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Abstract. In this paper we generalize some results, obtained by Shimura, on the
special values of L-functions of /-adic representations attached to quadratic CM-base
change of Hilbert modular forms twisted by finite order characters. The generalization
is to the case of the special values of L-functions of arbitrary base change to CM-
number fields of /-adic representations attached to Hilbert modular forms twisted by
some finite-dimensional representations.
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1. Introduction. For F, a totally real number field, let Jr be the set of infinite
places of F, and let I'y := Gal(Q/F). Let f be a normalized Hecke eigenform of
GL(2)/F of weight k = (k(t));es,, Where all k(7) have the same parity and k(7) > 2.
We denote by IT the cuspidal automorphic representation of GL(2)/F generated by f.
In this paper we assume that IT is non-CM. We denote by pp the /-adic representation
attached to I1, for some prime number / (by fixing an isomorphism ¢ : @, — C one
can regard pp as a complex valued representation). Define kg = max{k(z)|t € Jr} and
k° = min{k(t)|t € Jr}. In this paper we write « ~ b fora,b € Cif b # 0 and a/b € Q.
By a CM-field we mean a quadratic totally imaginary extension of a totally real number
field.

In this paper we prove the following result.

THEOREM 1.1. Assume k(t) > 3 for all T € Jp, and k(t) mod 2 is independent of
t. Let M be a CM-field which contains F, and let  be a finite-dimensional complex-
valued continuous representation of Ty := Gal(Q/ M) such that K := Q%Y is an abelian
extension of a CM number field. Then

Lim. 1pnlry, @ ) ~ 7 IRoMEQN G ) dimy
for any integer m satisfying

(ko +1)/2 < m < (ko +k°)/2.
Theorem 1.1 is a generalization of Theorem 5.7 of [7] (i.e. Proposition 2.1; and
the inner product (f, f) is normalized as in Section 2). In the proof of Theorem 1.1 we

use some results on the behaviour (see [10, 11]) of the inner product (f, /) under base
change of f to some large ([1]) totally real extensions of F' (see formula (3.1)).
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We remark that Deligne’s [4] conjecture for motives predicts that
L(n, tonlry, ® ¥) ~om .y ¢ (Resayyo(M () @ M(y)(n))),

for any integer n satisfying (ko — k°)/2 < n < (ko + k°)/2, where M(f) is the motive
conjecturally associated to /" and M () is the motive associated to v, Q(IT,y, ¥) is
the field of rationality of M(f),; ® M(V¥), * ~q(m,,,.y)’ Means up to multiplication by
an element in the number field Q(IT,s, ¥), and ¢t (Resra(M(f);m @ M(¥)(n))) is
Deligne’s period associated to the n-Tate twist of Resyo(M(f)m @ M(y)). In this
paper we cannot say anything about Deligne’s conjecture, as we do not know how to
relate ¢t (Resa (M (f),m ® M(y)(n))) to (f. f) WA dimy (i e we do not know how to
obtain even an equality up to an algebraic number times a power of 7 between these
two periods; not even when F = Q, ¥ is a character and M is an imaginary quadratic
number field).

2. Known results. Consider F a totally real number field and let Jr be the set of
infinite places of F. If IT is a cuspidal automorphic representation (discrete series at
infinity) of weight k = (k(t));cs, of GL(2)/F, where all k(t) have the same parity and
all k(7) > 2, let kg = max{k(t)|t € Jr} and k° = min{k(t)|r € Jr}. Then there exists
([8]) a A-adic representation

pn = pr. : Tr = GLa(0y) — GLy(@)),

which satisfies L(s, tor.;) = L(s — @ ) = L(s — ““’%”,f), where 1 : @, = Cisa
specific isomorphism, and the above equality of L-functions is up to finitely many
Euler factors; also, because the line of convergence of L(s, IT) is Re(s)=1, we get that
the line of convergence of L(s, pr.;) is Re(s) = (ko + 1)/2); the representation pry is
unramified outside the primes dividing n/. Here f is the normalized Hecke eigenform
of GL(2)/F of weight k corresponding to I1, O is the coefficients ring of IT (i.e. O
is the ring of integers of the field generated over Q by the eigenvalues a,, defined by
T.f = ayf, where T, is the Hecke operator at g, and g runs over the prime ideals of
F (see [8] for details)), A is a prime ideal of O above some prime number / and n is the
level of TT. We define

(f.f) = m Erere KO / S

Zoor GLay(F)\GL2(AF)

where Z,1 =~ R is the connected component of the center of GL»(R), and the measure
is normalized such that vol(Z,.+ GLy(F)\GL2(AF)) = 1.

Proposition 2.1 follows from Proposition 5.2 and Theorem 5.7 of [7]. We actually
use the fact that L(s, ton|r,, ® ¥) = L(s, ton @ Ind]E; ¥))in order to reduce Proposition
2.1 to a particular case of Theorem 5.7 of [7] where a convolution of two cuspidal
automorphic representations (one non-CM, and the other CM) of GL(2)/F was
considered. We remark that IndF; Y corresponds to a CM cuspidal automorphic
representation of GL(2)/F of weight 1.

