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Abstract

Let q be an odd prime power and suppose that a, b ∈ Fq are such that ab and (1−a)(1−b) are nonzero
squares. Let Qa,b = (Fq, ∗) be the quasigroup in which the operation is defined by u ∗ v = u + a(v−u) if
v − u is a square, and u ∗ v = u + b(v−u) if v − u is a nonsquare. This quasigroup is called maximally
nonassociative if it satisfies x ∗ (y ∗ z) = (x ∗ y) ∗ z⇔ x = y = z. Denote by σ(q) the number of (a, b) for
which Qa,b is maximally nonassociative. We show that there exist constants α ≈ 0.029 08 and β ≈ 0.012 59
such that if q ≡ 1 mod 4, then limσ(q)/q2 = α, and if q ≡ 3 mod 4, then limσ(q)/q2 = β.
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1. Introduction

A quasigroup (Q, ∗) is a nonempty set Q with a binary operation ∗ such that, for each
a, b ∈ Q, there exist unique x, y ∈ Q for which a ∗ x = b and y ∗ a = b. A quasigroup
(Q, ∗) is said to be maximally nonassociative if

(u ∗ v) ∗ w = u ∗ (v ∗ w) =⇒ u = v = w (1-1)

holds for all u, v, w ∈ Q. By [11], a maximally nonassociative quasigroup has to be
idempotent (that is, u ∗ u = u for all u ∈ Q). Hence, in a maximally nonassociative
quasigroup, the converse of implication (1-1) holds as well.

The existence of maximally nonassociative quasigroups was an open question for
quite a long time [4, 10, 11]. In 2018, a maximally nonassociative quasigroup of
order nine was found [5], and that was the first step to realise that Stein’s nearfield
construction [14] can be used to obtain maximally nonassociative quasigroups of all
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orders q2, where q is an odd prime power [3]. A recent result of the present authors [6]
(partially duplicated in [13]) constructs examples of all orders with the exception of
a handful of small cases and two sparse subfamilies within the case n ≡ 2 mod 4.
The main construction used in [6, 13] is based upon quadratic orthomorphisms and
applies for all odd prime powers q � 13. However, it was left open how many quadratic
orthomorphisms can be used in the construction. We provide an asymptotic answer to
that question in this paper.

Throughout this paper, q is an odd prime power and F = Fq is a field of order q. For
a, b ∈ F, define a binary operation on F by

u ∗ v =

⎧⎪⎪⎨⎪⎪⎩u + a(v − u) if v − u is a square,
u + b(v − u) if v − u is a nonsquare.

(1-2)

This operation yields a quasigroup if and only if both ab and (1 − a)(1 − b) are squares,
and both a and b are distinct from 0 and 1, see [7, 16]. Denote by Σ = Σ(F) the set of all
such (a, b) ∈ F × F for which a � b. For each (a, b) ∈ Σ, denote the quasigroup (F, ∗)
by Qa,b = Qa,b(F).

If a = b ∈ F \ {0, 1}, then Equation (1-2) defines a quasigroup in which u ∗ (v ∗ u) =
(u ∗ v) ∗ u for all u, v ∈ F. This means that such a quasigroup is never maximally
nonassociative. If q � 13, then there always exists (a, b) ∈ Σ(Fq) such that Qa,b is
maximally nonassociative [6, 13]. This paper is concerned with the density of such
(a, b). Our main result is the following theorem.

THEOREM 1.1. For an odd prime power q, denote by σ(q) the number of (a, b) ∈ Σ(Fq)
for which Qa,b is maximally nonassociative. Then

lim
q→∞

σ(q)
q2 =

⎧⎪⎪⎨⎪⎪⎩953 · 2−15 ≈ 0.029 08 for q ≡ 1 mod 4,
825 · 2−16 ≈ 0.012 59 for q ≡ 3 mod 4.

As we show below, the set Σ consists of (q2 − 8q + 15)/4 elements. Hence, a random
choice of (a, b) ∈ Σ yields a maximally nonassociative quasigroup with probability
≈ 1/8.596 if q ≡ 1 mod 4, and with probability ≈ 1/19.86 if q ≡ 3 mod 4. This may
have an important consequence for the cryptographic application described in [10]. It
means that a maximally nonassociative quasigroup of a particular large order can be
obtained in an acceptable time by randomly generating pairs (a, b) until one is found
for which Qa,b is maximally nonassociative.

An important ingredient in the proof of Theorem 1.1 is the transformation described
in Proposition 1.2, and used in Corollary 1.3 to determine |Σ|.

Define S = S(F) as the set of all (x, y) ∈ F × F such that both x and y are squares,
x � y, and {0, 1} ∩ {x, y} = ∅.

PROPOSITION 1.2. For each (a, b) ∈ Σ, there exists exactly one (x, y) ∈ S such that

a =
x(1−y)

x−y
, b =

1−y
x−y

, 1−a =
y(1−x)

y−x
and 1−b =

1−x
y−x

. (1-3)

https://doi.org/10.1017/S1446788722000386 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000386


[3] Maximally nonassociative quasigroups 313

The mapping

Ψ : Σ→ S, (a, b) �→
(a
b

,
1−a
1−b

)

is a bijection. If (x, y) ∈ S, then Ψ−1((x, y)) = (a, b) if and only if Equations (1-3) hold.

PROOF. If x, y, a, b ∈ F satisfy x � y, a = x(1−y)/(x−y), and b = (1−y)/(x−y), then

1−a = y(1−x)/(y−x) and 1−b = (1−x)/(y−x). (1-4)

Define

Φ : S→ F × F, (x, y) �→
(x(1−y)

x−y
,

1−y
x−y

)
.

Suppose that (x, y) ∈ S and set b = (1−y)/(x−y). Then b � 0 as y � 1, and b � 1
since x � 1. Put a = xb. Then a � 0 since b � 0 and x � 0, and a � b since x � 1.
Furthermore, a � 1 since y � 0 and x � 1. Since a = xb, ab = xb2 is a square. By
Equations (1-4), 1−a = y(1−b). Hence, (1−a)(1−b) = y(1−b)2 is a square too. This
verifies that Φ may be considered as a mapping S→ Σ.

Assume (a, b) ∈ Σ. By definition, Ψ((a, b)) = (x, y), where x = a/b and y =
(1−a)/(1−b). We have x � {0, 1} since a � 0 and a � b. Similarly, y � {0, 1}.
Furthermore, x � y since x = y implies a = b. Thus, (x, y) ∈ S. By straightforward
verification, ΨΦ = idS and ΦΨ = idΣ. �

COROLLARY 1.3. |Σ(Fq)| = |S(Fq)| = (q2 − 8q + 15)/4.

PROOF. By Proposition 1.2, |Σ| = |S|. Furthermore, by the definition, S contains
((q − 3)/2)2 − (q − 3)/2 elements. �

The definition of Qa,b follows the established way of defining a quasigroup by means
of an orthomorphism, say ψ, of an abelian group (G,+). Here, ψ is said to be an
orthomorphism of (G,+) if it permutes G and the mapping x �→ ψ(x) − x permutes G
as well. A quadratic orthomorphism ψa,b is defined for each (a, b) ∈ Σ(Fq) by

ψa,b(u) =

⎧⎪⎪⎨⎪⎪⎩au if u is a square,
bu if u is a nonsquare.

(1-5)

The definition in Equation (1-2) of the quasigroup Qa,b thus fits the general scheme that
u ∗ v = u + ψ(v − u) is a quasigroup whenever ψ is an orthomorphism of an abelian
group (G,+). See [7, 15] for more information on quasigroups defined by means of
orthomorphisms.

The number of associative triples in such a quasigroup depends upon the number
of solutions to the associativity equation:

ψ(ψ(u) − v) = ψ(−v) + ψ(u − v − ψ(−v)). (1-6)
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Below we always assume that ψ = ψa,b for some (a, b) ∈ Σ. Some of our statements
remain true in the case of a general ψ. However, the general situation is not the focus
of this paper.

PROPOSITION 1.4. For (a, b) ∈ Σ, put ψ = ψa,b. An ordered pair (u, v) ∈ F2 fulfills the
associativity equation (1-6) if and only if v ∗ (0 ∗ u) = (v ∗ 0) ∗ u. Furthermore,

u − v − ψ(−v) = u − (v ∗ 0) and ψ(u) − v = (0 ∗ u) − v.

If (u, v) � (0, 0) fulfills Equation (1-6), then none of u, v, u − v − ψ(−v), and ψ(u) − v
vanishes, and (c2u, c2v) fulfills Equation (1-6) too, for any c ∈ F.

The quasigroup Qa,b is maximally nonassociative if and only if (u, v) = (0, 0) is the
only solution to Equation (1-6).

PROOF. This is a restatement of [6, Lemmas 1.3 and 3.1]. A sketch of the proof follows,
to make this paper self-contained. Since u �→ z + u is an automorphism of Q = Qa,b for
each z ∈ F, the maximal nonassociativity is equivalent to having no (u, v) � (0, 0) such
that u ∗ (0 ∗ v) = (u ∗ 0) ∗ v. This turns into Equation (1-6) by invoking the formula
u ∗ v = u + ψ(v − u). Since x �→ c2x is an automorphism of Q for each c ∈ F, c � 0, the
associativity equation holds for (u, v) if and only if it holds for (c2u, c2v). For the rest, it
suffices to observe that in an idempotent quasigroup, u ∗ (v ∗ w) = (u ∗ v) ∗ w implies
u = v = w if u = v or u = v ∗ w or v = w or u ∗ v = w. �

For (a, b) ∈ Σ, denote by E(a, b) the set of (u, v) � (0, 0) that satisfy the associativity
equation (1-6). By Proposition 1.4, Qa,b is maximally nonassociative if and
only if E(a, b) = ∅. The number of such (a, b) may be obtained indirectly by
counting the number of (a, b) ∈ Σ for which E(a, b) � ∅. To this end, we partition
E(a, b) =

⋃
Ers

ij (a, b), where i, j, r, s ∈ {0, 1}. To determine to which part an element
(u, v) ∈ E(a, b) belongs, the following rule is used:

i = 0⇐⇒ u is a square;
j = 0⇐⇒ −v is a square;
r = 0⇐⇒ ψa,b(u) − v is a square; and
s = 0⇐⇒ u − v − ψa,b(−v) is a square.

