UNBOUNDED VECTOR MEASURES

William Byers

Introduction. The aim of this paper is to extend the
idea of a measure which takes on values in Euclidean n-space
so as to allow it to assume infinite values while preserving its
countable additivity over a given o-ring. Itis shown that in
order to do this it is necessary to restrict the range of the
measure to one infinite value.

Liapounoff [1] and Halmos [2] have shown that the range of
a non-atomic bounded vector measure is convex and that the
range of any bounded vector measure is closed. Itis shown here
that while the former result remains true for unbounded vector
measures, the latter does not.

Discussion. Let R be the space of real numbers and

let E' be Euclidean n- space regarded as a normed n-dimen-

sional vector space. Since all norms on E” are equivalent, we
shall employ the Euclidean norm in all of the following without
any loss of generality.

We construct a completion of ok by adjoining to it n
infinite points @ corresponding to each of the points a ¢ E
with Ha || =1 sothat aw = lim Bk in a suitable sense,

n k-0
where Bk e E

The set D" = {xe E": [Ix]] < 1} is a compactification

of EIl under the map
(=) = x/ (| |x]| +1)

of E” into D". Let T be the completion of E" given by
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T=Eg" U{aoo:aeEn, [le]|] =1}.

We shall describe the topology on T by giving a neigh-
bourhood base for each of its points. The base for a point

x ¢ E™ is that of the usual topology on En, while the neighbour-
hood base for a point a% consists of the sets of the form

Vi e) = {xeE: [ |x] | >k [[x/][x]] - el <e}ylpe|[B-al[<E}

where k,e are arbitrary positive numbers. This enables us to

. n .
extend the notion of convergence in E to T. Furthermore if
the function g is defined by

g(x) = £(x), x e E" and g(ao) = o,

then g is a homeomorphism of T onto D" where D" is
provided with the usual topology.

Let X be a space and let S be a o-ring of subsets of X.
Let p be a function defined on the sets of S which takes on
values in T. We shall always assume that p is countably
additive on sets of finite measure; i.e., if E¢S, |[u(E)]||< o
22}

and E = [ En is a decomposition of E into disjoint measure-

n=1
able sets of finite measure, then
o0
p(E) = Z w(E).
n
n=14

We shall also assume that p(¢) = 0 where ¢ denotes the empty
set and 0 is the null vector, and that the function p is strongly
o-finite, i.e., if E ¢ S then there exists a sequence {E } of
—_— n

e}
disjoint measurable sets of finite measure such that E = U E

n=1 n

We shall make the following operational definitions for the

use of the symbol qow: w

(1a) @w + aw =g w; (1b) Z (o) = ax;
n=1

(2) A(@w) = a0, where A e¢R, A >0;

(3) @w + x =amw, where xeE" .
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Definition 1. Let E e¢S. We say that u(E) = aw if, for
every countable disjoint decomposition of E into measurable

0
sets, E = nlEJi En, satisfying Hp(En)H<co, n=1,2,... we
have:
N
(1) []Z WE)||> o as N->w
n=1 n
and
N N
(2) T wWE)/ ||Z WE)]|=> e as N - o.
n=1 n n=14 n

Since p is strongly o-finite over S, each set with
measure o has at least one such decomposition. If the limit
in (2) does not exist for some decomposition, the function u
will not be a measure on S.

LEMMA 2. Consider a sequence {xn} of vectors in

E" such that:

(3) xn/Han*a as n—>
and
(@ [l 1= as nvo.

Let z be a fixed vector. Then

(5) () |lx_+zl]==

(6) ) = 17 1= 42l =1,

(7) (@) G +2)/ |lx +2[] > a.
THEOREM 3. Suppose E and F are two disjoint

measurable sets such that u(E) = oo, p(F) = B0 (o # B). Then p
is not a measure on S.

Proof. Since p(E) = a0 and p(F) = Be, there exist
decompositions of E and F into disjoint measurable sets of

00 0

finite measure, E = U En and F = | Fn, satisfying
n=1 n=1

conditions (1) and (2).
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(a) We first show that ||u(EUF)|| cannot be finite. This
follows from (5) of Lemma 2, since there exists a strictly

increasing sequence {tk} of positive integers with
k b
|| = p(F) + = w(E) [l > & k=1,2,...
i=4 ! i=1

is a disjoint measurable decomposition of (E|JF) into sets of
finite measure and the measures of the sequence of partial sums
are unbounded.

(b) Suppose p(E{U F) = yo for some vy.

