2-IndR
P ′(χl ⊗ aν+2 ⊗ 1N ′)

from P ′ to R. The representation space Vl,ν of η(l, ν) is given by the completion of
the pre-Hilbert space

{ f : R
C∞−→ C | f (m ′a ′n ′r) = χl(m ′)aν+2(a ′) f (r),

∀(m ′, a ′, n ′, r) ∈ M ′ × A ′ × N ′ × R}

with inner product

( f1, f2)K ′ :=
∫

K ′
f1(y) f2(y) dy.

Here dy is the Haar measure of K ′. The action of R on this space is given by right
translation.

We shall fix a C-basis of the space Vl,ν
0 of K ′-finite vectors in Vl,ν and describe

the action of Lie algebra of R on this basis. The representation space Vl,ν is a closed
subspace of the Hilbert space L2(K ′). Thus, we start with constructing a complete or-
thonormal system for L2(K ′). For each non-negative integer m, there exists a unique,
up to equivalence, irreducible (m + 1)-dimensional representation of K ′, which we
denote by F(m). The representation F(1) is the natural representation of SU(2) on
the space of two-dimensional column vectors. That is, if we write e0 := t (1, 0) and
e1 := t (0, 1), then we have

F(1)(y)e0 = αe0 − βe1; F(1)(y)e1 = βe0 + αe1, ∀y = ϕ

((
α β

−β α

))
∈ K ′.

The representation F(m) is realized in the space Symm(F(1)) of symmetric tensors of
F(1) of degree m. As a basis of F(m), we take

v(m)
p :=

(
m

p

)
em−p

0 ep
1 ∈ Symm(F(1)), (0 ≤ p ≤ m).

Define matrix coefficients f (m)
a,b (0 ≤ a, b ≤ m) of F(m) by

f (m)
a,b (y) := 〈v∗(m)

a , F(m)(y)v(m)
b 〉, y ∈ K ′.

Here {v∗(m)
p | 0 ≤ p ≤ m} is the dual basis of {v(m)

p | 0 ≤ p ≤ m} and 〈 , 〉 is
the canonical pairing between F(m) and its dual vector space. By the classical theory
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of Peter-Weyl, we know that the set of functions f (m)
a,b /( f (m)

a,b , f (m)
a,b )1/2

K ′ (m ∈ Z≥0, 0 ≤
a, b ≤ m) forms a complete orthonormal system of L2(K ′). We can easily check that

f (m)
a,b (t1 yt2) = χm−2a(t1)χm−2b(t2) f (m)

a,b (y), t1, t2 ∈ M ′, y ∈ K ′.

Hence, if we set M(l) := {m ∈ Z | m ≡ l (mod 2),m ≥ |l|}, then we have the
decomposition of Vl,ν

0:

Vl,ν
0 =

⊕
m∈M(l)

m⊕
p=0

C f (m)
(m−l)/2,p

∼=
⊕

m∈M(l)

F(m).

In what follows, we also write f (m)
p in place of f (m)

(m−l)/2,p. We prefer to use another

basis {g(m)
p | m ∈ M(l), 0 ≤ p ≤ m} for Vl,ν

0, which is given by

g(m)
p := η(cR) f (m)

p , cR := ϕ

(
1√
2

(
1 j
j 1

))
∈ K ′.

We call this basis {g(m)
p } the standard basis of Vl,ν

0.

Proposition 2.3 Let
(
η = η(l, ν),Vl,ν

)
be a non-unitary principal series representa-

tion of R. The action of rC on the vectors g(m)
p ∈ Vl,ν is given as follows:

(i) η(h)g(m)
p = (2p −m)g(m)

p ;

(ii) η(e+)g(m)
p = (p + 1)g(m)

p+1;

(iii) η(e−)g(m)
p = (m− p + 1)g(m)

p−1;
(iv)

η( Jh)g(m)
p =

√
−1{−(ν + m + 2)(p + 1)(m− p + 1)A(m)g(m+2)

p+1

+ (−ν)(m− 2p)B(m)g(m)
p + 2(ν −m)C(m)g(m−2)

p−1 };

(v)

η( Je+)g(m)
p =

√
−1

2
{(ν + m + 2)(p + 1)(p + 2)A(m)g(m+2)

p+2

+ 2ν(p + 1)B(m)g(m)
p+1 + 2(ν −m)C(m)g(m−2)

p };

(vi)

η( Je−)g(m)
p =

−
√
−1

2
{(ν + m + 2)(m− p + 2)(m− p + 1)A(m)g(m+2)

p

+ (−2ν)(m− p + 1)B(m)g(m)
p−1 + 2(ν −m)C(m)g(m−2)

p−2 }.
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Here we set for m ∈ M(l)

A(m) :=
(

m + 2

2

)−1

; B(m) :=

{
l/
(

m(m + 2)
)
, if m > 0;

0, if m = 0;

C(m) :=

{
(l2 −m2)/

(
4m(m + 1)

)
, if m > 0;

0, if m = 0.

In these formulae, we understand g(m)
p = 0 for m /∈ M(l) or p < 0 or p > m.

Proof Put

h̃ := Ad(c−1
R )h = ξ0 ⊗

√
−1; ẽ+ := Ad(c−1

R )e+ = (−ξ1 ⊗ 1− ξ2 ⊗
√
−1)/2;

ẽ− := Ad(c−1
R )e− = (ξ1 ⊗ 1− ξ2 ⊗

√
−1)/2.

Since
η(x)g(m)

p = η(cR)η
(

Ad(cR)−1x
)

f (m)
p , ∀x ∈ rC,

we have only to compute the action of h̃, ẽ+, ẽ−, Jh̃, Jẽ+ and Jẽ− on the vectors f (m)
p .

It is easy to see

η(h̃) f (m)
p = (2p−m) f (m)

p ; η(ẽ+) f (m)
p = (p+1) f (m)

p+1 ; η(ẽ−) f (m)
p = (m−p+1) f (m)

p−1.

Thus the formulae from (i) to (iii) are proved. Next we compute η( Jh̃) f (m)
p . Since

Jξ0 = Ad(y−1)

{
(|α|2 − |β|2) · Jξ0 + ϕ

((
0 4αβ
0 0

))}
+ 2αβ · ẽ+ − 2αβ · ẽ−,

for any y = ϕ
(( α β

−β α

))
∈ K ′, we have

[η( Jξ0) f (m)
a,p ](y) = −(ν + 2) f (2)

1,1 (y) f (m)
a,p (y)− 2(m + 1− p) f (2)

1,2 (y) f (m)
a,p−1(y)

− 2(p + 1) f (2)
1,0 (y) f (m)

a,p+1(y).

Here we use the following equalities:

f (2)
1,0 (y) = −αβ; f (2)

1,1 (y) = |α|2 − |β|2; f (2)
1,2 (y) = αβ.

Our remaining task is to express the products f (2)
1,1 · f

(m)
a,p , f (2)

1,2 · f
(m)

a,p−1 and f (2)
1,0 · f

(m)
a,p+1 of

two matrix coefficients as linear combinations of f (m+2)
a+1,p+1, f (m)

a,p and f (m−2)
a−1,p−1, which

we can know from Lemma 2.4 below. Inserting the formulae there, we arrive at

η( Jh) f (m)
p =

√
−1{−(ν + m + 2)(p + 1)(m− p + 1)A(m) f (m+2)

p+1

+ (−ν)(m− 2p)B(m) f (m)
p + 2(ν −m)C(m) f (m−2)

p−1 }
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with
A(m) = A(m)

(m−l)/2, B(m) = B(m)
(m−l)/2 and C(m) = C(m)

(m−l)/2.

Here A(m)
a , B(m)

a and C(m)
a (a = (m−l)/2) are given in Lemma 2.4. This proves the for-

mula (iv). By virtue of the identities Je+ = (1/2)[ Jh, e+] and Je− = (−1/2)[ Jh, e−],
the formulae (v) and (vi) are easily deduced from the others.

Lemma 2.4 For a non-negative integer m and an integer a with 0 ≤ a ≤ m, there
exist rational numbers A(m)

a , B(m)
a and C(m)

a satisfying the following equalities (0)p, (1)p

and (2)p (0 ≤ p ≤ m) simultaneously:

(0)p : f (2)
1,0 · f (m)

a,p = A(m)
a

(
m + 2− p

2

)
f (m+2)
a+1,p + B(m)

a (−m− 1 + p) f (m)
a,p−1

+ C(m)
a f (m−2)

a−1,p−2;

(1)p : f (2)
1,1 · f (m)

a,p = A(m)
a (p + 1)(m + 1− p) f (m+2)

a+1,p+1 + B(m)
a (m− 2p) f (m)

a,p

+ C(m)
a (−2) f (m−2)

a−1,p−1;

(2)p : f (2)
1,2 · f (m)

a,p = A(m)
a

(
p + 2

2

)
f (m+2)
a+1,p+2 + B(m)

a (p + 1) f (m)
a,p+1

+ C(m)
a f (m−2)

a−1,p .

Here we understand that f (m)
a,b equals to zero unless m ≥ 0 and 0 ≤ a, b ≤ m. Moreover

A(m)
a , B(m)

a and C(m)
a are given by

A(m)
a =

(
m + 2

2

)−1

; B(m)
a :=

{
(m− 2a)/

(
m(m + 2)

)
, if m > 0;

0, if m = 0;

C(m)
a :=

{
(−a)(m− a)/

(
m(m + 1)

)
, if m > 0;

0, if m = 0.