Thus, if one of the elements u, −v, ψa,b(u)−v, and u−v−ψa,b(−v) is a nonsquare, then
the respective value of i, j, r, or s is set to 1. For each (u, v) ∈ E(a, b), there hence
exists exactly one quadruple (i, j, r, s) such that (u, v) ∈ Ers

ij (a, b), giving us the desired
partition. We also work with sets

Σrs
ij = {(a, b) ∈ Σ : Ers

ij (a, b) � ∅},

where i, j, r, s ∈ {0, 1}. The next observation directly follows from the definition of the
sets Σrs

ij . It is recorded here for the sake of later reference.

PROPOSITION 1.5. Suppose that (a, b) ∈ Σ = Σ(Fq) for an odd prime power q > 1. The
quasigroup Qa,b is maximally nonassociative if and only if (a, b) �

⋃
Σrs

ij .
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If it is assumed that (u, v) ∈ Ers
ij (a, b), then the associativity equation (1-6) can

be turned into a linear equation in unknowns u and v since each occurrence of ψ
can be interpreted by means of Equation (1-5). The list of these linear equations
can be found in [6]. Their derivation is relatively short and is partly repeated in
Lemmas 2.4–2.7. The approach used here differs from that of [6] in two aspects. The
symmetries induced by opposite quasigroups and by automorphisms Qa,b � Qb,a are
used more extensively here, and characterizations of Σrs

ij are immediately transformed
into characterizations of

Srs
ij = Ψ(Σrs

ij ).

As will turn out, sets Srs
ij can be described by a requirement that several polynomials

in x and y are either squares or nonsquares. Estimates of |Srs
ij | can be thus obtained by

means of the Weil bound (as formulated, say, in [8, Theorem 6.22]). We are not using
the Weil bound directly, but via Theorem 1.6 below, a straightforward consequence
from [6, Theorem 1.4]. Applications of Theorem 1.6 to the intersections of sets
Srs

ij , with symmetries taken into account, yield, after a number of computations, the
asymptotic results stated in Theorem 1.1.

Say that a list of polynomials p1, . . . , pk in one variable, with coefficients in F,
is square-free if there exists no sequence 1 � i1 < · · · < ir � k such that r � 1 and
pi1 · · · pir is a square (as a polynomial with coefficients in the algebraic closure F̄ of F).
Define χ : F→ {±1, 0} to be the quadratic character extended by χ(0) = 0.

THEOREM 1.6. Let p1, . . . , pk ∈ F[x] be a square-free list of polynomials of degree
di � 1, and let ε1, . . . , εk ∈ {−1, 1}. Denote by N the number of all α ∈ F such that
χ(pi(α)) = εi, for 1 � i � k. Then

|N − 2−kq| < (
√

q + 1)D/2 − √q(1 − 2−k) < (
√

q + 1)D/2,

where D =
∑

i di.

The purpose of Section 2 is to describe each of the sets Srs
ij by a list of polynomials

p(x, y) such that the presence of (x, y) ∈ S in Srs
ij depends upon p(x, y) being a square or

nonsquare. Theorem 2.10 gives such a description for q = |F| ≡ 1 mod 4, and Theorem
2.11 for q ≡ 3 mod 4. Section 3 contains auxiliary results that make applications of
Theorem 1.6 possible. Note that Theorem 1.6 is concerned with polynomials in only
one variable. To use it, one of the variables, say y, has to be fixed. If y = c, and
p1(x, y), . . . , pk(x, y) are the polynomials occurring in Theorems 2.10 and 2.11, then
Theorem 1.6 may be used without further specifications only for those c for which
p1(x, c), . . . , pk(x, c) is a square-free list. The purpose of Section 3 is to show that this
is true for nearly all c, and that the number of possible exceptional values of c is very
small. Section 4 provides the estimate of S \⋃ Srs

ij for q ≡ 3 mod 4, and Section 5 for
q ≡ 1 mod 4, in Theorems 4.4 and 5.5, respectively. Section 6 consists of concluding
remarks.
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2. Quadratic residues and the associativity equation

Let Qop
a,b denote the opposite quasigroup of Qa,b, namely the quasigroup satisfying

Qop
a,b(u, v) = Qa,b(v, u) for all u, v. The following facts are well known [7, 16] and easy

to verify.

LEMMA 2.1. If (a, b) ∈ Σ, then

(i) u �→ uζ is an isomorphism Qa,b � Qb,a, for every nonsquare ζ ∈ F;
(ii) Qop

a,b = Q1−a,1−b if q ≡ 1 mod 4, and Qop
a,b = Q1−b,1−a if q ≡ 3 mod 4.

An alternative way to express that q ≡ 1 mod 4 is to say that −1 is a square. If ∗̄
denotes the operation of the opposite quasigroup, then (v ∗̄ 0) ∗̄ u = v ∗̄ (0 ∗̄ u) holds in
Qop

a,b if and only if u ∗ (0 ∗ v) = (u ∗ 0) ∗ v. Hence, (u, v) ∈ E(a, b) if and only if (v, u) ∈
E(a′, b′), where (a′, b′) = (1−a, 1−b) if −1 is a square, and (a′, b′) = (1−b, 1−a) if −1
is a nonsquare, by part (ii) of Lemma 2.1. Similarly, (u, v) ∈ E(a, b) if and only if
(ζu, ζv) ∈ E(b, a).

Working out these connections with respect to being square or nonsquare yields the
following statement. It appears without a proof since it coincides with [6, Lemmas 3.2
and 3.3] and since the proof is straightforward.

LEMMA 2.2. Assume (a, b) ∈ Σ and i, j, r, s ∈ {0, 1}. Then

(u, v) ∈ Ers
ij (a, b)⇐⇒ (ζu, ζv) ∈ E1−r,1−s

1−i,1−j (b, a); (2-1)

(u, v) ∈ Ers
ij (a, b)⇐⇒ (v, u) ∈ Esr

ji (1−a, 1−b) if − 1 is a square; and (2-2)

(u, v) ∈ Ers
ij (a, b)⇐⇒ (v, u) ∈ E1−s,1−r

1−j,1−i (1−b, 1−a) if − 1 is a nonsquare. (2-3)

PROPOSITION 2.3. Both of the mappings (x, y) �→ (y, x) and (x, y) �→ (x−1, y−1) per-
mute the set S = S(F). If i, j, r, s ∈ {0, 1}, then

(x, y) ∈ Srs
ij ⇐⇒ (y, x) ∈ Ssr

ji ⇐⇒ (x−1, y−1) ∈ S1−r,1−s
1−i,1−j .

PROOF. By definition, (x, y) ∈ S if and only if x and y are both squares, x � y, and
{x, y} ∩ {0, 1} = ∅. These properties are retained both by the switch (x, y) �→ ( y, x) and
by the inversion (x, y) �→ (x−1, y−1). These mappings thus permute S.

Let (a.b) ∈ Σ be such thatΨ((a, b)) = (x, y). Then x = a/b, y = (1−a)/(1−b). Hence,
Ψ((b, a)) = (x−1, y−1) and Ψ((1−a, 1−b)) = ( y, x). For the proof, we thus need to show
that

(a, b) ∈ Σrs
ij ⇐⇒ (1−a, 1−b) ∈ Σsr

ji ⇐⇒ (b, a) ∈ Σ1−r,1−s
1−i,1−j .

Suppose that (a, b) ∈ Σrs
ij , that is, that there exists (u, v) ∈ Ers

ij (a, b). If −1 is a
square, then (v, u) ∈ Esr

ji (1−a, 1−b) by Condition (2-2). If −1 is a nonsquare, then
(ζv, ζu) ∈ Esr

ji (1−a, 1−b), by Conditions (2-3) and (2-1). Thus, (1−a, 1−b) ∈ Σsr
ji

in both cases. We also have (ζu, ζv) ∈ E1−r,1−s
1−i,1−j (b, a), by Condition (2-1). Hence,

(b, a) ∈ Σ1−r,1−s
1−i,1−j . �
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To determine all of the sets Srs
ij , it thus suffices to know the sets

S00
00, S01

00, S11
00, S00

01 , S01
01, and S10

01. (2-4)

We next determine these sets via a sequence of lemmas.

LEMMA 2.4. If −1 is a square, then S00
01 = S10

01 = ∅, while

(x, y) ∈ S00
00 ⇐⇒ (1−x)( y−x) and (1−y)( y−x) are squares; and

(x, y) ∈ S11
00 ⇐⇒ (x2y + xy − x2 − y2)( y−x) and

(xy2 + xy − x2 − y2)( y−x) are nonsquares.

PROOF. We assume that −1 is a square. If (u, v) ∈ E00
00(a, b), then the associativity

equation attains the form a(au − v) = −av + a(u − v + av), and that is the same as
(1−a)(u−v) = 0. Since 1−a � 0, and since u is assumed to be square, the set E00

00(a, b)
is nonempty if and only if it contains (1, 1), by Proposition 1.4. This takes place if and
only if 1−a and a are squares. Suppose that (x, y) = Ψ((a, b)). Then a = x(1−y)/(x−y)
is a square if and only if (1−y)( y−x) is a square, and 1−a = y(1−x)/( y−x) is a square
if and only if (1−x)( y−x) is a square.

If (u, v) ∈ E11
00(a, b), then b(au − v) = −av + b(u − v + av) yields ub(a−1) =

a(b−1)v, where both u and v are squares. Thus, (u, v) is a solution if and only
if (1, b(a−1)/a(b−1)) is a solution. Since v = b(a−1)/a(b−1) is always a square,
the conditions for the existence of the solution are that a − v and 1 − (1−a)v are
nonsquares. If (x, y) = Ψ((a, b)), then v = y/x, a − v = (x2 − x2y − yx + y2)/x(x − y),
and 1 − (1−a)v = (xy − x2 − y2 + y2x)/x( y−x).