PROPOSITION 2.1. Assume k(t) > 2 for all T € Jg and k(t) mod 2 is independent of
7. Let M be a quadratic CM-extension of F, and let { be a continuous one-dimensional
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representation of T yy. Then
L(m, ipnlr,, ® ) ~ " H1RMQl i g
for any integer m satisfying

(ko +1)/2 < m < (ko + k°)/2.

3. The proof of Theorem 1.1 for i/ a character. We fix a non-CM cuspidal
automorphic representation IT of GL(2)/F as in Theorem 1.1, and let M/F be a
CM-finite extension. In this section we assume that ¢ is an arbitrary one-dimensional
continuous representation of I'y; and prove Theorem 1.1 in this case.

We know the following result (Theorem 1.1 of [12] or Theorem 2.1 of [13] or
Theorem A of [1]).

THEOREM 3.1. Let T1 be a cuspidal automorphic representation of weight k =
(k(t))zes, of GL(2)/F, where all k(t) have the same parity and all k(t) > 2. Let F'
be a totally real extension of F. Then there exists a totally real Galois extension F"
of F' such that pnlr,, is cuspidal automorphic, i.e. there exists a cuspidal automorphic
representation T1' of weight k" of GL(2)/F" such that pn Ity = .

We denote by F’ the maximal totally real subfield of M; hence M is a quadratic
CM-extension of F’. Then from Theorem 3.1 we know that we can find a totally real
Galois extension F” of F’, and a cuspidal automorphic representation I1" of GL(2)/F”
such that pnlr,, = ppr. Because IT is non-CM, we get that IT” is non-CM.

From Theorem 15.10 of [3] we know that there exist some subfields M; C MF”

such that M C M; and Gal(M F"/ M) are solvable, and some integers n;, such that the
trivial representation

Ly : GalMF" /M) — C*

can be written as
Gal(MF'/M) |
Z niln dGal(MF”/M)
(an equality in the character ring of Gal(M F"'/M)), where

ly, : Gal(MF"/M;) — C*

is the trivial representation. In particular, we have 1 = >, n,[M; : M]. Then (for the
equality between the second and the third terms below, we use Corollary 10.20 of [3],
which says that if G is a finite group and H a subgroup, and if p and ¢ are k-linear
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representations of G and H, where k is a field, then p ® Ind%¢ ~ Ind$(p|y ® ¢)),

u
L(s, ionlr, ® ¥) = [ [ L(s. tonlr, ® Ind[¥ 1y, @ )"

i=1

=[] Z(s. Indr (onlr,, ® 1ar, ® ¥lr,,))"

i=1

= l_[L(S, L/Or[h‘M,. ® wlI‘M,»)ni'

i=1

Since pnlr,, is cuspidal automorphic and MF” is a quadratic extension of F”, we get
([S]) that prlr,,. is cuspidal automorphic, and because the group Gal(MF"/M;) is
solvable, one easily gets (see Section 4 of [9]) that pn|r,, is cuspidal automorphic.

Hence, the function L(s, ton|r,, ® ¥)has a meromorphic continuation to the entire
complex plane and satisfies a functional equation because each function L(s, tonlr,, ®
¥lr,,) has a meromorphic continuation to the entire complex plane and satisfies a
functional equation. Moreover, since each function L(s, tor|r,, ® ¥|r,,,) has no poles
or zeros for Re(s) > (ko + 1)/2 (see Proposition 5.2 of [7] and Proposition 4.16 of [6]),
we get that the function L(s, ton|r,, ® ¥) has no poles or zeros for Re(s) > (ko + 1)/2.
Thus, for any integer m satisfying

(ko +1)/2 = m,

we get the identity

L(mv L,OH|FM b2 W) = HL(m7 LIOI—I|FMI b2y W|FMi)n‘~

i=1

Let F; be the maximal totally real subfield of M;. Since pnlr,, is cuspidal
automorphic and M;/F; is quadratic, one can easily prove that pp|r, is cuspidal
automorphic (see Lemma 1.3 of [2]), so pr|r, = pn, for some cuspidal automorphic
representation IT; of GL(2)/F;. We denote by f; the normalized Hecke eigenform of
GL(2)/F; associated to IT;. Then f; has weight k; = (ki(t)):es,,, Where Jp, is the set of
infinite places of F;, and k;(t) = k(z|F) for any t € Jp,.