Proof For brevity, we give proofs for the case m ≥ 2 and a ≥ 1. The proofs for
the other cases are the same in principle. Multiplication of functions on K ′ defines a
K ′-homomorphism from

( 2⊕
q=0

C f (2)
1,q

)
⊗
( m⊕

p=0

C f (m)
a,p

)
∼= F(2) ⊗ F(m)

to

( m+2⊕
p=0

C f (m+2)
a+1,p

)
⊕
( m⊕

p=0

C f (m)
a,p

)
⊕
(m−2⊕

p=0

C f (m−2)
a−1,p

)
∼= F(m+2) ⊕ F(m) ⊕ F(m−2).
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On the other hand, the pull-back of an irreducible (m + 1)-dimensional representa-
tion τ(λ1,λ2) (λ1 − λ2 = m) via the injective homomorphism

K ′ 3 ϕ
((

α β

−β α

))
7→ u

((
α β

−β α

))
∈ K

is equivalent to F(m) and the correspondence of bases is given by v(m)
p 7→ wp. There-

fore, the existence of A(m)
a , B(m)

a and C(m)
a follows from Lemma 2.2. To determine these

constants, we use (2)p=0. Direct computation shows

f (m+2)
a+1,2 (y) =

(
m + 2

a + 1

)−1(m + 2

2

)
αm−a−1(−β)a−1

×
{(

m + 2

a + 1

)
|α|4 − 2

(
m + 1

a + 1

)
|α|2 +

(
m

a + 1

)}
;

f (m)
a,1 (y) = αm−a−1(−β)a−1{m|α|2 − (m− a)};

f (m−2)
a−1,0 (y) = αm−a−1(−β)a−1

for any y = ϕ
(( α β

−β α

))
∈ K ′. Inserting these to (2)p=0, we get the desired formu-

lae.

2.3 The Generalized Principal Series Representations of G

A discrete series representation (σ,Vσ) of the semisimple part M J of P J is of the form
σ = ε � Dλ(|λ| ≥ 2), where ε : {±1} → C∗ is a character, Dλ is the discrete series
representation of SL(2,R) with Blattner parameter λ, that is, the extreme weight
vector v ∈ Dλ satisfies

Dλ

((
cos x sin x
− sin x cos x

))
v = e

√
−1λxv, x ∈ R.

For an element ν J ∈ a∗J,C, let A J 3 a J 7→ aν J

J ∈ C∗ be the corresponding quasi-
character of A J . We also identify ν J ∈ a∗J,C with its values at diag(1, 0,−1, 0) ∈ a J .
Define a representation σ ⊗ ν J of P J by

σ ⊗ ν J(p J) = σ(m J)aν J

J , for p J = m Ja Jn J ∈ P J = M JA JN J.

Then the generalized principal representation π(σ, ν J) of G is defined as the induced
representation C∞- IndG

P J

(
σ ⊗ (ν J + ρ J)

)
of G with representation space

{F : G −→ Vσ | C∞-class, F(m Ja Jn Jg) = σ(m J)aν J+ρ J

J F(g),

∀(m J, a J, n J, g) ∈ M J × A J × N J × G},

on which G acts by right translation. Here ρ J ∈ a∗J,C is defined by ρ J(H) =
trace

(
ad(H) | Lie(N J)

)
/2 for H ∈ a J .

We describe the K-types of the generalized principal series representation π(σ, ν J).
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Proposition 2.5 Let π(σ, ν J) be a generalized principal series representation of G with
σ = ε � Dλ and ν J ∈ a∗J,C. Then for a dominant integral weight q = (q1, q2) ∈
Z⊕2(q1 ≥ q2), the irreducible representation τ(q1,q2) of K occurs in π(σ, ν J) with multi-
plicity

]{m ∈ Z | m ≡ λ (mod 2), sgn(λ)m ≥ |λ|, (−1)q1+q2−m = ε, q2 ≤ m ≤ q1},

where sgn(λ) stands for λ/|λ| ∈ {±1}. In particular,

(1) when ε = (−1)λ and λ ≥ 2, then each of τ(q,q) (q ∈ Z, q ≡ λ (mod 2), q ≥ λ)
or τ(λ,q) (q ∈ Z, q ≡ λ (mod 2), λ ≥ q) occurs in π(σ, ν J) with multiplicity one;

(2) when ε = (−1)λ+1 and λ ≥ 2, then each of τ(q,q−1) (q ∈ Z, q ≥ λ) or τ(λ,q−1)

(q ∈ Z, q ≡ λ (mod 2), λ ≥ q− 1) occurs in π(σ, ν J) with multiplicity one.

Proof This follows from Frobenius reciprocity for compact groups. See [Mo1, Prop-
osition (2.4)] for example. (In [Mo1], we mistakenly impose an unnecessary condi-
tion q ≡ λ (mod 2) for τ(q,q−1) occurring in π

(
(−1)λ+1 �Dλ, ν J

)
with multiplicity

one.)

Thanks to Remark 3.1 below, we may and do assume λ ≥ 2.

Definition 2.6

(i) We say that a generalized principal series representation π = π(ε�Dλ, ν J) with
λ ≥ 2 is even (resp. odd) if ε = (−1)λ (resp. ε = (−1)λ+1).

(ii) For an even (resp. odd) generalized principal series representation π, we call its
K-type τ := τ(λ,λ) (resp. τ(λ,λ−1)) the corner K-type of π.

3 Spherical Functions

In this section, we introduce the putative spherical functions and discuss their re-
strictions to the subgroup A = exp a.

3.1 Definition of Spherical Functions

For a continuous representation (η,Vη) of R, we define a C∞-induced module
C∞- IndG

R (η) with representation space

C∞η (R \ G) := {F : G→ Vη | C∞-class, F(rg) = η(r)F(g) ∀(r, g) ∈ R× G},

on which G acts by right translation. Note that for each F ∈ C∞η (R \ G) and g ∈ G,
F(g) is a smooth vector in Vη . For a finite dimensional K-module (τ ,Wτ ), we denote
by C∞η,τ (R \ G/K) the space of C∞-functions F : G→ Vη ⊗W ∗τ with the property

F(rgk) =
(
η(r)⊗ τ∗(k)−1

)
F(g), (r, g, k) ∈ R× G× K,
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where (τ∗,W ∗τ ) stands for the contragredient representation of (τ ,Wτ ). For an ad-
missible representation π of G and a K-equivariant map i : τ → π|K , we define a
C-linear map

i∗ : Hom(g,K)

(
π0,C∞η (R \ G)0

)
−→ HomK

(
τ ,C∞η (R \ G)

) ∼= C∞η,τ (R \ G/K)

by the pullback of i. Here π0 and C∞η (R\G)0 stand for the underlying (g,K)-module
of π and C∞η (R \ G), respectively. We call the image of i∗ a spherical functions of type
(π, η, τ ). Our main objective in this paper is to give an explicit integral expression of
the A-radial part of the spherical functions when π is a generalized principal series
representation. We should note that if π is irreducible, then the above map i∗ is
injective.

Remark 3.1 Set g1 := diag(1, 1,−1,−1) ∈ SL(4,R). The conjugation by g1 defines
an involution σ1 of G. It is known that σ1 generates the outer automorphism group
of G. For any representation (π,Hπ) of G, we have a twisted representation π ◦ σ1 of
π by letting g ∈ G act on Hπ via π

(
σ1(g)

)
. It is easily seen that π(ε�Dλ, ν J) ◦ σ1 is

equivalent to π(ε � D−λ, ν J). Moreover, the subgroup R is stable under σ1. In fact,
the restriction of σ1 to R is an inner automorphism. Hence, σ1 naturally induces an
isomorphism

Hom(g,K)

(
π(ε�Dλ, ν J)

0,C∞η (R\G)0
) ∼= Hom(g,K)

(
π(ε�D−λ, ν J)

0,C∞η (R\G)0
)
.

3.2 Radial Parts of Spherical Functions

We recall some structure theory of semisimple symmetric spaces, by which we can
regard a spherical function of type (π, η, τ ) as a C∞-functions of one real variable.
Let R, A and K be as in Section 1. Set

NR∩K (a) := {g ∈ R ∩ K | Ad(g)a = a};

ZR∩K (a) := {g ∈ R ∩ K | Ad(g)t = t,∀t ∈ a};

WR∩K (a) := NR∩K (a)/ZR∩K (a).

Proposition 3.2

(i) The multiplication map Φ : R× A× K 3 (r, a, k) 7→ rak ∈ G is a C∞-surjection
and regular at (r, a, k) if and only if a 6= 1.

(ii) The fiber of Φ above g = rak is given by as follows:

Φ−1(g) =

{
{(rx−1, 1, xk) | x ∈ R ∩ K}, if a = 1;

{(rx−1, xax−1, xk) | x ∈ NR∩K (a)}, if a 6= 1.

Proof See [R, Theorems 9 and 10].

Let C∞η,τ (A) be the space of Vη ⊗W ∗τ -valued C∞-functions on A satisfying the
following conditions (a), (b) and (c):
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(a) η(m)⊗ τ∗(m)φ(at ) = φ(at ) for any m ∈ ZR∩K (a);
(b) η(n0)⊗ τ∗(n0)φ(at ) = φ(a−t ) for a representative n0 of the non-trivial element

in WR∩K (a) ∼= {±1};
(c) η(r)⊗ τ∗(r)φ(e) = φ(e) for any r ∈ R ∩ K.

Proposition 3.3

(1) The restriction map

res |A : C∞η,τ (R \ G/K)→ C∞η,τ (A)

is a linear injection.
(2) Suppose that τ is an irreducible (d + 1)-dimensional representation of K and that

(η,Vη) is a non-unitary principal series representation
(
η(l, ν),Vl,ν

)
of R. Then

any element φ ∈ C∞η,τ (A) can be written as

φ(t) =
d∑

k=0

∑
m∈M(l)

φ(m)
k (t)g(m)

p(m,k) ⊗ wk, p(m, k) :=
m− d

2
+ k.

Here {wk} or {g(m)
p } is the standard basis of (τ∗,W ∗τ ) or (η,Vη), respectively and

{φ(m)
k | m ∈ M(l), 0 ≤ k ≤ d} is a family of C-valued C∞-functions satisfying

φ(m)
k (−t) = (−1)(m−d)/2φ(m)

d−k(t) (t ∈ R).