If (u, v) ∈ E00
01 (a, b), then a(au − v) = −bv + a(u − v + bv) and a(a − 1)u =

b(a − 1)v. This implies that uv is a square. However, the assumption (u, v) ∈ E00
01 (a, b)

implies that u is a square and −v is a nonsquare. Thus, uv should be both a square
and a nonsquare, which is a contradiction. If (u, v) ∈ E10

01(a, b), then b(au − v) =
−bv + a(u − v + bv), and that gives u = v, which is a contradiction again. �

LEMMA 2.5. If −1 is a nonsquare, then S00
00 = S11

00 = ∅, while

(x, y) ∈ S10
01 ⇐⇒ (x, y) ∈ S01

10;
⇐⇒ (1−y)(x−y) and (1−x)( y−x) are squares; and

(x, y) ∈ S00
01 ⇐⇒ (x−1)( y−x) and (x2−2x+y)( y−x) are squares.

PROOF. We assume that −1 is a nonsquare. If E00
00(a, b) � ∅, then (1, 1) ∈ E00

00(a, b), by
the same argument as in the proof of Lemma 2.4. However, (1, 1) cannot belong to
E00

00(a, b) since −1 is a nonsquare. Similarly, E11
00(a, b) = ∅ since −b(a−1)/a(b−1) is a

nonsquare.
Suppose that (u, v) ∈ E00

01 (a, b). Then Equation (1-6) implies au = bv. Hence,
(a, b) ∈ Σ00

01 if and only if (1, a/b) ∈ E00
01 (a, b). The latter takes place if and only if
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a − a/b and 1 − (1−b)a/b are squares. Let (x, y) = Ψ((a, b)). Then

a − a/b = x((1−y)/(x−y) − 1) = x(1−x)/(x−y)

and

1 − (1−b)a/b = 1 − x(1 − x)/( y−x) = (x2−2x+y)/( y−x).

Let (u, v) ∈ E10
01(a, b). Then u = v by Equation (1-6). Hence, (a, b) ∈ Σ10

01 if and only
if (1, 1) ∈ E10

01(a, b). The latter is true if and only if a − 1 is a nonsquare and b is
a square. If (x, y) = Ψ((a, b)), then this means that (x−1)( y−x) is a nonsquare and
(1−y)(x−y) is a square. The symmetry of these conditions shows that (x, y) ∈ S10

01 if
and only if (y, x) ∈ S10

01. Hence, S10
01 = S01

10, by Proposition 2.3. �

LEMMA 2.6. Assume that (x, y) ∈ S. Then (x, y) ∈ S01
00 if and only if −xy − y + x and

(−x2y + x2 + y2 − xy)(x−y) are squares, and (1−y)(x−y) is a nonsquare.

PROOF. Here, the associativity equation is equal to a(au − v) = −av + b(u − v + av),
and that is the same as (a2 − b)u = (ab − b)v. Therefore, (a, b) ∈ Σ01

00 if and only if
(1, (a2−b)/b(a−1)) ∈ E01

00(a, b). If (x, y) = Ψ((a, b)), then

(a2 − b)(x − y)2 = x2(1− y)2 − (1− y)(x− y) = (1− y)(x2− x2y− x + y)

= (1− y)(1− x)( y + xy − x),

and b(a−1)(x−y)2 = (1−y)y(1−x). So, v = (a2 − b)/b(a − 1) = ( y + xy − x)/y, showing
that y + xy − x is a square. It follows that a − v = (−x2y + x2 + y2 − xy)/(x − y)y and
(1 − (1−a)v)( y−x) = x2( y−1). Thus, (1−y)(x−y) has to be a nonsquare. �

LEMMA 2.7. Assume that (x, y) ∈ S.

(i) If y+1−x = 0 = x2−x−1 and q > 43, then (x, y) ∈ S01
01.

(ii) If y+1−x � 0 or x2−x−1 � 0, then (x, y) ∈ S01
01 if and only if both ( y+xy−x)(x−y−1)

and ( y−2x+x2)(x−y)(x−y−1) are nonsquares, while (2xy−y2−x)(x−y)(x−y−1) is
a square.

PROOF. In this case, the associativity equation yields a(au−v)=−bv + b(u − (1−b)v).
That is equivalent to (a2 − b)u = (b2 − 2b + a)v. If there exists a solution (u, v) ∈
E01

01(a, b), and one of the elements a2 − b and b2 − 2b + a is equal to zero,
then the other has to vanish as well. Assume that (x, y) = Ψ((a, b)). Then
a2 − b = 0 if and only if 0 = x2(1 − y)2 − (1 − y)(x − y) = (1 − y)(−x2y + x2 − x + y) =
(1 − y)(1 − x)( y + xy − x), and b2 − 2b + a = (1 − b)2 − (1 − a) = 0 if and only if
0 = (1 − x)2 − y(1 − x)( y − x) = (1 − x)(1 − x − y2 + xy) = (1 − x)(1 − y)( y − x + 1).
If y = x − 1, then y + xy − x = x2 − x − 1.

Computations above show that

a2 − b =
(1−y)(1−x)(xy−x+y)

(x−y)2 and b2 − 2b + a =
(1−y)(1−x)( y−x+1)

(x−y)2 .

https://doi.org/10.1017/S1446788722000386 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000386


[9] Maximally nonassociative quasigroups 319

Suppose now that at least one of x2−x−1 and y−x+1 does not vanish. If y−x+1 = 0,
then E01

01(a, b) = ∅ and ( y+xy−x)(x−y−1) = 0, which is a square. Hence, y−x+1 � 0
may be assumed. That implies b2 − 2b + a � 0. From the associativity equation, it then
follows that (a, b) ∈Σ01

01 if and only if (1, v) ∈E01
01(a, b), where v= (a2 − b)/(b2 −2b + a).

Now,

−v =
b − a2

b2 − 2b + a
=

y+xy−x
x−y−1

,

1 − (1−b)v =
(x−y−1)( y−x) + (1−x)( y+xy−x)

(x−y−1)( y−x)
=

y(x2−2x+y)
(x−y−1)(x−y)

, and

a−v =
x(1−y)(x−y−1) + (x−y)( y+xy−x)

(x−y)(x−y−1)
=

2xy−y2−x
(x−y)(x−y−1)

.

It remains to prove that E01
01(a, b) is nearly always nonempty if a2 − b = b2 − 2b +

a = 0. Let the latter be true. Then b2 − 2b + a = a4 − 2a2 + a = a(a−1)(a2+a−1).
Thus, a2+a−1 = 0. A pair (1, v) is a solution to the associativity equation if −v
is a nonsquare, 1 + (1−b)(−v) is a nonsquare, and a − v is a square. Put p1(t) = t,
p2(t) = 1 + (1−b)t = 1 + (1−a2)t, and p3(t) = a + t. A solution (1, v) exists if there
exists γ = −v ∈ F such that χ(p1(γ)) = χ(p2(γ)) = −1 and χ(p3(γ)) = 1. Polynomials
p2 and p3 have a common root if and only if 0 = 1 − a + a3. If this is true, then
0 = a2 + a3 = a2(1 + a). This implies a = −1 and 0 = (−1)2 + (−1) − 1 = −1, which is
a contradiction. The list of polynomials p1, p2, p3 is therefore square-free. Theorem 1.6
guarantees the existence of γ if

0 < q/8 − (
√

q + 1)(3/2) +
√

q(1 − 1/8) = q/8 − 5
√

q/8 − 3/2.

This is true for each prime power q � 47. �

REMARK 2.8. Lemmas 2.4–2.7 cover all sets Srs
ij that are listed in (2-4). Up to the

exceptions discussed in Remark 2.9, each of these sets is either empty, or is described
by a list of polynomials, say p1, . . . , pk ∈ F[x, y], k ∈ {2, 3}, and elements εh ∈ {−1, 1},
such that (ξ, η) ∈ S belongs to Srs

ij if and only if χ(ph(ξ, η)) = εh, for 1 � h � k. This is
because the polynomials ph(x, y) have been determined in all cases in such a way that
if ph(ξ, η) = 0 and (ξ, η) = Ψ((a, b)), then there is no (u, v) ∈ Ers

ij (a, b). Indeed, if (u, v)
were such a solution, then u or v or u − v − ψa,b(−v) or ψa,b(u) − v would be equal to
zero, and that is impossible, by Proposition 1.4.

Note that (ξ, η) was used in Remark 2.8 to emphasize the distinction between
elements of S and formal variables x and y. In the remainder of the paper, elements
of S will again be denoted by (x, y). The context will always be clear.

REMARK 2.9. Sets S01
01 and S10

10 behave exceptionally in the sense that the regular
behavior described in Remark 2.8 needs an assumption that y+1−x � 0 or x2−x−1 � 0
(for the set S01

01), and that x+1−y � 0 or y2−y−1 � 0 (for the set S10
10). There are at most
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two pairs (x, y) ∈ S such that y+1−x = 0 = x2−x−1 and at most two pairs (x, y) ∈ S such
that x+1−y = 0 = y2−y−1. Hence, assuming that

[y + 1 − x � 0 or x2 − x − 1 � 0] and [x + 1 − y � 0 or y2 − y − 1 � 0] (2-5)

causes no difficulty when estimating σ(q). If Condition (2-5) does not hold, then
(x, y) ∈ S01

01 ∪ S10
10 if q � 47, by point (i) of Lemma 2.7. In fact, if Condition (2-5) does

not hold, then (x, y) ∈ ⋃ Srs
ij for each q � 3, by [6] (compare with the application of [6,

Lemma 3.4] in the proof of [6, Theorem 3.5]).

For p(x, y) ∈ F[x, y] such that x � p(x, y) and y � p(x, y), define the reciprocal
polynomial p̂(x, y) as xnym p(x−1, y−1), where n and m are the degrees of the polynomial
p in the variables x and y, respectively. Note that if (x, y) ∈ S, then χ(p̂(x, y)) =
χ(xnym p(x−1, y−1)) = χ(p(x−1, y−1)) since x and y are squares. Note also that ˆ̂p(x, y) =
p(x, y), 1̂ − x = x − 1, x̂ − y = y − x, and ̂x − 1 − y = y − xy − x. Set

f1(x, y) = x2+y2−xy−x, f2(x, y) = y2+x2−xy−y,

f3(x, y) = y2x+xy−x2−y2, and f4(x, y) = x2y+xy−x2−y2.
(2-6)

Then f2(x, y) = f1( y, x), f3(x, y) = − f̂1(x, y), and f4(x, y) = − f̂1( y, x) = − f̂2(x, y) =
f3( y, x).