Now from Proposition 2.1 we get

L(m, ipnlry, ® ¥lr,,) ~ g " OMEBLE £
for any integer m satisfying
(ko +1)/2 < m < (ko +k°)/2.
But we know that (see the paragraph just before Remark 5.1 of [10])
(fi. fi) ~ (fL OV, (3.1)
and using the fact that 1 = )., n;,[M; : M], we obtain

u
L(m, won|r, ® ) ~ 7 i (m 1 —ko) (M Q) l‘[(ﬁ,f»m

i=1
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~ g T kM o\ TFFI g (n ko) M:Q) gy B

for any integer m satisfying
(ko + 1)/2 < m < (ko +K°)/2,

which proves Theorem 1.1 for ¢ one-dimensional representation. |

4. The proof of Theorem 1.1 for general vy. Let ¢ be a finite-dimensional
representation of 'y, as in Theorem 1.1. We denote by M’ the maximal CM-subfield
of K := Q%' Obviously, M’/ M is Galois and K is an abelian extension of M.

From the beginning of Section 15 in [3] we know that there exist some subfields
E; C M’ such that M C E; and Gal(M'/E;) are cyclic, and some integers #n; such that
the trivial representation

1y : Gal(M' /M) — C*

can be written as

u
Gal(M'/M
[M': MLy = nIndGan 201,
i=1

where 1g, : Gal(M'/E;) — C* is the trivial representation. In particular, we have [M’ :
M) =37 m[E; : M]. Then

L(s, sprlry, @ WM M =TT L(s, sonlr, ® ¥ ® Indp/ 15)"

i=1

= HL(S, Indgg(tpl—lh‘b‘,- ® w|FE,- ® lEf))ni

i=1

u
= HL(S, wnlrg, ® ¥lr,,)".

i=1

We write
Ui
Vir, = EP v,
j=1

where ; are irreducible representations of I'g,. Since Gal(M'/E;) is cyclic, ¥ylr,, is
abelian and ; is irreducible, we get that the following:

LEMMA 4.1. We have
~ Ty L Ei
Wy‘ =~ Il’ldrEy_ (Py'
for some continuous character

¢_,‘/' . FEy- —> (]:X,

where Ej is a subfield of M which contains E;.
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Proof: Let o be a generator of Gal(M'/E;). Then, since M’/ E; is Galois, o permutes
the irreducible components of y;|r,,,. The representation y|r,,, is abelian, and thus a
direct sum of characters. Let ¢ be one of these characters. We denote by Ej the subfield
of M’ which contains E; having the property that Gal(M’/Ej) is the stabiliser of ¢
under the action of Gal(M'/E;) = (o). The character ¢ extends to a character ¢; of
I'g,. Then, because v; is irreducible, o € Gal(Ej;/E;) permutes simply transitively all
the components of the abelian representation wy'll‘l:.ﬁ and we have [E; : E;] = dim ;.
Let 1y, be the space corresponding to v;, and Vy, be the space corresponding
to ¢;. Since HomrEi/_(V‘,,,.,, V;) is non-trivial, by Frobenius reciprocity we get that
Homr, (Vy,, Indgg V) 1s also non-trivial. But dim Ind?’;zﬁy = dim v, and thus we
obtain v Ind;gqb‘i,. |

Therefore, we ,obtain

L(s, tprilr,, ® y)M M = l—[L(S, wonlry @ ¥lr,)"

i=1

u U
= [TTT L6 enlr,, © Indi )"

i=1 j=1

u U

Ty .

= 1_[ 1_[ L(s, Indr; (von |1"Ey ® %.))n,
i=1 j=1

u

uj
=TI TZG wnlr,, ® di)"

i=1 j=1

Hence, the function L(s, tor|r,, ® %)™ ™1 has a meromorphic continuation to the
entire complex plane and satisfies a functional equation because from Section 3 we
know that each function L(s, L,O]'[|1"EJ ® ¢;) has a meromorphic continuation to the
entire complex plane and satisfies a functional equation. Also, since each function
L(s, ton |rE/_/_ ® ¢;) has no poles or zeros for Re(s) > (ko + 1)/2, we get that the function

L(s, tori|r,, ® ¥)M M has no poles or zeros for Re(s) > (ko + 1)/2. Thus, for any
integer m satisfying

(ko+1)/2 <m,
we get the identity
Lim, vonlr, @ )M = TT[ ] Lon, wnlr,, ® ¢5)™.
i=1 j=I
From Section 3 we know that
(m+1—ko)[E5:Q) EypH
L(m, wnlr,, ® ¢j) ~ 7 VRS

for any integer m satisfying

(ko +1)/2 <m < (ko + k°)/2.
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Hence, from the fact that [M’ : M]dimy = ) 1, Z}‘;] mlEj; : M], we get

u u;
Lm, ipnlr, @ WM M =TT L0n, wonlr,, ® ¢)"
i=1 j=1

[Elf:F]

~ 77 2iml Z;-L(’"Jrlfko)[Ei/:@]ni(ﬁf)Z?:l Y

~ g (mH1=ko)[ M@ dim . f) e dimy
and thus
Lim. 1onlr,, ® ) ~ 7 IR 7 ) B dim
for any integer m satisfying
(ko + 1)/2 < m < (ko + k°)/2.

This concludes the proof of Theorem 1.1. |
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