Proof The assertion (1) follows from Proposition 3.2. In order to prove (2), we write
φ(at ) ∈ C∞η,τ (A) in the form

φ(at ) =
d∑

k=0

∑
m∈M(l)

m∑
p=0

φ(m)
p,k (t)g(m)

p ⊗ wk

with a family {φ(m)
p,k (t)} of C∞-functions on R. It is easily checked that

ZR∩K (a) =
{

mθ := ϕ

((
cos θ sin θ
− sin θ cos θ

))
= u

((
e
√
−1θ 0
0 e−

√
−1θ

)) ∣∣∣∣ θ ∈ R

}
.

The condition (a) in the definition of C∞η,τ (A) implies that

exp
(√
−1(m− 2p + 2k− d)θ

)
φ(m)

p,k (t) = φ(m)
p,k (t)

for all θ ∈ R, m, p and k. Thus φ(m)
p,k (t) is identically zero unless p = p(m, k).

Similarly the condition (b) in the definition of C∞η,τ (A) implies

φ(a−t ) = η(n0)⊗ τ∗(n0)φ(at ) =
d∑

k=0

∑
m∈M(l)

(−1)(m−d)/2φ(m)
p(m,k),d−k(t)g(m)

p(m,k) ⊗ wk.
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This proves our assertion.

Owing to Proposition 3.3, a spherical function F(g) of type (π, η, τ ) is uniquely
determined by its restriction φ = res |A(F) to A. From now on, we allow ourselves to
use the term a spherical function of type (π, η, τ ) for φ = res |A(F), too. We frequently
write φ(t) instead of φ(at ). For any C-linear map

A : C∞η,τ (R \ G/K)→ C∞η,τ ′(R \ G/K),

there exists a C-linear map ρ(A) : C∞η,τ (A)→ C∞η,τ ′(A) such that res |A ◦A = ρ(A) ◦
res |A, and call ρ(A) the A-radial part of A.

If C∞η,τ (A) = 0, there are no non-zero spherical functions.

Assumption 3.4 From now on, we (tacitly) assume that C∞η,τ (A) 6= {0}.

4 Differential Operators and Differential Equations

Throughout this paper, we assume that π = π(ε � Dλ, ν J) is a generalized principal
series representation of G with λ ≥ 2. We denote the corner K-type τ(λ,λ) or τ(λ,λ−1)

of π = π(ε� Dλ, ν J) by τ (see Definition 2.6). In this section, we construct systems
of differential equations for the spherical functions and calculate their A-radial parts.

4.1 Differential Operators

Here we introduce two kinds of differential operators, that is, shift operators and the
Casimir operator.

4.1.1 Shift Operators

Before introducing shift operators, we recall the definition of the Schmid operator.
Let g = k ⊕ p be the Cartan decomposition of g in Section 1 and Ad = Ad |pC the
adjoint representation of K on pC. Then, for each continuous representation (η,Vη)
of R, we have a differential operator∇τ from C∞η,τ (R \ G/K) to C∞η,τ⊗Ad∗(R \ G/K):

∇τF =
∑

i

RXi F ⊗ Xi , F ∈ C∞η,τ (R \ G/K).

Here (Xi)i is any fixed orthonormal basis of p with respect to the Killing form B of g

and we set RXF(g) := d
dt

(
F
(

g exp(tX)
))
|t=0 (g ∈ G, X ∈ g). We call this differential

operator∇τ the Schmid operator.
Let Pτ ′ : W ∗τ ⊗ pC →W ∗τ ′ be the projection to an irreducible component W ∗τ ′ of

the K-module W ∗τ ⊗pC. We define a Vη⊗W ∗τ ′-valued function F ′ ∈ C∞η,τ ′(R \G/K)
by F ′ := Pτ ′(∇τF). We state the following key proposition, a proof of which we refer
[Mo1, Proposition (4.1)], for example.

Proposition 4.1 For a spherical function F of type (π, η, τ ), the Vη ⊗W ∗τ ′-valued
function F ′ is also a spherical function of type (π, η, τ ′).

https://doi.org/10.4153/CJM-2002-032-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-032-2


Spherical Functions for the Semisimple Symmetric Pair
(

Sp(2,R), SL(2,C)
)

845

If we suitably normalize the Killing form of g, then we have∇τ = ∇+
τ +∇−τ with

∇+
τ F =

∑
β∈∆+

n

‖β‖2RXβF ⊗ X−β , ∇−τ F =
∑
β∈∆+

n

‖β‖2RX−βF ⊗ Xβ .

Define shift operators D−λ and E−λ by

D−λ := Pdown ◦ ∇−τ(λ,λ−2)
◦ ∇−τ(λ,λ)

: C∞η,τ(λ,λ)
(R \ G/K)→ C∞η,τ(λ−2,λ−2)

(R \ G/K);

E−λ := Peven ◦ ∇−(λ,λ−1) : C∞η,τ(λ,λ−1)
(R \ G/K)→ C∞η,τ(λ−1,λ−2)

(R \ G/K).

4.1.2 The Casimir Operator

The Casimir element L of gC is up to constant given by

L = Z2 + H ′
2 − 6Z − 2H ′ + 2X(2,0) · X(−2,0)

+ 2X(0,2) · X(0,−2) + X(1,1) · X(−1,−1) − X(1,−1) · X(−1,1).

We extend the action RY (Y ∈ gC) of gC on C∞η,τ (R\G/K) to the universal enveloping
algebra U (gC) of gC. In particular, the Casimir operator is defined to be the action RL

of the Casimir element L.

4.2 Differential Equations

We use the differential operators introduced above to construct systems of differential
equations satisfied by the spherical functions:

Proposition 4.2 Let π = π(ε�Dλ, ν J) be a generalized principal series representation
of G with λ ≥ 2.

(i) If π is even (see Definition 2.6), then a spherical function F of type (π, η, τ(λ,λ))
satisfies

D−λ F = 0;(a-1)

RLF = {2ν2
J + 2(λ− 1)2 − 10}F.(a-2)

(ii) If π is odd (see Definition 2.6), then a spherical function F of type (π, η, τ(λ,λ−1))
satisfies

E−λ F = 0;(b-1)

RLF = {2ν2
J + 2(λ− 1)2 − 10}F.(b-2)

Proof From the irreducible decomposition of π|K as a K-module (Proposition 2.5)
and Proposition 4.1, we have the equations (a-1) and (b-1). We shall prove (a-2) and
(b-2). It is easy to see RLF = χπ(L)F. Here χπ is the infinitesimal character of π. The
value χπ(L) of χπ at L is equal to 2ν2

J + 2(λ− 1)2 − 10 (see [M-O, Section 6]). This
proves (a-2) and (b-2).
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4.3 The Radial Part of the Schmid Operator

We begin with calculating the A-radial parts ρ(RS) of the actions RS of S ∈ pC on
C∞η,τ (R \ G/K).

Proposition 4.3 For φ ∈ C∞η,τ (A), we have

(
ρ(RX(2,0) )φ

)
(t) = {η(L+) + coth 2t · τ∗(X)}φ(t);(

ρ(RX(1,1) )φ
)

(t) =
{

d

dt
+ η(N) + tanh 2t · τ∗(Z)

}
φ(t);(

ρ(RX(0,2) )φ
)

(t) = {η(M+) + coth 2t · τ∗(Y )}φ(t);(
ρ(RX(−2,0) )φ

)
(t) = {η(L−)− coth 2t · τ∗(Y )}φ(t);(

ρ(RX(−1,−1) )φ
)

(t) =
{

d

dt
− η(N)− tanh 2t · τ∗(Z)

}
φ(t);(

ρ(RX(0,−2) )φ
)

(t) = {η(M−)− coth 2t · τ∗(X)}φ(t).

We can deduce these formulae from the generalized Cartan decomposition
(Lemma 1.1) and the following lemma.

Lemma 4.4 Let U = Ad(a−t )(X1 · X2 · · ·Xl) · Hm
1 · Y1 · Y2 · · ·Yn be an element of

U (gC), where Xi ∈ rC, m ∈ Z≥0 and Yi ∈ kC. Then for F ∈ C∞η,τ (R \ G/K) we have

[RU F](at ) = η(X1) ◦ η(X2) ◦ · · · ◦ η(Xl) ◦
(

d

dt

)m

◦
(
−τ∗(Yn)

)
◦ · · · ◦

(
−τ∗(Y2)

)
◦
(
−τ∗(Y1)

)
F(at ).

This lemma can be proved by direct computation.

Proposition 4.5 The A-radial part of∇−τ is given by as follows:

ρ(∇−τ )φ(t)

= 4{η(L−)− coth 2t(τ∗ ⊗ Ad)(Y )}φ(t)⊗ X(2,0)

+ 2

{
d

dt
− η(N)− tanh 2t

(
(τ∗ ⊗ Ad)(Z)− 2

)
+ 4 coth 2t

}
φ(t)⊗ X(1,1)

+ 4{η(M−)− coth 2t(τ∗ ⊗ Ad)(X)}φ(t)⊗ X(0,2).

Proof It is easy to compute ρ(∇−τ ) by using Proposition 4.3.
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4.4 The Radial Part of the Shift Operator

Firstly we suppose that π = π
(

(−1)λ�Dλ, ν J

)
is an even generalized principal series

representation of G with λ ≥ 2. We represent a spherical function φ ∈ C∞η,τ (A) of
type (π, η, τ(λ,λ)) as

φ(at ) = φ0(t)w0

with a non-zero vector w0 ∈ W ∗(λ,λ) and a Vη-valued C∞-function φ0(t) on R. We
are going to write down explicitly the differential equation (a-1) arising from the shift
operators in terms of the coefficient function φ0(t).