A description of those sets Srs
ij that do not occur in List (2-4) can be derived

from Lemmas 2.4–2.7 by means of Proposition 2.3. As an example, consider sets
S10

00 and S10
11. By Lemma 2.6, (x, y) ∈ S01

00 if χ(x−xy−y) = χ( f4(x, y)( y−x)) = 1 and
χ((1−y)(x−y)) = −1. By Proposition 2.3, (x, y) ∈ S10

00 if and only if ( y, x) ∈ S01
00, that

is, if χ( y−xy−x) = χ( f3(x, y)(x−y)) = 1 and χ((1−x)( y−x)) = −1, and (x, y) ∈ S10
11 if

(x−1, y−1) ∈ S01
00, that is, if χ( y−1−x) = χ( f2(x, y)( y−x)) = 1 and χ((1−y)(x−y)) = −1.

Following this pattern, a characterization of all sets Srs
ij may be derived from

Lemmas 2.4–2.7 by means of Proposition 2.3. This is done in Theorems 2.10 and 2.11.
Since the derivation is straightforward, both of them are stated without a proof. Set

g1(x, y) = x2 + y − 2x, g2(x, y) = y2 + x − 2y,
g3(x, y) = x2 + y − 2xy, and g4(x, y) = y2 + x − 2xy.

Note that g3(x, y) = ĝ1(x, y), g4(x, y) = ĝ2(x, y) = g3( y, x), and g2(x, y) = g1( y, x).

THEOREM 2.10. Assume that q ≡ 1 mod 4 is a prime power, and that S = S(Fq). Let
(x, y) ∈ S be such that Condition (2-5) holds. The sets S00

01 , S10
01, S11

01, S00
10 , S01

10, and S11
10 are

empty, and S11
11 = S00

00. Put ε = χ(x−y). Then

(x, y) ∈ S00
00 ⇐⇒ χ(1−x) = χ(1−y) = ε;

(x, y) ∈ S00
11 ⇐⇒ χ( f1(x, y)) = χ( f2(x, y)) = −ε;

(x, y) ∈ S11
00 ⇐⇒ χ( f3(x, y)) = χ( f4(x, y)) = −ε;

(x, y) ∈ S01
11 ⇐⇒ χ(1−x) = −ε, χ( y+1−x) = 1 and χ( f1(x, y)) = ε;

(x, y) ∈ S10
11 ⇐⇒ χ(1−y) = −ε, χ(x+1−y) = 1 and χ( f2(x, y)) = ε;
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(x, y) ∈ S10
00 ⇐⇒ χ(1−x) = −ε, χ(x+xy−y) = 1 and χ( f3(x, y)) = ε;

(x, y) ∈ S01
00 ⇐⇒ χ(1−y) = −ε, χ( y+xy−x) = 1 and χ( f4(x, y)) = ε;

(x, y) ∈ S01
01 ⇐⇒ χ( y+xy−x) = −η, χ(g1(x, y)) = −ηε and χ(g4(x, y)) = ηε,

where η = χ( y+1−x); and
(x, y) ∈ S10

10 ⇐⇒ χ(x+xy−y) = −η, χ(g2(x, y)) = −ηε and χ(g3(x, y)) = ηε,
where η = χ(x+1−y).

THEOREM 2.11. Assume that q ≡ 3 mod 4 is a prime power, and that S = S(Fq). Let
(x, y) ∈ S be such that Condition (2-5) holds. Sets S00

00, S11
00, S00

11 , and S11
11 are empty, and

S01
10 = S10

01. The pair (x, y) belongs to a set Srs
ij listed below if and only if all values in the

row of Srs
ij are nonzero squares.

S10
01 : (1−y)(x−y) and (1−x)( y−x);

S00
01 : (1−x)(x−y) and g1(x, y)( y−x);

S00
10 : (1−y)( y−x) and g2(x, y)(x−y);

S11
10 : (1−x)(x−y) and g3(x, y)(x−y);

S11
01 : (1−y)( y−x) and g4(x, y)( y−x);

S01
11 : (1−x)(x−y), x−1−y and (x−y) f1(x, y);

S10
11 : (1−y)( y−x), y−1−x and ( y−x) f2(x, y);

S10
00 : (1−x)(x−y), y−xy−x and (x−y) f3(x, y);

S01
00 : (1−y)( y−x), x−xy−y and ( y−x) f4(x, y);

S01
01 : (x−xy−y)(x−1−y), g1(x, y)( y−x)(x−1−y) and g4(x, y)( y−x)(x−1−y);

S10
10 : ( y−xy−x)( y−1−x), g2(x, y)(x−y)( y−1−x) and g3(x, y)(x−y)( y−1−x).

3. Avoiding squares

Our goal is to estimate the size of the set T = S \⋃ Srs
ij . Since Theorem 1.6 requires

polynomials in one variable, to determine the size of T, it is necessary to proceed
by determining the sizes of slices {x ∈ F : (x, c) ∈ T} for each square c � {0, 1}. As a
convention, p(x, c) will mean a polynomial in one variable, that is, an element of F[x]
for every p(x, y) ∈ F[x, y].

Theorem 1.6 may be directly applied only when the product of the polynomials
involved is square-free. Thus, for p1(x, y), . . . , pk(x, y) ∈ F[x, y], it is necessary to set
aside those c ∈ F for which p1(x, c), . . . , pk(x, c) is not a square-free list of polynomials.
An asymptotic estimate does not depend upon the number of c set aside if there is only
a bounded number of them. Hence, a possible route is to express the discriminant
of p1(x, c) · · · pk(x, c) by means of computer algebra, and then set aside those c that
make the discriminant equal to zero. The route taken below is elementary and is not
dependent upon a computer. In this way, the number of c to avoid is limited to 51.
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This is a consequence of the following statement, the proof of which is the goal of this
section.

THEOREM 3.1. Let F be a field of characteristic different from 2. The list of
polynomials

x, x−1, x−c, x−1−c, x+1−c, (1−c)x − c, (1+c)x − c,
g1(x, c), g2(x, c), g3(x, c), g4(x, c), f1(x, c), f2(x, c), f3(x, c), f4(x, c)

(3-1)

is square-free if the following conditions hold:

c � {−1, 0, 1, 1/2, 2}; (3-2)

c is not a root of x2 ± x ± 1; (3-3)

c is not a root of x2 − 3x + 1; (3-4)

c � {−1/3,−3, 2/3, 3/2, 1/3, 3, 4/3, 3/4} if char(F) � 3; (3-5)

c is a root of neither x2−3x+3 nor 3x2−3x+1; (3-6)

c is a root of neither x3+x2−1 nor x3−x−1; (3-7)

c is not a root of x2+1; (3-8)

c is a root of neither x2−2x+2 nor 2x2−2x+1; (3-9)

c is a root of neither x3−x2+2x−1 nor x3−2x2+x−1; and (3-10)

c is a root of neither x3−2x2+3x−1 nor x3−3x2+2x−1. (3-11)

The proof requires a number of steps. As an auxiliary notion, we call a list of
polynomials p1(x, y), . . . , pk(x, y) ∈ F[x, y] reciprocally closed if for each i ∈ {1, . . . , k},
both x � pi(x, y) and y � pi(x, y) are true, and there exist unique j ∈ {1, . . . , k} and λ ∈ F
such that p̂i(x, y) = λpj(x, y).

If a =
∑

aiti ∈ F[t] is a nonzero polynomial of degree d � 0, then the reciprocal
polynomial

∑
aitd−i will be denoted by â, like in the case of two variables. A list

a1(t), . . . , ak(t) ∈ F[t] is reciprocally closed if for each i ∈ {1, . . . , k}, the polynomial
ai(t) is not divisible by t, and there exist unique j ∈ {1, . . . , k} and λ ∈ F such that âi(t) =
λaj(t).

LEMMA 3.2. Let p1(x, y), . . . , pk(x, y) ∈ F[x, y] and a1(t), . . . , ar(t) ∈ F[t] be two recip-
rocally closed lists of polynomials. Denote by Γ the set of all nonzero roots of
polynomials a1, . . . , ar. Assume that

pi(0, c) = 0 =⇒ c ∈ Γ or c = 0 (3-12)

holds for all i ∈ {1, . . . , k}.
Let i, j ∈ {1, . . . , k} and λ ∈ F be such that pj(x, y) = λp̂i(x, y) and i � j. If

gcd(pi(x, c), p
(x, c)) = 1
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holds for all nonzero c ∈ F \ Γ and all 
 � i, 1 � 
 � k, then

gcd(pj(x, c), ph(x, c)) = 1

holds for all nonzero c ∈ F \ Γ and h � j, 1 � h � k.

PROOF. Suppose that h � j and c ∈ F \ Γ, c � 0, are such that pj(x, c) and ph(x, c)
have a common root in F̄, say γ. Thus, pj(γ, c) = ph(γ, c) = 0. By Condition (3-12),
γ � 0. Since the list p1(x, y), . . . , pk(x, y) is reciprocally closed, there exists 
 � i such
that p
(x, y) is a scalar multiple of p̂h(x, c). Since pj(x, y) is a multiple of p̂i(x, y), we
have pi(γ−1, c−1) = 0 = p
(γ−1, c−1) and hence gcd(pi(x, c−1), p
(x, c−1)) � 1. By the
assumption on pi, this cannot be true unless c−1 ∈ Γ. We refute the latter possibility by
proving that if c−1 ∈ Γ, then c ∈ Γ. That follows straightforwardly from the assumption
that the list a1, . . . , ar is reciprocally closed. Indeed, since c−1 ∈ Γ, there exists s ∈
{1, . . . , r} such that as(c−1) = 0. There also exists m ∈ {1, . . . , r} such that am is a scalar
multiple of âs. Because of that, am(c) = am((c−1)−1) = 0. This implies that c ∈ Γ since
Γ is defined as the set of all nonzero roots of polynomials a1, . . . , ar. �

If a(t) = t − γ, γ � 0, then â(t) = −γ(t − γ−1). Hence, the list of nonzero c that fulfill
one of the conditions (3-2)–(3-11) may be considered as a set Γ of nonzero roots of a
reciprocally closed list of polynomials in one variable.