Proposition 4.6 The equation (a-1) is equivalent to{(
d

dt
− η(N) + (2λ− 2) tanh 2t + 4 coth 2t

) (
d

dt
− η(N) + 2λ tanh 2t

)
− 2η(L− ·M− + M− · L−)

}
φ0(t) = 0.

(A-1)

Proof We put φ〈1〉 := ρ(∇−τ(λ,λ)
)φ, φ〈2〉 := Pdown

(
ρ(∇−τ(λ,λ−2)

)φ〈1〉
)

= ρ(D−λ )φ. We

define Vη-valued C∞-functions φ〈1〉k (k = 0, 1, 2) and φ〈2〉0 on A by

φ〈1〉(t) =
∑

0≤k≤2

φ
〈1〉
k (t)w〈1〉k , φ〈2〉(t) = φ

〈2〉
0 (t)w〈2〉0 ,

where {w〈1〉k , 0 ≤ k ≤ 2} or {w〈2〉0 } is the standard basis of W(2−λ,−λ) or W(2−λ,2−λ).
By Lemma 2.2 (iii), we have

φ(t)⊗ X(2,0) = φ0(t)w〈1〉2 ; φ(t)⊗ X(1,1) = φ0(t)w〈1〉1 ; φ(t)⊗ X(0,2) = φ0(t)w〈1〉0 .

From these equations and Proposition 4.5, we obtain

φ
〈1〉
2 (t) = 4η(L−)φ0(t); φ

〈1〉
1 (t) = 2

(
d

dt
− η(N) + 2λ tanh 2t

)
φ0(t);

φ
〈1〉
0 (t) = 4η(M−)φ0(t).

Using these formulae and Lemma 2.2 (iii), we conclude that

φ
〈2〉
0 (t) = (−8)

{(
d

dt
− η(N) + (2λ− 2) tanh 2t + 4 coth 2t

)
·
(

d

dt
− η(N) + 2λ tanh 2t

)
− 2η(L− ·M− + M− · L−)

}
φ0(t).

Thus the proposition follows.
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Next we suppose that π = π
(

(−1)λ+1 � Dλ, ν J

)
is an odd generalized principal

series representation of G with λ ≥ 2. Again, we represent a spherical function
φ ∈ C∞η,τ (A) of type (π, η, τ(λ,λ−1)) as

φ(at ) =
∑
k=0,1

φk(t)wk

with the standard basis {wk | k = 0, 1} of W(1−λ,−λ) (see Section 2.1) and Vη-valued
C∞-functions φk(t) on R.

Proposition 4.7 The equation (b-1) is equivalent to the system:(
d

dt
− η(N) + (2λ− 1) tanh 2t + 2 coth 2t

)
φ0(t)− 2η(M−)φ1(t) = 0;(B-1)

2η(L−)φ0(t)−
(

d

dt
− η(N) + (2λ− 1) tanh 2t + 2 coth 2t

)
φ1(t) = 0.(B-2)

Proof We can prove this in the same manner as Proposition 4.6.

4.5 The Radial Part of the Casimir Operator

We write down the differential equations arising from the Casimir operator in terms
of the coefficient functions φk(t).

Proposition 4.8

(i) The equation (a-2) is equivalent to (A-2) below:{(
d

dt
+ η(N)− (2λ− 2) tanh 2t + 4 coth 2t

)(
d

dt
− η(N) + 2λ tanh 2t

)
+ 2η(L+ · L− + M+ ·M−) + 4λ2 − 12λ

}
φ0(t) = χπ(L)φ0(t).

(A-2)

(ii) The equation (b-2) is equivalent to (B-3) and (B-4) below:{(
d

dt
+ η(N)− (2λ− 3) tanh 2t + 2 coth 2t

)
·
(

d

dt
− η(N) + (2λ− 1) tanh 2t + 2 coth 2t

)
+ 2η(L+ · L− + M− ·M+) + 4λ2 − 8λ− 6

}
φ0(t)

+ 4
coth 2t

sinh 2t
· η(e−)φ1(t) = χπ(L)φ0(t);

(B-3)
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d

dt
+ η(N)− (2λ− 3) tanh 2t + 2 coth 2t

)
(

d

dt
− η(N) + (2λ− 1) tanh 2t + 2 coth 2t

)
+ 2η(L− · L+ + M+ ·M−) + 4λ2 − 8λ− 6

}
φ1(t)

+ 4
coth 2t

sinh 2t
· η(e+)φ0(t) = χπ(L)φ1(t).

(B-4)

Proof Using Lemma 1.1 (the generalized Cartan decomposition) repeatedly, we can
express the Casimir element as a linear combination of such elements as Ad(a−t )(U1)·
Hm

1 ·U2 (U1 ∈ U (rC), m ∈ Z≥0, U2 ∈ U (kC)):

L = Z2 + H ′
2 − 2H ′ − 2 coth2 2t · (X · Y + Y · Y )− tanh2 2t · Z2

+ 4X · Y + Ad(a−t )(2L+ · L− + 2M+ ·M− −N2 − 4 coth 2t ·N)

− 4
coth 2t

sinh 2t

{(
Ad(a−t )e−

)
· Y +

(
Ad(a−t )e+

)
· X
}

+ 2 tanh 2t
(

Ad(a−t )N
)
· Z + H2

1 + (2 tanh 2t + 4 coth 2t)H1.

Now Lemma 4.4 allows us to compute the A-radial parts of the Casimir operator.

5 Reduction of Differential Equations (The Even Case)

Throughout this section, we assume that π = π
(

(−1)λ � Dλ, ν J

)
(λ ≥ 2) is an

even generalized principal series representation of G and that (η,Vη) is a non-unitary
principal series representation

(
η(l, ν),Vl,ν

)
of R. Then τ = τ(λ,λ) is the corner K-

type of π (see Definition 2.6). Recall that any spherical function φ ∈ C∞η,τ (A) of type
(π, η, τ ) can be written as

φ(t) = φ0(t)w0 =
∑

m∈M(l)

φ(m)(t)g(m)
m/2 ⊗ w0,

where each φ(m)(t) is a C∞-function on R and w0 is a non-zero vector in W(−λ,−λ)

(Proposition 3.3). Our main objective in this section is to derive a single differential
equation satisfied by φ(|l|)(t) from the differential equations (A-1) and (A-2). Further,
we show that this differential equation is essentially a generalized hypergeometric
differential equation (Theorem 5.6).

5.1 Difference-Differential Equations

Proposition 5.1 The system of differential equations (A-1), (A-2) in the previous sec-
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tion is equivalent to the system:[(
d

dt
+ 4 coth 2t

)(
d

dt
+ 2λ tanh 2t

)
+
−2

sinh2 2t
η(e+ · e− + e− · e+) +

χ0

2

−
(

d

dt
· η(N) +

2

sinh 2t
η( Je− · e+ − Je+ · e−)

)]
φ0(t) = 0;

(A-3)

[
(2λ− 2) tanh 2t

(
d

dt
+ 2λ tanh 2t

)
− χ0

2

−
{(

d

dt
+ 4λ tanh 2t

)
η(N) +

2

sinh 2t
η( Je− · e+ − Je+ · e−)

}
+ η(N2 + 2 Je+ · Je− + 2 Je− · Je+)

]
φ0(t) = 0

(A-4)

with
χ0 := 4λ2 − 12λ− χπ(L) = 2(λ− 2)2 − 2ν2

J .

Proof To get (A-3) or (A-4) from (A-1) and (A-2), it is enough to compute(
(A-1) + (A-2)

)
/2 or

(
(A-1)− (A-2)

)
/2, respectively.

We derive difference-differential equations for the coefficient functions φ(m)(t)
(m ∈ M(l)) from (A-3) and (A-4):

Proposition 5.2 Suppose that φ ∈ C∞η,τ (A) satisfies the differential equations (A-3)

and (A-4). Then the family {φ(m)(t) | m ∈ M(l)} of C∞-functions on R satisfies the
following system of difference-differential equations (A-3)m∈M(l) and (A-4)m∈M(l):

f (m− 2, ν)

cosh 2t

(
d

dt
− 2 tanh 2t − (m− 2) coth 2t

)
φ(m−2)(t)

+

{(
d

dt
+ 4 coth 2t

)(
d

dt
+ 2λ tanh 2t

)
− m(m + 2)

sinh2 2t
+
χ0

2

}
φ(m)(t)

+
e(m + 2, ν)

cosh 2t

(
d

dt
− 2 tanh 2t + (m + 4) coth 2t

)
φ(m+2)(t) = 0;

(A-3)m

f (m− 2, ν) f (m− 4, ν)(− tanh2 2t)φ(m−4)(t)

+
f (m− 2, ν)

cosh 2t

(
d

dt
+ (4λ− 2) tanh 2t − (m− 2) coth 2t

)
φ(m−2)(t)

+

{
(2λ− 2) tanh 2t

d

dt
+ 2λ(2λ− 2) tanh2 2t + χ1(m, ν) +

χ2(m, ν)

cosh2 2t

}
· φ(m)(t)

+
e(m + 2, ν)

cosh 2t

(
d

dt
+ (4λ− 2) tanh 2t + (m + 4) coth 2t

)
φ(m+2)(t)

+ e(m + 2, ν)e(m + 4, ν)(− tanh2 2t)φ(m+4)(t) = 0.

(A-4)m
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Here the constant χ0 is as in Proposition 5.1 and

f (m, ν) := −
√
−1(ν + m + 2)(m/2 + 1)2A(m);

e(m, ν) := 2
√
−1(ν −m)C(m);

χ1(m, ν) := 2
(
ν2 − (m + 2)2

)
(m/2 + 1)(m/2 + 2)A(m)C(m+2)

− 4ν2(m/2 + 1)(m/2)B(m)2

+ 2(ν2 −m2)(m/2)(m/2− 1)A(m−2)C(m) − χ0/2;

χ2(m, ν) := f (m, ν)e(m + 2, ν) + f (m− 2, ν)e(m, ν).

In these formula we understand that φ(m)(t) = 0 and f (m, ν) = 0 unless m ∈ M(l).

Proof These are easily established by using Proposition 2.3.

Up to this step, we know that φ(|l|)(t), φ(|l|+2)(t) and φ(|l|+4)(t) satisfy (A-3)|l|,

(A-3)|l|+2 and (A-4)|l| and that the other coefficient functions φ(m)(t) are determined
recursively by these three functions as long as e(m, ν) 6= 0. We make a change of vari-
able from t to y = y(t) = (cosh 2t)−2. Until the end of this section, we concentrate
our attention on the solutions of the system for t > 0. A C∞-function f (t) on R>0

can be considered as a C∞-function in y on the interval (0, 1), which we denote by
f (y) by a slight abuse of notation.

Lemma 5.3 For any C∞-function f (t) on R>0, we have

(i) d f
dt (t) = −4y(t)

√
1− y(t) d f

dy

(
y(t)
)

;

(ii) d2 f
dt2 (t) = −16y(t)2

(
y(t)− 1

) d2 f
dy2

(
y(t)
)

+
(
−24y(t)2 + 16y(t)

) d f
dy

(
y(t)
)

.

Using this lemma, we have:

Proposition 5.4 Suppose that φ(|l|)(t), φ(|l|+2)(t) and φ(|l|+4)(t) are C∞-functions on
the half line R>0. Put

ψ(|l|+2)(t) := (sinh 2t)−1φ(|l|+2)(t).

Then the differential equation (A-3)|l| (resp. (A-3)|l|+2, (A-4)|l|) for φ(|l|)(t), φ(|l|+2)(t)

and φ(|l|+4)(t) is equivalent to the following differential equation (A-5) (resp. (A-6),
(A-7)) for φ(|l|)(y), ψ(|l|+2)(y) and φ(|l|+4)(y):

4y

(
d2

dy2
+ p1(y)

d

dy
+ p2(y)

)
φ(|l|)(y)

− e(|l| + 2, ν)

(
d

dy
+ p3(y)

)
ψ(|l|+2)(y) = 0;

(A-5)
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f (|l|, ν)

(
d

dy
+ q1(y)

)
φ(|l|)(y)

+ 4(y − 1)

(
d2

dy2
+ q2(y)

d

dy
+ q3(y)

)
ψ(|l|+2)(y)

+ e(|l| + 4, ν)

(
d

dy
+ q4(y)

)
φ(|l|+4)(y) = 0;

(A-6)

8y

(
(λ− 1)

d

dy
+ r1(y)

)
φ(|l|)(y)

+ e(|l| + 2, ν)4y

(
d

dy
+ r2(y)

)
ψ(|l|+2)(y)

+ e(|l| + 2, ν)e(|l| + 4, ν)φ(|l|+4)(y) = 0,

(A-7)

where we set

p1(y) :=
(3− λ)y + λ

2y(y − 1)
;

p2(y) :=
−8λy2 + (−8λ− χ0 − 2|l|2 − 4|l|)y + 16λ + χ0

32y2(y − 1)2
;

p3(y) :=
2y + |l| + 4

4y(y − 1)
; q1(y) :=

2y − |l| − 2

4y(y − 1)
; q2(y) :=

(3− λ)y + λ + 2

2y(y − 1)
;

q3(y) :=
−8λy2 −

(
8 + 16λ + χ0 + 2(|l| + 2)(|l| + 4)

)
y + 24 + 24λ + χ0

32y2(y − 1)2
;

q4(y) :=
2y + |l| + 4

4y(y − 1)
; r1(y) :=

(−4λ2 + 4λ + χ2)y + 4λ2 − 4λ + χ1

8y(y − 1)
;

r2(y) :=
(−4λ + 2)y + 4λ + |l| + 4

4y(y − 1)
.

Here the constant χ0 is as in Proposition 5.1; the constants χ1 and χ2 are given by

χ1 := χ1(|l|, ν) =
|l| + 2

|l| + 3
(−ν2 + |l| + 4)− (λ− 2)2 + ν2

J ;

χ2 := χ2(|l|, ν) = e(|l| + 2, ν) f (|l|, ν) =
−ν2 + (|l| + 2)2

|l| + 3
.

5.2 Elimination of φ(|l|+4)(y)

In order to eliminate the terms involving φ(|l|+4)(y) from (A-6) and (A-7), we com-
pute

e(|l| + 2, ν) · (A-6)−
(

d

dy
+ q4(y)

)
· (A-7).

https://doi.org/10.4153/CJM-2002-032-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-032-2


Spherical Functions for the Semisimple Symmetric Pair
(

Sp(2,R), SL(2,C)
)

853

Proposition 5.5 Let {φ(|l|)(y), ψ(|l|+2)(y), φ(|l|+4)(y)} be a set of C∞-functions on the
interval (0, 1) satisfying the differential equations (A-6) and (A-7). Then we have

2y

(
(λ− 1)

d2

dy2
+ s1(y)

d

dy
+ s2(y)

)
φ(|l|)(y)

+ e(|l| + 2, ν)

(
d2

dy2
+ s3(y)

d

dy
+ s4(y)

)
ψ(|l|+2)(y) = 0

(A-8)

with

s1(y) = {χ1 + χ2 + 2(|l| + 2λ)(λ− 1) + (−12 + 16λ− 4λ2)y}/
(

8y(y − 1)
)

;

s2(y) = {4χ1 − 2χ2 + χ1|l| − χ2|l| − 16λ− 4|l|λ + 16λ2 + 4|l|λ2

+ (−2χ1 + 4χ2 + 2χ2|l| + 8λ + 4|l|λ− 8λ2 − 4|l|λ2)y

+ 8(λ− λ2)y2}/
(

32y2(y − 1)2
)

;

s3(y) = {2 + λ + (3 + |l|)y + (1− λ)y2}/
(

2y(y − 1)
)

;

s4(y) = {24 + χ0 + 24λ + (−16− 2χ0 + 4|l| − 8λ + 8|l|λ)y

+ (8 + χ0 + 12|l| + 2|l|2 − 8λ− 8|l|λ)y2 + (8− 8λ)y3}/
(

32y2(y − 1)2
)
.

Here the constants χ0 (resp. χ1 and χ2) are as in Proposition 5.1 (resp. 5.4).

5.3 A Single Differential Equation for φ(|l|)(y)

Finally we eliminate the terms involving φ(|l|+2)(y) from (A-5) and (A-8) and derive
a generalized hypergeometric differential equation.

Theorem 5.6 Suppose that a set {φ(|l|)(y), ψ(|l|+2)(y)} of C∞-functions on the inter-
val (0, 1) satisfies the differential equations (A-5) and (A-8). We set

ψ(|l|)(y) := (1− y)−ρ0φ(|l|)(y), ρ0 :=
−|l| − 2

4
.

Then we have

(A-9)
{

y
4∏

k=1

(δy + αk)−
4∏

k=1

(δy − γk)
}
ψ(|l|)(y) = 0,

with the constants

α1 := (−|l|)/4; α2 := (−|l| − 2)/4;

α3 := (−2λ + ν)/4; α4 := (−2λ− ν)/4;

γ1 := (ν J + λ + 4)/4; γ2 := (ν J + λ + 2)/4;

γ3 := (−ν J + λ + 4)/4; γ4 := (−ν J + λ + 2)/4.

Here δy stands for the Euler operator y d
dy .
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Proof Set

p̃3(y) := p3(y) +
2

y
; s̃3(y) := s3(y) +

2

y
;

s̃4(y) := s4(y) +
(

p3(y)− s3(y)
) (−2

y

)
+

ds3

dy
(y)− 2

dp3

dy
(y).

Then we can obtain a fourth-order differential equations for φ(|l|)(y) by computing(
d2

dy2
+ s̃3(y)

d

dy
+ s̃4(y)

)
· (A-5) +

(
d

dy
+ p̃3(y)

)
· (A-8).

By using a symbolic computation system, we can confirm that ψ(|l|)(y) satisfies the
differential equation (A-9).

6 Reduction of Differential Equations (The Odd Case)

Throughout this section, we assume that π = π
(

(−1)λ+1 � Dλ, ν J

)
(λ ≥ 2) is an

odd generalized principal series representation of G and that (η,Vη) is a non-unitary
principal series representation

(
η(l, ν),Vl,ν

)
of R. Then the corner K-type of π is

given by τ = τ(λ,λ−1) (see Definition 2.6). From Proposition 3.3, we know that any
spherical function φ ∈ C∞η,τ (A) of type (π, η, τ ) can be written as

φ(t) =
∑

m∈M(l)

(
φ(m)

0 (t)g(m)
(m−1)/2 ⊗ w0 + φ(m)

1 (t)g(m)
(m+1)/2 ⊗ w1

)
,

where each φ(m)
k (t) (m ∈ M(l), k = 0, 1) is a C∞-function on R and {wk} is the

standard basis of W(−λ+1,−λ). We also set

φ(m)
+ (t) =

1

2

(
φ(m)

0 (t) + φ(m)
1 (t)

)
; φ(m)

− (t) =
1

2

(
φ(m)

0 (t)− φ(m)
1 (t)

)
.

Then, by Proposition 3.3, φ(m)
+ (t) (resp. φ(m)

− (t)) is an even or odd function according
as (m − 1)/2 (resp. (m + 1)/2) ∈ Z is even or odd. As we do for even generalized
principal series representations in the previous section, we derive single differential

equations satisfied by φ(|l|)
± (t) from the differential equations from (B-1) to (B-4)

(Theorem 6.8).