Now, remove x and x−1 from the list of polynomials (3-1) that are the
input to Lemma 3.2. The remaining polynomials can be interpreted as a list
p1(x, c), . . . , p13(x, c) such that p1(x, y), . . . , p13(x, y) is a reciprocally closed list of
polynomials in two variables. It is easy to verify that if 0 or 1 is a root of any of the
polynomials pi(x, c), 1 � i � 13, then c fulfills Condition (3-2). Polynomials x and x−1
can be thus excised from the subsequent discussion, and Lemma 3.2 may be used.

Lemma 3.2 will also be applied to some sublists of p1(x, c), . . . , p13(x, c) that
are reciprocally closed. The first such sublist is the linear polynomials occurring in
(3-1) (with x and x−1 being removed). These are x−c, x−1−c, x+1−c, (1−c)x − c,
(1+c)x − c, x − (2c−c2), and (1−2c)x + c2. The latter two polynomials are equal to
g2(x, c) and g4(x, c). The list of these linear polynomials is square-free if there are no
duplicates in the set of their roots

R(c) =
{
c, c + 1, c − 1,

c
1 − c

,
c

1 + c
, c(2 − c),

c2

2c − 1

}
.

The reciprocity yields the following pairs of roots:
{
c + 1,

c
1 + c

}
,
{
c − 1,

c
1 − c

}
, and

{
c(2 − c),

c2

2c − 1

}
. (3-13)

We now prove a sequence of lemmas which explore properties of the polynomials
in List (3-1).

LEMMA 3.3. If c ∈ F satisfies Conditions (3-2)–(3-4), then |R(c)| = 7.
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PROOF. If (3-2) holds, then c is not equal to any other element of R(c). Any
equality within the pairs in (3-13) would require that c2+c+1 = 0 or c2−c+1 = 0 or
2c(c−1)2 = 0. By (3-2) and (3-3), none of these conditions hold. Clearly, c+1 � c−1.
If c+1 = c/(1−c), then c2+c−1 = 0. Furthermore,

c+1 = c(2−c)⇔ c2−c+1 = 0,

and

c+1 = c2/(2c−1)⇔ c2+c−1 = 0.

Hence, c+1 is not equal to any other element of R(c). By the reciprocity relationship
described in Lemma 3.2, c/(1+c) is also not equal to another element of R(c). If c−1
is equal to c(2−c), then c2−c−1 = 0. If it is equal to c2/(2c−1), then c2−3c+1 = 0. �

LEMMA 3.4. Suppose that c ∈ F satisfies Conditions (3-2) and (3-5). Then none of the
polynomials fi(x, c), 1 � i � 4, and gj(x, c), j ∈ {1, 3}, possesses a double root.

PROOF. By a reciprocity argument similar to that of Lemma 3.2, only f1(x, c), f2(x, c),
and g1(x, c) need to be tested. Discriminants of these polynomials are (c + 1)2 − 4c2 =

(1 − c)(3c + 1), c(c − 4(c − 1)) = −c(3c − 4), and 4(1 − c). None of these may be zero,
by the assumptions on c. �

LEMMA 3.5. If c ∈ F satisfies Conditions (3-2), (3-3), and (3-6), then none of the
elements of R(c) is a root of g1(x, c) or g3(x, c).

PROOF. By Lemma 3.2, it suffices to consider only the polynomial h(x) = g1(x, c).
Now, h(c) = c(c−1), h(c ± 1) = c2 ± 2c + 1 − 2(c ± 1) + c is equal to c2 + c − 1 or c2 −
3c + 3, while

(1 ± c)2

c
h
( c
1 ± c

)
= c − 2(1 ± c) + (1 ± c)2 = c2 + c − 1

and c−1h(c(2 − c))=c(2 − c)2 − 2(2 − c) + 1=c3 − 4c2 + 6c − 3= (c − 1)(c2 − 3c + 3).
Finally,

(2c − 1)2

c
h
( c2

2c − 1

)
= c3 − 2c(2c − 1) + (2c − 1)2 = c3 − 2c + 1

= (c − 1)(c2 + c − 1). �

LEMMA 3.6. If c ∈ F satisfies Conditions (3-2), (3-5), and (3-7)–(3-11), then none of
the elements of R(c) is a root of fi(x, c) for any i = 1, 2, 3, 4.

PROOF. The proof is very similar to that of Lemma 3.5, so we only give a summary.
By Lemma 3.2, it suffices to test the polynomials f1(x, c) and f2(x, c). Substituting
an element of R(c) in place of x always yields a polynomial from the indicated list.
Note that c3 − 3c2 + 4c − 2 = (c − 1)(c2 − 2c + 2), 3c2 − 5c + 2 = (c − 1)(3c − 2), and
3c3 − 7c2 + 5c − 1 = (c − 1)2(3c − 1). �
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LEMMA 3.7. Suppose that c ∈ F satisfies Conditions (3-2) and (3-5). Then for each
i ∈ {1, 3}, there exist at least three j ∈ {1, 2, 3, 4} such that gi(x, c) and fj(x, c) share no
root in F̄.

PROOF. Because of the reciprocity, i = 1 may be assumed. If g1(x, c) and f1(x, c) have a
common root x, then (c+1)x − c2 = 2x − c, and that yields (c−1)x = c(c−1). If g1(x, c)
and f2(x, c) have a common root, then cx − c2 + c = 2x − c, which means that (c−2)x =
(c−2)c. If g1(x, c) and f3(x, c) have a common root, then (c2+c)x − c2 = 2x − c, and
(c−1)(c+2)x = (c−1)c. In such a case, c � −2 and x = c/(c+2). The latter value is a
root of g1(x, c) if and only if 0 = c2 − 2c(c+2) + c(c+2)2 = c2(c + 3). Here, as earlier,
the solutions for c are forbidden by the conjunction of Conditions (3-2) and (3-5). �

LEMMA 3.8. If c ∈ F satisfies Conditions (3-2), (3-7), and (3-8), and if 1 � i < j � 4,
then fi(x, c) and fj(x, c) share no common root in F̄.

PROOF. This is obvious if (i, j) = (1, 3). If (i, j) = (2, 4), then c(x2 − 1) = 0, so x ∈
{−1, 1}. Now, f2(1, c) = (c − 1)2 � 0, while f2(−1, c) = c2 + 1 = − f4(−1, c). This is
why c2 � −1 has to be assumed.

For the rest, it suffices to test pairs (1, 2) and (2, 3), by the reciprocity described
in Lemma 3.2. If cx + x − c2 = cx − c2 + c, then x = c and f2(c) = c(c − 1) � 0.
If cx − c2 + c = cx + c2x − c2, then x = c−1 which means that f2(c−1) =
c−2 − 1 + c2 − c = c−2(c4 − c3 − c2 + 1) = c−2(c − 1)(c3 − c − 1). �

We can now bring all the pieces together to prove the main result of this section.

PROOF OF THEOREM 3.1. Suppose that c fulfills Conditions (3-2)–(3-11). In addition
to Lemmas 3.3–3.8, we also use that g1(x, c) and g3(x, c) share no root in F̄, which can
be proved by a similar method to Lemma 3.8.

Let p1(x, c), . . . , pk(x, c) be a nonempty sublist of (3-1) such that the product
p1(x, c) · · · pk(x, c) is a square in F̄[x]. Let J be the set of those j ∈ {1, 2, 3, 4} for which
there exists h ∈ {1, . . . , k} such that fj(x, c) = ph(x, c). The set J must be nonempty, by
Lemmas 3.3–3.5. Since J is nonempty and Lemmas 3.4, 3.6, and 3.8 hold, there must
exist i ∈ {1, 3} such that gi(x, c) = ph(x, c) for some h ∈ {1, . . . , k}. Since gi(x, c) is not
a scalar multiple of fj(x, c) for j ∈ J, we must have |J| � 2, by Lemmas 3.4 and 3.5.
However, even that is not viable, given Lemma 3.7. �

4. When −1 is a nonsquare

Throughout this section, F = Fq will be a finite field of order q ≡ 3 mod 4. We put
Σ = Σ(Fq) and S = S(Fq). By Corollary 1.3, |S| = |Σ| = (q2−8q+15)/4. Define S̄rs

ij = S \
Srs

ij and T =
⋂

S̄rs
ij , where sets Srs

ij are characterized by Theorem 2.11, subject to the
assumption that Condition (2-5) holds. As we can see, Condition (2-5) holds in all
cases that are relevant for our calculations. The aim of this section is to estimate the
number σ(q) = |{(a, b) ∈ Σ : Qa,b is maximally nonassociative}|. By Proposition 1.5,
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σ(q) = |T | = (q2−8q+15)/4 − |⋃ Srs
ij |. Put

T0 = {(x, y) ∈ T : χ( y − x) = 1};
T1,1 = {(x, y) ∈ T0 : χ(1 − y) = χ(1 − x) = 1};

T1,−1 = {(x, y) ∈ T0 : χ(1 − y) = χ(1 − x) = −1};
T2 = {(x, y) ∈ T0 : χ(1 − x) = −1 and χ(1 − y) = 1};

and define T ′0, T ′1,1, T ′1,−1, and T ′2 by exchanging x and y. For example, this means that
T ′0 = {(x, y) ∈ T : χ( y − x) = −1}. Put also T1 = T1,1 ∪ T1,−1 and T ′1 = T ′1,1 ∪ T ′1,−1.

LEMMA 4.1. T = T0 ∪ T ′0, T0 = T1 ∪ T2, T ′0 = T ′1 ∪ T ′2, T1 = T1,1 ∪ T1,−1, and T ′1 =
T ′1,1 ∪ T ′1,−1. All of these unions are unions of disjoints sets.

Both of the mappings (x, y) �→ ( y, x) and (x, y) �→ (x−1, y−1) permute T. Both of them
exchange T1 and T ′1, and T2 and T ′2. Furthermore, (x, y) �→ ( y, x) sends T1,ε to T ′1,ε,
while (x, y) �→ (x−1, y−1) sends T1,ε to T ′1,−ε, for both ε ∈ {−1, 1}.

PROOF. Recall that by our definition of S, we have 1 � {x, y} and x � y for all (x, y) ∈ T .
By Proposition 2.3, both (x, y) �→ ( y, x) and (x, y) �→ (x−1, y−1) permute T. The effects
of these two mappings are simple to verify. Note, for example, that if ε = χ(x−y), then
χ(x−1 − y−1) = χ( y−x) = −ε.

To see that T0 = T1 ∪ T2, note that there is no (x, y) ∈ T0 with χ(1−x) = 1 and
χ(1−y) = −1. Indeed, each such (x, y) belongs to S10

01. �

For c ∈ Fq, define t2(c) = |{x ∈ Fq : (x, c) ∈ T2}| and t1,1(c) = |{x ∈ Fq : (x, c) ∈ T1,1}|.
In the next two propositions, we seek estimates of these quantities. In both results, we
assume that c fulfills Condition (3-3). Observe that under this assumption, c2−c−1 � 0
and for all x ∈ Fq, either x � c+1 or x2−x−1 � 0, and therefore Condition (2-5) holds
for (x, y) = (x, c). This will enable us to use Theorem 2.11.

PROPOSITION 4.2. Suppose that c and 1 − c are both nonzero squares in Fq and that c
fulfills Conditions (3-2)–(3-11). Then,

|t2(c) − 25 · 2−15q| � (
√

q + 1)165/2 + 21.

PROOF. We estimate t2(c) by characterizing the pairs (x, c) in T2. For a fixed c, there
are at most 21 values of x that are roots of any of the polynomials in List (3-1). So
at the cost of adding a term equal to 21 to our eventual bound, we may assume for
the remainder of the proof that x is not a root of any polynomial in List (3-1). Then
χ(x) = 1 = χ(c), since (x, c) ∈ S and χ(1−x) = χ(c−1) = χ(x−c) = −1 by the definition
of T2.

From the definitions of S̄00
01 , S̄00

10 , S̄11
10, and S̄11

01, we deduce that χ(g1(x, c)) =
χ(g4(x, c)) = −1 and χ(g2(x, c)) = χ(g3(x, c)) = 1. Now, from (x, c) ∈ S̄01

01, we deduce
that either

χ(x−1−c) = 1 or χ(x − xc − c) = 1. (4-1)
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In the former case, the requirement for (x, c) to be in S̄01
11 forces χ( f1(x, c)) = 1, whilst in

the latter case, the requirement for (x, c) to be in S̄01
00 forces χ( f4(x, c)) = −1. Of course,

it is also possible that both alternatives in Condition (4-1) are realized.
Analogously, (x, c) belongs to S̄10

10, so

χ(c−1−x) = 1 or χ(c − xc − x) = 1. (4-2)

In the former case, the requirement for (x, c) to be in S̄10
11 forces χ( f2(x, c)) = −1, whilst

in the latter case, the requirement for (x, c) to be in S̄10
00 forces χ( f3(x, c)) = 1.

Suppose that i = 1, . . . , 9 indexes the nine possibilities for the quadruple

(χ(c−1−x), χ(c − xc − x), χ(x−1−c), χ(x − xc − c)) (4-3)

that are consistent with Conditions (4-1) and (4-2). In each case, let Ji denote the
subset of {1, 2, 3, 4} consisting of those indices j for which χ( fj) is forced. Combining
the above observations, we see that there will be 4, 4, 1 cases, respectively, in which
|Ji| = 2, 3, 4.

By Theorem 3.1 and our assumptions, the list of polynomials (3-1) is square-free.
We can hence apply Theorem 1.6 for each of the nine possibilities for the quadruple
(4-3), prescribing χ(p(x)) for each polynomial p(x) in List (3-1) except for any fj with
j � Ji. We find that

|t2(c) − 4 · 2−13q − 4 · 2−14q − 1 · 2−15q|
� (
√

q + 1)(4 · 17 + 4 · 19 + 1 · 21)/2 + 21.

The result follows. �

PROPOSITION 4.3. Suppose that c and 1 − c are both nonzero squares in Fq and that c
fulfills Conditions (3-2)–(3-11). Then,

|t1,1(c) − 25 · 2−11q| � 96(
√

q + 1) + 21.

PROOF. The proof is similar to that of Proposition 4.2. Let us consider under which
conditions a pair (x, c) belongs to T1,1, where x is not a root of any polynomial in
List (3-1). For (x, c) to belong to each of the sets S̄10

01, S̄00
01 , S̄00

10 , S̄11
10, S̄11

01, S̄01
11, and

S̄10
00, it is necessary and sufficient that χ(x) = χ(c) = χ(1 − c) = χ(1 − x) = χ(c − x) =
χ(g2(x, c)) = 1 and χ(g4(x, c)) = −1. Also for (x, c) to be in S̄10

11 and S̄10
10 requires that

χ(c−1−x) = −1 or χ( f2(x, c)) = −1; and
χ(c−1−x) = 1 or χ(g3(x, c)) = −1 or χ(c − xc − x) = 1.

Both of these conditions are satisfied whenever χ(c−1−x)= −1 and χ(c − xc − x)= 1.
Each of the other three possibilities for the pair ( χ(c−1−x), χ(c − xc − x)) forces
exactly one of the conditions χ( f2(x, c)) = −1 or χ(g3(x, c)) = −1 to hold.

Similarly, for (x, c) to be in S̄01
00 and S̄01

01 requires that

χ(x−xc−c) = −1 or χ( f4(x, c)) = −1; and
χ(x−1−c) = 1 or χ(g1(x, c)) = 1 or χ(x − xc − c) = 1.
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Both of these conditions are satisfied whenever χ(x−1−c) = 1 and χ(x − xc − c) = −1.
Each of the other three possibilities for the pair (χ(x−1−c), χ(x − xc − c)) forces
exactly one of the conditions χ( f4(x, c)) = −1 or χ(g1(x, c)) = 1 to hold.

Suppose that i = 1, . . . , 16 indexes the 16 possibilities for the quadruple (4-3). Let
Ki denote the subset of { f2, f4, g1, g3} consisting of those polynomials p for which χ(p)
is forced. Combining the above observations, we see that there will be 1, 6, 9 cases,
respectively, in which |Ki| = 0, 1, 2. The values of χ(p) for p ∈ { f1, f2, f3, f4, g1, g3} \ Ki

are unconstrained. Hence, by applying Theorem 1.6 for each of the 16 possibilities for
the quadruple (4-3), we find that

|t1,1(c) − 1 · 2−9q − 6 · 2−10q − 9 · 2−11q|
� (
√

q + 1)(1 · 9 + 6 · 11 + 9 · 13)/2 + 21.

The result follows. �

We are now ready to prove the main result for this section.

THEOREM 4.4. For q ≡ 3 mod 4,

|σ(q) − 25(2−11+2−16)q2| < 138q3/2 + 235q.

PROOF. By [7, Theorem 10.5], there are (q − 3)/4 choices for c ∈ Fq such that both c
and 1 − c are nonzero squares. At most 1 + 4 + 1 + 3 + 2 + 3 + 0 + 2 + 3 + 3 = 22 of
these choices do not fulfill Conditions (3-2)–(3-11) of Theorem 3.1. (To see this, note
that χ(−1) = −1 and that if χ(c) = χ(1 − c) = 1, then χ(1 − 1/c) = −1, which means
that in any pair of reciprocal field elements, at most one of the elements will be
a viable choice for c. This is particularly useful because of the many polynomials
in Theorem 3.1 which form reciprocal pairs.) Each c that fails one of Conditions
(3-2)–(3-11) contributes between 0 and (q − 3)/2 elements (x, c) to T. Putting these
observations together with Propositions 4.2 and 4.3, we have that

||T2| − 25 · 2−15q(q − 3)/4|
� 165(

√
q + 1)(q − 3)/8 + 21(q − 3)/4 + 22(q − 3)/2,

||T1,1| − 25 · 2−11q(q − 3)/4|
� 96(

√
q + 1)(q − 3)/4 + 21(q − 3)/4 + 22(q − 3)/2.

Next, notice that it follows from Lemma 4.1 that |T1,1| = |T ′1,1| = |T1,−1| = |T ′1,−1| and
|T2| = |T ′2| and that T is the disjoint union of T1,1, T ′1,1, T1,−1, T ′1,−1, T2, and T ′2. Hence,

||T | − 25(2−16 + 2−11)q(q − 3)| � (q − 3)[(165/4 + 96)(
√

q + 1) + 195/2]

� q[138
√

q + 939/4].

The result then follows from simple rearrangement. �

COROLLARY 4.5. Let q run through all prime powers that are congruent to 3 mod 4.
Then limσ(q)/q2 = 25(2−11+2−16).
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5. When −1 is a square

Throughout this section, F = Fq will be a finite field of order q ≡ 1 mod 4. Our
broad strategy for obtaining an estimate of σ(q) is similar to that used in Section 4.
For i, j, r, s ∈ {0, 1}, define S̄rs

ij = S \ Srs
ij and put T =

⋂
S̄rs

ij . The set T will again be
expressed as a disjoint union of sets, the size of each of which can be estimated by
means of the Weil bound. Let ε = χ(x − y) and define

T1 = {(x, y) ∈ T : χ(1−x) = χ(1−y) = −ε};
T2 = {(x, y) ∈ T : χ(1−x) = ε and χ(1−y) = −ε}; and
T ′2 = {(x, y) ∈ T : χ(1−x) = −ε and χ(1−y) = ε}.

If ρj ∈ {−1, 1} for 1 � j � 4, then define

R( ρ1, ρ2, ρ3, ρ4) = {(x, y) ∈ T : ρj = ε χ( fj(x, y)) for 1 � j � 4};
R1( ρ1, ρ2, ρ3, ρ4) = T1 ∩ R( ρ1, ρ2, ρ3, ρ4); and
R2( ρ1, ρ2, ρ3, ρ4) = T2 ∩ R( ρ1, ρ2, ρ3, ρ4).