6.1 Difference-Differential Equations

Proposition 6.1 Suppose that φ ∈ C∞η,τ (A) satisfies the differential equation (B-1)

and (B-3) in Section 4. Then the family {φ(m)
+ (t), φ(m)

− (t) | m ∈ M(l)} of C∞-functions
on R satisfies the following system of difference-differential equations (B-5)±m∈M(l) and
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(B-6)±m∈M(l):

f1(m− 2)

(
1

cosh 2t
∓ 1

)
φ(m−2)
± (t)

+

(
d

dt
+ (2λ− 1) tanh 2t + 2 coth 2t ∓ m + 1

sinh 2t

)
φ(m)
± (t)

±
√
−1νB(m)

(
∓1

cosh 2t
+ m + 1

)
φ(m)
∓ (t)

+ e1(m + 2)

(
1

cosh 2t
± 1

)
φ(m+2)
± (t) = 0;

(B-5)±m

f1(m− 4) f1(m− 2) tanh2 2tφ(m−4)
± (t)

− (4λ− 2) f1(m− 2)
tanh 2t

cosh 2t
φ(m−2)
± (t)

− 2
√
−1νl f1(m− 2)

m2 − 4
tanh2 2tφ(m−2)

∓ (t)

+

{(
d

dt
− (2λ− 3) tanh 2t + 2 coth 2t

)(
d

dt
+ (2λ− 1) tanh 2t + 2 coth 2t

)
− (m + 1)2

sinh2 2t
+ χ ′0 −

(
1 +

1

cosh2 2t

)(
f1(m)e1(m + 2) + f1(m− 2)e1(m)

)
+

(
1

cosh2 2t
+ (m + 1)2

)
ν2B(m)2 ± 2(m + 1)

coth 2t

sinh 2t

}
φ(m)
± (t)

+ (4λ− 2)
√
−1νB(m) tanh 2t

cosh 2t
φ(m)
∓ (t)− (4λ− 2)e1(m + 2)

tanh 2t

cosh 2t
φ(m+2)
± (t)

− 2
√
−1νle1(m + 2)

m(m + 4)
tanh2 2tφ(m+2)

∓ (t)

+ e1(m + 2)e1(m + 4) tanh2 2tφ(m+4)
± (t) = 0.

(B-6)±m

Here we set

χ ′0 := 4λ2 − 8λ− 6− χπ(L) = 2(λ− 1)2 − 2ν2
J ;

f1(m) = f1(m, ν) :=
−
√
−1

4
(ν + m + 2)(m + 1)(m + 3)A(m);

e1(m) = e1(m, ν) := 2
√
−1(ν −m)C(m).

In these formulae, we understand that φ(m)
± (t) = 0 and f1(m) = 0 unless m ∈ M(l).
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Proof By Proposition 2.3, we have from (B-1)∑
m∈M(l)

[(
d

dt
+ (2λ− 1) tanh 2t + 2 coth 2t

)
φ(m)

0 (t)

+
1

cosh 2t

(
f1(m− 2)φ(m−2)

0 (t)−
√
−1νB(m)φ(m)

0 (t) + e1(m + 2)φ(m+2)
0 (t)

)
− f1(m− 2)φ(m−2)

1 (t)− (m + 1)
√
−1νB(m)φ(m)

1 (t) + e1(m + 2)φ(m+2)
1 (t)

− m + 1

sinh 2t
φ(m)

1 (t)

]
g(m)

(m−1)/2 = 0.

Substitute φ(m)
0 (t) = φ(m)

+ (t) + φ(m)
− (t) and φ(m)

1 (t) = φ(m)
+ (t) − φ(m)

− (t) into this
formula. Decomposing the left hand side into a sum of an even function and an odd
function, we obtain (B-5)+

m and (B-5)−m . Similarly we can derive (B-6)±m from (B-3)
by using Proposition 2.3 and

L± · L∓ + M∓ ·M± = −2 Je∓ · Je± − 2e∓ · e±

sinh2 2t
.

Remark 6.2 For φ ∈ C∞η,τ (A), the equation (B-2) (resp. (B-4)) is equivalent to (B-1)
(resp. (B-3)).

6.2 Elimination of φ(|l|+4)
± (t) and φ(|l|+2)

± (t)

Firstly we eliminate the term involving φ(|l|+4)
± (t).

Proposition 6.3 Suppose that a set {φ(k)
+ (t), φ(k)

− (t) | k = |l|, |l| + 2, |l| + 4} of
C∞-functions on R satisfies the differential equation (B-5)±|l|+2 and (B-6)±|l| in Proposi-

tion 6.1. Then we have the following differential equations (B-7)± for {φ(k)
+ (t), φ(k)

− (t) |
k = |l|, |l| + 2}:

Q±1

(
t,

d

dt

)
φ

(|l|)
± (t) + Q±2

(
t,

d

dt

)
φ

(|l|)
∓ (t) + Q±3

(
t,

d

dt

)
φ

(|l|+2)
± (t)

+ Q±4

(
t,

d

dt

)
φ

(|l|+2)
∓ (t) = 0,

(B-7)±

where we set

Q±1

(
t,

d

dt

)
:=
(

d

dt
− (2λ− 3) tanh 2t + 2 coth 2t

)(
d

dt
+ (2λ− 1) tanh 2t + 2 coth 2t

)
− (|l| + 1)2

sinh2 2t
+ χ ′0 +

(
1

cosh2 2t
+ (|l| + 1)2

)
ν2

(|l| + 2)2

± 2(|l| + 1)
coth 2t

sinh 2t
∓ 2e1(|l| + 2) f1(|l|)

cosh 2t
;

https://doi.org/10.4153/CJM-2002-032-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-032-2


Spherical Functions for the Semisimple Symmetric Pair
(

Sp(2,R), SL(2,C)
)

857

Q+
2

(
t,

d

dt

)
= Q−2

(
t,

d

dt

)
:= (4λ− 2)

√
−1νB(|l|) tanh 2t

cosh 2t
;

Q±3

(
t,

d

dt

)
:= e1(|l| + 2)

(
1

cosh 2t
∓ 1

)
×
(

d

dt
+ (2λ− 1)

(cosh 2t ± 1)2

cosh 2t sinh 2t
+ 2 coth 2t ∓ |l| + 3

sinh 2t

)
;

Q±4

(
t,

d

dt

)
:= −

√
−1νB(|l|)e1(|l| + 2)

(
1∓ 1

cosh 2t

)(
±1

cosh 2t
+ |l| + 1

)
.

Here the constant χ ′0 is as in Proposition 6.1.

Proof We eliminate φ(|l|+4)
± (t) from (B-5)±|l|+2 by computing

−e1(|l| + 2)

(
1

cosh 2t
± 1

)−1

tanh2 2t(B-5)±|l|+2 + (B-6)±|l|.

Our next task is to eliminate the terms involvingφ(|l|+2)
± (t) from (B-7)+ and (B-7)−

by using (B-5)+
|l| and (B-5)−|l|.

Proposition 6.4 Suppose that a set {φ(k)
+ (t), φ(k)

− (t) | k = |l|, |l|+ 2} of C∞-functions
on R satisfies the differential equation (B-5)±|l| and (B-7)±. Then we have

(B-8)± V±1

(
t,

d

dt

)
φ

(|l|)
± (t) + V±2

(
t,

d

dt

)
φ

(|l|)
∓ (t) = 0

with

V±1

(
t,

d

dt

)
:=
(

1

cosh 2t
± 1

) 2

Q±1

(
t,

d

dt

)
+ tanh2 2t

{
d

dt
+ (2λ− 1)

(1± cosh 2t)2

cosh 2t sinh 2t

+ 2(tanh 2t + coth 2t)∓ |l| + 3

sinh 2t
− 2 sinh 2t

cosh 2t ± 1

}
·
(

d

dt
+ (2λ− 1) tanh 2t + 2 coth 2t ∓ |l| + 1

sinh 2t

)

− ν2

(|l| + 2)2

(
1

cosh 2t
± 1

)2( ±1

cosh 2t
+ |l| + 1

)2

;
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V±2

(
t,

d

dt

)

:=
(

1

cosh 2t
± 1

)2

Q±2

(
t,

d

dt

)
+ tanh2 2t

{
d

dt
+ (2λ− 1)

(1± cosh 2t)2

cosh 2t sinh 2t
+ 2(tanh 2t + coth 2t)

∓ |l| + 3

sinh 2t
− 2 sinh 2t

cosh 2t ± 1

}
(±
√
−1ν)B(|l|)

(
∓1

cosh 2t
+ |l| + 1

)

∓
√
−1νB(|l|)

(
1

cosh 2t
± 1

) 2( ±1

cosh 2t
+ |l| + 1

)
×
(

d

dt
+ (2λ− 1) tanh 2t + 2 coth 2t ± |l| + 1

sinh 2t

)
.

Here the differential operators Q±1 (t, d
dt ) and Q±2 (t, d

dt ) are as in Proposition 6.3.

Proof Straightforward computation.

As in the previous section, we concentrate our attention on the solutions of the
system for t > 0. We make a change of variable from t to x = x(t) = 1/ cosh 2t . We
can regard a C∞-function on R>0 as a C∞-functions in x on the interval (0, 1). We
denote it by f (x) by a slight abuse of notation.

Lemma 6.5 For a C∞-function f (t) on R>0, we have

(i) d f
dt (t) = −2x(t)

√
1− x(t)2 d f

dx

(
x(t)
)

;

(ii) d2 f
dt2 (t) = 4x(t)2

(
1− x(t)2

) d2 f
dx2

(
x(t)
)

+
(

4x(t)− 8x(t)3
) d f

dx

(
x(t)
)

.

Using this lemma, we have

Proposition 6.6 Suppose that φ(|l|)
+ (t) and φ(|l|+2)

− (t) are C∞-functions on the half line
R>0. Put

ψ
(|l|)
− (t) := (sinh 2t)−1φ

(|l|)
− (t).