We write R( ρ̄) as a shorthand for R( ρ1, ρ2, ρ3, ρ4), where ρ̄ = ( ρ1, ρ2, ρ3, ρ4). We
record the following basic facts about the sets just defined.

LEMMA 5.1. Suppose ρj ∈ {−1, 1} for 1 � j � 4. The map (x, y) �→ ( y, x) induces
bijections that show that |R1( ρ1, ρ2, ρ3, ρ4)| = |R1( ρ2, ρ1, ρ4, ρ3)| and |T2| = |T ′2|.
Hence, |T | = |T1| + 2|T2|. The map (x, y) �→ (x−1, y−1) induces bijections that show
that |Ri( ρ1, ρ2, ρ3, ρ4)| = |Ri( ρ3, ρ4, ρ1, ρ2)| for i ∈ {1, 2}. Also, R( ρ1, ρ2,−1,−1) =
R(−1,−1, ρ3, ρ4) = ∅.

PROOF. By Proposition 2.3, we know that (x, y) �→ (x−1, y−1) permutes each of the sets
T1, T2, and T ′2, while (x, y) �→ ( y, x) permutes T1 and swaps T2 and T ′2. This gives
us a bijection between T2 and T ′2. Note also that T = T1 ∪ T2 ∪ T ′2 since χ(1−x) =
χ(1−y) = ε implies that (x, y) ∈ S00

00. Hence, |T | = |T1| + 2|T2|. The remaining claims
about bijections follow directly from the definitions of f1, f2, f3, and f4 in Equations
(2-6).

If (x, y) ∈ R( ρ1, ρ2,−1,−1), then χ( fj(x, y)) = −ε for both j ∈ {3, 4}. That implies
(x, y) ∈ S11

00, by Lemma 2.4. Hence, R( ρ1, ρ2,−1,−1) = ∅ and our bijection gives
R(−1,−1, ρ3, ρ4) = ∅. �

Our aim is to use the |Ri( ρ̄)| to estimate the size of T. We should note that T may
be a proper superset of

⋃
ρ̄ R( ρ̄). The (small) difference arises from the contribution to

T from roots of the polynomials fi (this contribution will be accounted for later, when
all roots are included as an error term in our bounds). Lemma 5.1 reduces the number
of |Ri( ρ̄)| that we need to estimate to only those ρ̄ shown in Table 1. The final column
of that table shows the multiplicity μ that we need to use for each |Ri( ρ̄)| to obtain
|⋃ρ̄ Ri( ρ̄)|. For example, R1(1, 1, 1,−1) has μ = 4 because Lemma 5.1 tells us that

|R1(1, 1, 1,−1)| = |R1(1, 1,−1, 1)| = |R1(1,−1, 1, 1)| = |R1(−1, 1, 1, 1)|.
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TABLE 1. Values of s(i, ρ̄) and associated parameters.

i ρ1 ρ2 ρ3 ρ4 s1 s2 s3 s4 ki(ρ̄) μ

1 1 1 1 1 1 1 1 1 4 1
1 1 1 1 −1 1 1 1 0 3 4
1 1 −1 1 −1 1 0 1 0 2 2
1 1 −1 −1 1 1 0 0 1 2 2
2 1 1 1 1 0 1 0 1 2 1
2 1 1 1 −1 0 1 0 0 1 2
2 1 −1 1 −1 0 0 0 0 0 1
2 1 −1 −1 1 0 0 0 1 1 2
2 1 1 −1 1 0 1 0 1 2 2
2 −1 1 −1 1 0 1 0 1 2 1

LEMMA 5.2. Suppose that Condition (2-5) holds.

(i) If χ(x−1−y) = χ(x−xy−y), then (x, y) � S01
01. If χ((x−1−y)(x−xy−y)) = −1,

then there exist unique λ1, λ4 ∈ {−1, 1} such that (x, y) ∈ S01
01 if and only if

χ(gj(x, y)) = λj for j ∈ {1, 4}.
(ii) If χ( y−1−x) = χ( y−xy−x), then (x, y) � S10

10. If χ(( y−1−x)( y−xy−x)) = −1,
then there exist unique λ2, λ3 ∈ {−1, 1} such that (x, y) ∈ S10

10 if and only if
χ(gj(x, y)) = λj for j ∈ {2, 3}.

PROOF. Only case (i) needs to be proved, because of the x↔ y symmetry. If
χ(x−1−y)=χ(x−xy−y), then (x, y)�S01

01 by Theorem 2.10. If χ((x−1−y)(x−xy−y))=−1,
then exactly one choice of ( χ(g1(x, y)), χ(g4(x, y)) makes (x, y) an element of S01

01, again
by Theorem 2.10. �

Consider (x, y) ∈ Ri( ρ̄) for a particular i ∈ {1, 2} and ρ̄. Membership of Ri( ρ̄) implies
values for χ(1−x), χ(1−y), and ρj for 1 � j � 4. Also, (x, y) must belong to the sets S̄01

11,
S̄10

11, S̄10
00, and S̄01

00, which implies that some of the elements x−1−y, y−1−x, y−xy−x, and
x−xy−y have to be nonsquares, while for the others no such condition is imposed.
Record this into a quadruple s(i, ρ̄) = (s1, s2, s3, s4), where sj ∈ {0, 1} for 1 � j � 4.
Here, s1 = 1, s2 = 1, s3 = 1, and s4 = 1 mean, respectively, that the presence of (x, y)
in Ri( ρ̄) forces x−1−y, y−1−x, y−xy−x, and x−xy−y to be nonsquare. For each i and
ρ̄, the value of the vector s(i, ρ̄) is given in Table 1. Furthermore, ki( ρ̄) will be used to
denote the number of indices j for which sj = 1 in s(i, ρ̄).

As an example, consider R2(1, 1, 1, 1). In this case, χ( fj(x, y)) = ε for all j ∈
{1, 2, 3, 4}. Since χ(1−x) = ε, (x, y) � S01

11 and (x, y) � S10
00. Therefore, s1 = s3 = 0. Since

χ(1−y) = −ε, we must have χ( y−1−x) = −1 if (x, y) is to belong to S̄10
11. Therefore,

s2 = 1. Similarly, s4 = 1.
For c ∈ Fq, define t1(c) = |{x ∈ Fq : (x, c) ∈ T1}| and t2(c) = |{x ∈ Fq : (x, c) ∈ T2}|. In

the next two propositions, we seek estimates of these quantities. As in Section 4, we
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assume that Condition (3-3) holds which means that Condition (2-5) applies, enabling
us to use Theorem 2.10 and Lemma 5.2.

PROPOSITION 5.3. Suppose that c is a square satisfying Conditions (3-2)–(3-11).
Then,

|t1(c) − 169 · 2−14q| � (
√

q + 1)1161/2 + 21.

PROOF. Fix c satisfying Conditions (3-2)–(3-11) and consider a candidate (x, c) for
membership in T1. As we did in Proposition 4.2, we include the term 21 in our bound
and then for the remainder of the proof, we may assume that x is not a root of any
polynomial in List (3-1).

Our goal is to estimate the c-slice of R1( ρ̄) for each ρ̄. We start with a list of
polynomials that guarantee the presence of (x, c) in S̄00

00, S̄00
11 , S̄11

00, S̄01
11, S̄10

11, S̄10
00, and

S̄01
00. These polynomials are x, 1−x, c−x, fj(x, c), 1 � j � 4, and those of x−1−c, c−1−x,

c−cx−x, and x−cx−c for which the corresponding value of sj in s(i, ρ̄) is equal to 1. In
this way, we obtain a list of 7 + k1( ρ̄) polynomials of cumulative degree 11 + k1( ρ̄),
for k1( ρ̄) as shown in Table 1.

It only remains to ensure that (x, c) is in S̄01
01 and S̄10

10. The c-slice of R1( ρ̄) forks into
several disjoint subsets, according to Lemma 5.2. The forking induced by S̄01

01 depends
upon (s1, s4), while the forking induced by S̄10

10 depends upon (s2, s3). It is thus possible
to describe only the former and obtain the latter by exploiting the (x, y)↔ (x−1, y−1)
symmetry between S̄01

01 and S̄10
10.

If s1 = s4 = 1, then there is no forking since this suffices to conclude that (x, y) �
S01

01.
If s1 + s4 = 1, then one of χ(x−1−c) = −1 and χ(x−xc−c) = −1 is mandated, and

there are four forks. One of them specifies the character of only one extra polynomial
to ensure that χ(x−1−c) = χ(x−xc−c) = −1. Each of the other three forks imposes
restrictions on three polynomials, as it establishes first that χ(x−1−c) = −χ(x−xc−c)
and then imposes values on χ(g1(x, c)) and χ(g4(x, c)). By Lemma 5.2, there are three
possibilities to consider for the pair (χ(g1(x, c)), χ(g4(x, c))), which thus give us the
three forks.

The forking of the case s1 + s4 = 1 will be recorded by (1, 1) | (3, 4)3. This means
that the first fork needs one additional polynomial of degree one, while the other three
forks need three polynomials of cumulative degree 4.

If s1 = s4 = 0 then there are seven forks. One imposes that χ((x−1−c)(x−xc−c)) = 1
(which ensures that χ(x−1−c) = χ(x−xc−c)), while each of the other six establishes
first the (different) values of χ(x−1−c) and χ(x−xc−c), and then the values of
χ(g1(x, c)) and χ(g4(x, c)). Symbolically, this gives (1, 2) | (4, 5)6.

Let us use • to express the composition of two independent forkings. Thus,

(k1, d1)m1 | · · · | (ka, da)ma • (k′1, d′1)m′1 | · · · | (k′b, d′b)m′b

is a list of alternatives (ki + k′j , di + d′j )
mim′j , where 1 � i � a and 1 � j � b.
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Our observations above allow us to symbolically describe polynomial lists for each
of the sets R1( ρ̄). We have

R1(1, 1, 1, 1) : (11, 15),

R1(1, 1, 1,−1) : (10, 14) • (1, 1) | (3, 4)3 = (11, 15) | (13, 18)3,

R1(1,−1, 1,−1) : (9, 13) • (1, 1) | (3, 4)3 • (1, 1) | (3, 4)3 = (11, 15) | (13, 18)6 | (15, 21)9,

R1(1,−1,−1, 1) : (9, 13) • (1, 2) | (4, 5)6 = (10, 15) | (13, 18)6.