Then the differential equation (B-8)+ (resp. (B-8)−) for φ(|l|)
+ (t) and φ(|l|)

− (t) is equiva-

lent to the following differential equation (B-9) (resp. (B-10)) for φ(|l|)
+ (x) and ψ(|l|)

− (x):

2x

(
d2

dx2
+ v1(x)

d

dx
+ v2(y)

)
φ

(|l|)
+ (x) +

√
−1ν sgn(l)

(
d

dx
+ v3(x)

)
ψ

(|l|)
− (x) = 0;

(B-9)

(−
√
−1)ν sgn(l)

x

2(x2 − 1)

(
d

dx
+ v4(x)

)
φ

(|l|)
+ (x)

+

(
d2

dx2
+ v5(x)

d

dx
+ v6(x)

)
ψ

(|l|)
− (x) = 0.

(B-10)
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Here we denote the sign l/|l| ∈ {±1} of l by sgn(l) and set

v1(x) :=
(

2 + 2λ− |l|x + (4 + |l| − 2λ)x2
)
/
(

2(x3 − x)
)

;

v2(x) := {4 + 4λ + λ2 − ν2
J + (2− 2λ− 2|l|λ + λ2 − ν2

J )x

+ (−5 + |l| − 4λ− λ2 + ν2
J )x2 + (−|l| − |l|2 + 2λ + 2|l|λ− λ2 + ν2

J )x3}

×
(

4(x3 − x)2
)−1

;

v3(x) := (4 + |l| + x)/
(

2(x3 − x)
)

; v4(x) := (2 + |l| − x)/
(

2(x3 − x)
)

;

v5(x) :=
(

6 + 2λ + |l|x + (4 + |l| − 2λ)x2
)
/
(

2(x3 − x)
)

;

v6(x) := {16 + 8λ + λ2 − ν2
J + (−2 + 2|l| + 2λ + 2|l|λ− λ2 + ν2

J )x

+ (−9 + 3|l| − 8λ− λ2 + ν2
J )x2 + (|l| + |l|2 − 2λ− 2|l|λ + λ2 − ν2

J )x3}

×
(

4(x3 − x)2
)−1

.

6.3 Single Differential Equations for φ(|l|)
± (x)

Before eliminating the terms involvingφ(|l|)
+ (x) orψ(|l|)

− (x), we change unknown func-
tions:

Proposition 6.7 Set

φ̌+(x) := (1− x)−ρ0 (1 + x)−σ0φ
(|l|)
+ (x);

φ̌−(x) := (1− x)−ρ0+1(1 + x)−σ0 x−1ψ
(|l|)
− (x),

with ρ0 := (−|l| − 1)/4 and σ0 := (−|l| − 3)/4. Then the differential equation (B-9)
(resp. (B-10)) is equivalent to (B-11)+ (resp. (B-11)−) below:

[x(δx + α3 + α4)(δx + 2α2)∓ (δx − 2γ2)(δx − 2γ4)]φ̌±(x)

±
√
−1

2
ν sgn(l)x(δx + 2α2)φ̌∓(x) = 0.

(B-11)±

Here δx stands for the Euler operator x d
dx and the constants α2, α3, α4, γ2 and γ4 are as

in Theorem 5.6.

Theorem 6.8 Suppose that a set {φ̌+(x), φ̌−(x)} of C∞-functions on the interval
(0, 1) satisfies the differential equations (B-11)+ and (B-11)−. Then we have the fol-
lowing differential equation (B-12)+ (resp. (B-12)−) for φ̌+(x) (resp. φ̌−(x)):
(B-12)±[

x2
4∏

k=1

(δx + 2αk)± x(δx + 2α1)(δx − 2γ2)(δx − 2γ4)−
4∏

k=1

(δx − 2γk)
]
φ̌±(x) = 0;

Here the constants αk and γk are as in Theorem 5.6.
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Proof We eliminate the terms involving φ̌−(x) from (B-11)± by computing

[x(δx + α3 + α4)(δx + 2α2) + (δx − 2γ2 − 1)(δx − 2γ4 − 1)] · (B-11)+

−
√
−1

2
ν sgn(l)x(δx + 2α2) · (B-11)−.

Taking the relations α1 = α2 + 1/2, γ1 = γ2 + 1/2 and γ3 = γ4 + 1/2 into account,
we have (B-12)+. The equation (B-12)− is obtained in the same manner.

7 Main Results

The computation in the previous two sections leads to our main results (Theorems 7.2
and 7.5).

7.1 The Even Case

Let π be an even generalized principal series representation of G with the corner
K-type τ = τ(λ,λ) (see Section 2.3) and (η,Vη) an irreducible admissible Hilbert

representation of R with the minimal K ′-type F(m ′). Then there exist l ∈ Z with |l| =
m ′ and ν ∈ C such that (η,Vη) is infinitesimally equivalent to a subrepresentation
of the non-unitary representation

(
η(l, ν),Vl,ν

)
of R (see [Wa, 5.7.4]). Fixing such a

pair (l, ν), we expand a spherical function φ(t) of type (π, η, τ ) as

φ(t) =
∑

m∈M(l)

φ(m)(t)g(m)
m/2 ⊗ w0,

where each φ(m)(t) is a C∞-function on R (Proposition 3.2) and w0 is a non-zero
vector in W(−λ,−λ). Note that if (η,Vη) is finite dimensional, then φ(m)(t) = 0 for
sufficiently large m. By Proposition 3.3, φ(m)(t) is an even (resp. odd) function ac-
cording as m/2 is an even (resp. odd) integer.

Definition 7.1 We call φ(|l|)(t) the lowest coefficient function of a spherical function
φ(t) of type (π, η, τ ).

It is easily seen that this definition is, up to constant multiple, independent of the
choice of (l, ν).

Theorem 7.2 Let π = π
(

(−1)λ�Dλ, ν J

)
be an even irreducible generalized principal

series representation of G with the corner K-type τ = τ(λ,λ) (λ ≥ 2) (see Definition 2.6).

(1) For an arbitrary irreducible admissible Hilbert representation (η,Vη) of R, we have

dimC Hom(g,K)

(
π0,C∞η (R \ G)0

)
≤ 1.
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(2) For (η,Vη) in (1), let φ(|l|)(t) be the lowest coefficient function of a spherical func-
tion φ(t) of type (π, η, τ ) (see Definition 7.1). Then there exists a constant C ∈ C
such that

φ(|l|)(t) = C × | coth 2t|(coth 2t)|l|/2 ×
∫

L(σ)

4∏
k=1

Γ(γk − s)

Γ(1− αk − s)

(
1

cosh22t

)s

ds,

where the path L(σ) (σ ∈ R) of integration is the vertical line from σ −
√
−1∞ to

σ +
√
−1∞ with σ < Re(γk) (1 ≤ k ≤ 4). The parameters αk and γk are as in

Theorem 5.6.

Proof (1) Suppose that (η,Vη) is infinite dimensional. Then (η,Vη) is infinitesi-
mally equivalent to

(
η(l, ν),Vl,ν

)
with some l ∈ Z and ν ∈ C. Our discussion in

Section 5 depends only on the (r,K ′)-module Vl,ν
◦ and is independent of the am-

bient Hilbert space Vl,ν . Thus, we may suppose Vη = Vl,ν . By Assumption 3.4, l
is assumed to be an even integer. Since we assume that π is irreducible, we have a
sequence of natural inclusions

Hom(g,K)

(
π0,C∞η (R \ G)0

)
↪→ {F ∈ C∞η,τ (R \ G/K) | (a-1), (a-2)}

↪→ {φ ∈ C∞η,τ (A) | (A-3), (A-4)}

↪→
{(

φ(m)(t)
)

m∈M(l)
∈
⊕

m∈M(l)

C∞(R)
∣∣∣ (A-3)m, (A-4)m,

φ(m)(−t) = (−1)m/2φ(m)(t) (m ∈ M(l))
}

by Propositions 4.2, 3.3, 5.1 and 5.2. Since e(m, ν) 6= 0 for m (> |l|), the functions
φ(m)(t) (m > |l| + 4) are determined recursively by φ(|l|)(t), φ(|l|+2)(t) and φ(|l|+4) by
virtue of (A-4)m∈M(l). As a result, we can regard the space Hom(g,K)

(
π0,C∞η (R\G)0

)
as a subspace of{(

φ(|l|)(t), φ(|l|+2)(t),φ(|l|+4)(t)
)
∈ C∞(R)⊕3

∣∣ (A-3)|l|, (A-3)|l|+2, (A-4)|l|,

φ(m)(−t) = (−1)m/2φ(m)(t) (m = |l|, |l| + 2, |l| + 4)
}
.

Therefore it suffices to show that the dimension of the last space does not exceed one.
Firstly we remark that φ(|l|+2)(t) and φ(|l|)(t) determine φ(|l|+4)(t) by means of (A-4)|l|.

Further, since the kernel of differential operator
(

d
dt − 2 tanh 2t + (|l|+ 4) coth 2t

)
in

the equation (A-3)|l| is spanned by (cosh 2t)(sinh 2t)(−|l|−4)/2, the function φ(|l|+2)(t)

is uniquely determined by φ(|l|)(t) under the condition of being a C∞-function on
R. Thus, we may concentrate our attention on φ(|l|)(t) (or on ψ(|l|)(y)). We enu-
merate the characteristic indices at y = y(0) = 1 of the differential equation (A-9)

in Theorem 5.6 as (ρ1, ρ2, ρ3, ρ4) = ( |l|+1
2 , 0, 1, 2). By a well-known fact on gener-

alized hypergeometric differential equations, there exists a set {Φi(y) | 1 ≤ i ≤
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4} of linearly independent solutions of (A-9) around y = 1 such that Φi(y) =
(1 − y)ρi

(
1 + O(y − 1)

)
as y ∈ R approaches 1 from the left. If φ(|l|)(t) is the

first component of an element of the space in question, then we have for t > 0

φ(|l|)(t) = φ(|l|)( y(t)
)

= (tanh2 2t)−(|l|+2)/4
4∑

i=1

ciΦi

(
y(t)
)

with some ci ∈ C.