Combining this information with the last column of Table 1, we reach a symbolic
description of the polynomials contributing to t1(c) that contains (10, 15) with
multiplicity 2, (11, 15) with multiplicity 1 + 4 + 2 = 7, (13, 18) with multiplicity
4 · 3 + 2 · 6 + 2 · 6 = 36, and (15, 21) with multiplicity 2 · 9 = 18. In each case, the
list of polynomials involved is square-free, by Theorem 3.1. Hence, we may apply
Theorem 1.6 to find that

|t1(c) − α1q| � (
√

q + 1)D1/2 + 21,

where α1 = 2 · 2−10 + 7 · 2−11 + 36 · 2−13 + 18 · 2−15 = 169 · 2−14, and the cumulative
degree of our polynomials is D1 = 9 · 15 + 36 · 18 + 18 · 21 = 1161. �

PROPOSITION 5.4. Suppose that c is a square satisfying Conditions (3-2)–(3-11).
Then,

|t2(c) − 49 · 2−11q| � (
√

q + 1)4455/2 + 21.

PROOF. The proof follows the same lines as that of Proposition 5.3. The symbolic
description of the forks is

R2(1, 1, 1, 1) : (9, 13) • (1, 1) | (3, 4)3 • (1, 1) | (3, 4)3

= (11, 15) | (13, 18)6 | (15, 21)9,

R2(1, 1, 1,−1) : (8, 12) • (1, 1) | (3, 4)3 • (1, 2) | (4, 5)6

= (10, 15) | (12, 18)3 | (13, 18)6 | (15, 21)18,

R2(1,−1, 1,−1) : (7, 11) • (1, 2) | (4, 5)6 • (1, 2) | (4, 5)6

= (9, 15) | (12, 18)12 | (15, 21)36,

R2(1,−1,−1, 1) : (8, 12) • (1, 1) | (3, 4)3 • (1, 2) | (4, 5)6

= (10, 15) | (12, 18)3 | (13, 18)6 | (15, 21)18,

R2(1, 1,−1, 1) : (9, 13) • (1, 1) | (3, 4)3 • (1, 1) | (3, 4)3

= (11, 15) | (13, 18)6 | (15, 21)9,

R2(−1, 1,−1, 1) : (9, 13) • (1, 1) | (3, 4)3 • (1, 1) | (3, 4)3

= (11, 15) | (13, 18)6 | (15, 21)9.
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Combining this information with the last column of Table 1, we reach a sym-
bolic description of the polynomials contributing to t2(c) that contains (9, 15) with
multiplicity 1, (10, 15) with multiplicity 2 · 1 + 2 · 1 = 4, (11, 15) with multiplicity
1 + 2 · 1 + 1 = 4, (12, 18) with multiplicity 2 · 3 + 12 + 2 · 3 = 24, and (13, 18) with
multiplicity 6 + 2 · 6 + 2 · 6 + 2 · 6 + 6 = 48, and (15, 21) with multiplicity 9 + 2 · 18 +
36 + 2 · 18 + 2 · 9 + 9 = 144. Combining Theorem 3.1 and Theorem 1.6, we find that

|t2(c) − α2q| � (
√

q + 1)D2/2 + 21,

where α2 = 2 · 2−9 + 4 · 2−10 + 4 · 2−11 + 24 · 2−12 + 48 · 2−13 + 144 · 2−15 = 49 · 2−11,
and the cumulative degree of our polynomials is D2 = 9 · 15 + 72 · 18 + 144 · 21 =
4455. �

We are now ready to prove the main result for this section.

THEOREM 5.5. If q ≡ 1 mod 4, then

|σ(q) − 953 · 2−15 q2| < 2518q3/2 + 2623q.

PROOF. There are (q − 3)/2 choices for a square c ∈ Fq satisfying c � {0, 1}. At most,
49 of these choices do not fulfill Conditions (3-2)–(3-11) of Theorem 3.1. Each
c that fails one of Conditions (3-2)–(3-11) contributes between 0 and (q − 3)/2
elements (x, c) to T. Putting these observations together with Proposition 5.3 and
Proposition 5.4, we have that

||T1| − 169 · 2−14q(q − 3)/2| � 1161(
√

q + 1)(q − 3)/4 + 21(q − 3)/2 + 49(q − 3)/2,

||T2| − 49 · 2−11q(q − 3)/2| � 4455(
√

q + 1)(q − 3)/4 + 21(q − 3)/2 + 49(q − 3)/2.

Next, by Lemma 5.1, we know that |T | = |T1| + 2|T2|, so

||T | − (169 · 2−15 + 49 · 2−11)q(q − 3)|
� (q − 3)[(1161/4 + 4455/2)(

√
q + 1) + 105]

< q[2518
√

q + 10491/4].

The result then follows from simple rearrangement. �

COROLLARY 5.6. Let q run through all prime powers that are congruent to 1 mod 4.
Then limσ(q)/q2 = 953/215.

6. Concluding remarks

Theorems 4.4 and 5.5 give formulas that can be used as estimates ofσ(q) for large q.
We did not work hard to optimize the constants in the bounds. Even if we had, the
number of applications of the Weil bound is too big to allow the estimates to be useful
for small q. However, for large q, our results show that maximally nonassociative
quasigroups can be generated via random sampling. If (a, b) is chosen uniformly at
random from Σ(Fq), then it can quickly be checked (using O(1) evaluations of χ, as
shown in Theorems 2.10 and 2.11) whether Qa,b is maximally nonassociative, and the
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probability of success is bounded away from zero. We thus have a computationally
realistic method of generating random maximally nonassociative quasigroups of large
orders. This might be of interest, given the cryptographic applications [10].

The approach that we have used in this paper might be adapted to resolve [3,
Conjecture 5.10], which is concerned with the density of parameters that yield a
maximally nonassociative quasigroup when constructing such a quasigroup by means
of a nearfield.

In a future paper, we plan to consider how many different isomorphism classes are
represented by the maximally nonassociative quasigroups generated from quadratic
orthomorphisms. To answer this question requires theory to be developed on when
different quadratic orthomorphisms generate isomorphic quasigroups (which is a
question of independent interest). Some limited circumstances where different ortho-
morphisms create isomorphic quasigroups are already known [16]. In particular,
we know that Qa,b � Qb,a (see Lemma 2.1(i)), and that Qa,b � Qap,bp in any field
of characteristic p. We expect these to generate the only isomorphisms that affect
the asymptotics. In other words, we conjecture that the number of quasigroups
(up to isomorphism) is asymptotic to σ(q)/(2 logp q), where σ(q) is estimated by
Theorems 4.4 and 5.5.

In our analysis leading to our main results, we discarded all roots of the polynomials
in List (3-1). Bajtoš [1] has investigated these cases by finding the asymptotic number
of solutions to t(x, y) = 0 when t is one of the polynomials x−1−y, x−xy−y, y−1−x,
y−xy−x, fj(x, y), or gj(x, y) for 1 � j � 4. For each of these polynomials, Bajtoš
determines the density of parameters (a, b) that yield a maximally nonassociative
quasigroup. The density is measured with respect to the size of the set of all
(a, b) for which the given polynomial gives zero, with x = a/b and y = (1−a)/(1−b).
For each polynomial, that set has size asymptotically equal to q/4. Because of
symmetry and reciprocity of polynomials, it suffices to investigate cases (a) x−1−y, (b)
x2+y2−xy−x, and (c) x2+y−2x. In case (a), the obtained densities are ≈ 0.109, 0.219,
0.031, and 0.047, with q ≡ 1, 5, 3, 7 mod 8, respectively. For case (b), the densities
are 0.109 and 0.082, q ≡ 1, 3 mod 4. Case (c) yields 0.156, 0.172, 0.047, and 0.031,
for q ≡ 1, 5, 3, 7 mod 8. These numbers thus give probabilities of finding a maximally
nonassociative quasigroup by a random choice, for each of the investigated cases. In
the general case, these probabilities are ≈ 0.116 and 0.050 for q ≡ 1, 3 mod 4 (compare
with the comments following Theorem 1.1).

Maximally non-associative quasigroups minimize the number of associative triples.
Gowers and Long [9] consider another measure of how associative a quasigroup is,
which they call its number of ‘octahedra.’ Several interesting connections between
the number of octahedra and the number of associative triples are shown in their work,
although they concentrate on quasigroups which are in some sense close to associative.
Subsequently, Kwan et al. [12] considered the typical number of octahedra in a random
quasigroup and asked a question regarding how few octahedra a quasigroup of order n
can have. The maximally nonassociative quasigroups that we have constructed may be
useful in answering that question, but the connection requires further investigation.
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Another open question is how few nonassociative triples loops (quasigroups with
identity) can have. It is not difficult to show that a loop of order n has to possess at least
3n2 − 3n + 1 associative triples. However, presently, no loop with less than 3n2 − 2n
triples seems to be known. In [2], quadratic orthomorphisms were used to construct
loops of order n = p + 1, for a prime p � 13, that have exactly 3n2 − 2n associative
triples. The chosen method failed for p = 19. That case was solved by means of a
ternary orthomorphism, which leads us naturally to our last research direction.

The question of when maximally nonassociative quasigroups can be generated by
orthomorphisms that are not quadratic is wide open. Some examples are given in [2, 6].
Perhaps the next case to study would be orthomorphisms that are cyclotomic but not
quadratic. We finish with some examples of this type that produce maximally nonasso-
ciative quasigroups. Each orthomorphism is given as a permutation in cycle notation.
We have (1,3,8)(2,13,5)(4,12,15)(6,7,11,10)(9,16,14), a quartic orthomorphism in F17,
(1,2,15)(3,13,11)(4,18,17)(5,9,12)(6,8,16)(7,14,10), a cubic orthomorphism in F19, and
(1,3,15)(2,10,7)(4,17,9,5,6,16)(8,12,18)(11,14,13), a sextic orthomorphism in F19.
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