Since
(tanh2 2t)−(|l|+2)/4Φi

(
y(t)
)

= t2ρi−(|l|+2)/2
(

1 + O(t2)
)

as t approaches zero from the right, we cannot extend φ(|l|)(t) (t ∈ R>0) to a C∞-
function on the whole line R so as to satisfy the parity condition φ(|l|)(−t) =
(−1)|l|/2φ(|l|)(t) unless c2 = c3 = c4 = 0. Therefore, our assertion follows when
(η,Vη) is infinite dimensional. Next we suppose that (η,Vη) is an irreducible finite

dimensional representation of R with the minimal K ′-type F(m ′). Then there exist
l ∈ Z and ν ∈ C such that Vη is a submodule of Vl,ν and that |l| = m ′. Thus we may
proceed in the same manner as in the case where η is infinite dimensional.

(2) By a general result on generalized hypergeometric differential equations (see
[N, p. 310, (2.44)]), we know that an integral expression of Φ1(y), y ∈ (0, 1) is given
by

Φ1(y) =
Γ( |l|+3

2 )

2π
√
−1

∫
L(σ)

4∏
k=1

Γ(γk − s)

Γ(1− αk − s)
ys ds.

Here the path L(σ) is taken as in the theorem. Extending the function
(tanh2 2t)−(|l|+2)/4Φ1

(
y(t)
)

on R>0 to the whole line R so as to satisfy the parity
condition, we have the formula in the theorem.

Remark 7.3 The function Φ1(y) in the above proof is known as a Meijer’s G-
function (see [Er, Ch. IV]).

7.2 The Odd Case

Next we suppose that π is an odd generalized principal series representation with
the corner K-type τ = τ(λ,λ−1). For an irreducible admissible Hilbert representation
(η,Vη) of R, we take a pair (l, ν) ∈ Z × C as in the even case. Then a spherical
function φ(t) of type (π, η, τ ) can be written as

φ(t) =
∑

m∈M(l)

[φ(m)
+ (t)(g(m)

(m−1)/2 ⊗ w0 + g(m)
(m+1)/2 ⊗ w1)

+ φ(m)
− (t)(g(m)

(m−1)/2 ⊗ w0 − g(m)
(m+1)/2 ⊗ w1)],

where each φ(m)
± (t) is a C∞-function on R and {wk | k = 0, 1} is the standard basis of

W(1−λ,−λ). Recall that φ(m)
+ (t) (resp. φ(m)

− (t)) is an even or odd function in t according
as (m− 1)/2 (resp. (m + 1)/2) ∈ Z is an even or odd integer.
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Definition 7.4 We call
(
φ

(|l|)
+ (t), φ(|l|)

− (t)
)

the pair of lowest coefficient functions of a
spherical function φ(t) of type (π, η, τ ).

Again, this definition is, up to constant multiple, independent of the choice of
(l, ν). In order to state our main results for the odd case, we introduce the symbol

Γ
[

a1, . . . , ar

b1, . . . , bs

]
=

r∏
i=1

Γ(ai)
/ s∏

j=1

Γ(b j).

Theorem 7.5 Let π = π
(

(−1)λ+1 � Dλ, ν J

)
be an odd irreducible generalized prin-

cipal series representation of G with the corner K-type τ = τ(λ,λ−1) (λ ≥ 2) (see Defi-
nition 2.6).

(1) For an arbitrary irreducible admissible Hilbert representation (η,Vη) of R, we have

dimC Hom(g,K)

(
π0,C∞η (R \ G)0

)
≤ 1.

(2) For (η,Vη) in (1), let
(
φ

(|l|)
+ (t), φ(|l|)

− (t)
)

be the pair of lowest coefficient functions
of a spherical function φ(t) of type (π, η, τ ) (see Definition 7.4). Then there exists
a constant C ∈ C satisfying

φ
(|l|)
+ (t) = C × | coth 2t|(coth 2t)(|l|−1)/2

(
1 +

1

cosh 2t

)−1/2

×
∫

L(σ)

{
Γ
[

γ1−s, γ2−s, γ3−s, γ4−s
1−α1−s, 1−α2−s, 1−α3−s, 1/2−α4−s

]
+ Γ

[
γ1−s, γ2−s, γ3−s, γ4−s

1−α1−s, 1−α2−s, 1/2−α3−s, 1−α4−s

]} ( 1

cosh2 2t

)s

ds

and

φ
(|l|)
− (t) = C × (−

√
−1) sgn(l)| coth 2t|(coth 2t)(|l|+1)/2

(
1 +

1

cosh 2t

) 1/2

×
∫

L(σ)

{
Γ
[

γ1−s, γ2−s, γ3−s, γ4−s
1−α1−s, 1−α2−s, 1−α3−s, 1/2−α4−s

]
− Γ

[
γ1−s, γ2−s, γ3−s, γ4−s

1−α1−s, 1−α2−s, 1/2−α3−s, 1−α4−s

]} ( 1

cosh2 2t

)s

ds.

Here the path L(σ) of integration and the parameters αk and γk are as in Theo-
rem 5.6.

Proof As in the proof of Theorem 7.2, we have a natural inclusion

Hom(g,K)

(
π0,C∞η (R \ G)0

)
↪→ {(φ(|l|)

+ , φ
(|l|)
− ) ∈ C∞(R)⊕2 | φ(|l|)

± (−t) = (−1)(−|l|±1)/2φ
(|l|)
± (t),

(B-8)+, (B-8)−}
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by Propositions 6.3 and 6.4. Hence, it suffices to show (2), which implies (1). We
separate the argument according as

(i) ν 6= 0 or
(ii) ν = 0.

(i) The case of ν 6= 0. Define two functions Φ+(x) and Φ−(x) on the interval
(0, 1) by the following integrals

Φ±(x) :=
∫

L(σ)

{
Γ
[

γ1−s, γ2−s, γ3−s, γ4−s
1−α1−s, 1−α2−s, 1−α3−s, 1/2−α4−s

]
± Γ

[
γ1−s, γ2−s, γ3−s, γ4−s

1−α1−s, 1−α2−s, 1/2−α3−s, 1−α4−s

]}
x2s ds.

Here the path L(σ) of integration is taken as in the theorem. Then it is easy to
see that

(
φ̌+(x), φ̌−(x)

)
=
(

Φ+(x), (−
√
−1) sgn(l)Φ−(x)

)
satisfies the differential

equations (B-11)+ and (B-11)− in Proposition 6.7. Hence, Φ+(x) (resp. Φ−(x)) sat-
isfies (B-12)+ (resp. (B-12)−) in Theorem 6.8. On the other hand, the characteristic
indices at x = 1 of the differential equation (B-12)+ (resp. (B-12)−) are 0, 1, 2 and
|l|/2 (resp. 0, 1, 2 and (|l| + 2)/2). We claim that Φ+(x) (resp. Φ−(x)) is the solu-
tion of (B-12)+ (resp. (B-12)−) corresponding to the characteristic index |l|/2 (resp.
(|l|+ 2)/2). In fact, the result of Nörlund quoted in the proof of Theorem 7.2 tells us
that, for (i, j) = (3, 4) and (4, 3),

Γ( |l|+2
2 )

2π
√
−1

∫
L(σ)

Γ
[

γ1−s, γ2−s, γ3−s, γ4−s
1−α1−s, 1−α2−s, 1−αi−s, 1/2−α j−s

]
x2s ds

= (1− x2)|l|/2
(

1 + O(x − 1)
)

as x ∈ R approaches 1 from the left. From these formulae and |l|/2 /∈ Z, our claim

follows. By the parity condition φ(|l|)
± (−t) = (−1)(−|l|±1)/2φ

(|l|)
± (t), we conclude that(

φ̌+(x), φ̌−(x)
)

=
(

c+Φ+(x), c−Φ−(x)
)

with some c± ∈ C. Substituting this into
(B-11)+, we have c− = (−

√
−1) sgn(l)c+. This shows the theorem for the case of

ν 6= 0.
(ii) Next we suppose that ν = 0. Then the system of differential equations

(B-11)± in Proposition 6.7 becomes

(])± [x(δx + α3 + α4)(δx + 2α2)∓ (δx − 2γ2)(δx − 2γ4)]φ̌±(x) = 0.

Since x = 1 is not a singularity of differential equation (])−, any non-zero solution
of (])− around x = 1 is of the form

∑
n≥0 cn(1−x)n with (c0, c1) 6= (0, 0). The parity

condition for φ(|l|)
− (t) prevents us from extending

(
1− x(t)

) (−|l|−3)/4(
1 + x(t)

) (−|l|−1)/4∑
n≥0

cn

(
1− x(t)

) n
, (t > 0)
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to a C∞-function on R. Hence φ(|l|)
− (t) must be identically zero. On the other hand,

the solution of (])+ compatible with the parity condition for φ(|l|)
+ (t) is given by

φ̌+(x) =
∫

L(σ)
Γ
[

2γ2 − 2s, 2γ4 − 2s
1− 2α2 − 2s, 1− α3 − α4 − 2s

]
x2s ds,

up to constant multiple. Now we note that

α1 = α2 + 1/2, α3 = α4 = −λ/2, γ1 = γ2 + 1/2 and γ3 = γ4 + 1/2.

From these and the duplication formula Γ(s)Γ(s + 1/2) = π1/221−2sΓ(2s) of Gamma
function, the last integral equals to 2−(|l|+4)/2Φ+(x). Therefore, the formulae in the
statement (2) are valid for the case of ν = 0, too.
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