Let N be any positive integer and let z ¢ E” . From
Lemma 2 it follows that

k k
(8) [z + Zp(Ei)}/”z-f = p(Ei)H-'a as k- o
i=N i=N
and
k
(9) [|z+ = WE,) ||>w as k>
i=N !

The same result holds for F = U F .
n
n

Suppose Ha- [3” = 6> 0. Select ¢ such that 0< e <6§/2.
From condition (2) for the {En} , there exists N such that

N N
Me- = wE)/ || = WED] |]<e.
i=1 i=1 *

Let n, be the first such N. From the analogue of (8) for

F = UFn there exists an integer M such that
n

Ty M ™ M
-1 = w(E®)+ = wE® )2 wE)+ = wF) || []<e,
i=1 i=1 i=1 i=4 !
Let m1 be the first such M. Having chosen ni, - .,nk y
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mi, e, mk_1 , (8) implies that there exists an N > nk_1 such
that
et N T N
[la- [ 2 wF)+ 2 wEN/ ]2 wE)+ = wE) ][] <.
i=1 1=1 i=1 i=1

Let n be the first such N. Similarly we chose m, .

Thus we have arranged the two sequences {En} and {F_}
n

into a single sequence:

E,....E ,F ,...,F , E .,E ,F ) e
n mi-r-i

1 1 1 2

Rename these sets Hi' H ,H_,... while preserving the above

23
order. Then {Hn} no—oi is a sequence of disjoint sets of finite

measure whose unionis (E F).

n
Now it is obvious that the sequence {Z w(H.) /
i=1
o ©
[| = p(Hi) [} n=1 takes values in ¢-neighbourhoods of «
i=1 -
and B infinitely often, and since | I a- B ' ‘ =85 >2¢ the

sequence cannot converge. This contradicts the assumption
that p(EUF) = y o .

Thus we cannot define the measure of (E|J F) in such a
way as to be consistent with our previous definitions and therefore
i 1s not a measure on the o-ring S.

We have shown that in order for our set function u to be
defined on all sets of a o-ring S , it is necessary that p not
take on distinct infinite values at disjoint measurable sets.
Therefore we shall subsequently eliminate this situation from
our considerations and assume that non-finite disjoint measurable
sets have identical measures.

LEMMA 4. If E and F are measurable sets with
ECF, then ||u(F)|| < % implies |[u(E)]|] < .

Proof. The proof consists of assuming that p(E) = y
for some y. Then any decomposition of E into disjoint sets of
finite measure can be extended to a similar decomposition of F
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such that the norms of the partial sums of the sequence of

measures in unbounded. This would imply that | [u(F)[| =,
a contradiction, and therefore ||u(E)]|]| < c0.
LEMMA 5. If E and F are two disjoint measurable

sets with p(E) = u(F) = aw, then p(EUF) = aw.

Proof. By Lemma 4, p(EUF) cannot be finite.
)
Let EUF = U Hi be any decomposition of (E{J F) into
i=1
disjoint, measurable sets of finite measure. Let Ei =EN Hi

o0 co
and F =F(1H, i=1,2,... . Then E= |JE and F= JF,
i i . i . i
i=1 i=1
are decompositions of E and F respectively into disjoint sets
of finite measure and thus satisfy conditions (1) and (2). It will
)
suffice to prove that EU F = | Hi satisfies conditions (1) and
i=1

(2).

(a) If C is any e¢-cone about the direction vector a(i.e.,
C 1is the cone based at the origin each of whose generators
makes an angle of e¢ with the vector o) it is clear that

n n

r( U Ei) e C and p( U Fi) e C for n__>_N0 . Therefore
i=1 i=4
n n n

p( U E)) + p( U F.)=p( U H)e C for n> N , thatis,
=1} i=1 i=1 ©
n n

p(UHi)/Hp(U Hi)ll*a as n-—>o.
i=1 i=1

. n
(b) Also, since uf U Ei)' ( G Fi J¢ C for n> N , it follows that
- o0

i= i=1
the angle between these vectors is less than 2¢ (where 0 < ¢ <w/6)
n n
and so || Z p.(Ei)I [, || = p(F,)I | = © implies that
i=1 i=4 !
n
HZpE) ]~ o,
. i
i=1
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LEMMA 6. If E and F are two disjoint measurable
sets with w(E) = a0 and ||u(F)|]| <, then p(EUF) = aw .

Proof. The proof follows immediately from Definition 1.
Corollary to Theorem 3. If E and F are measurable

sets with p(E) = a0 and p(F) = o, where o #p, then p is
not a measure on the o-ring S.

Proof. We shall consider all possibilities for the
measures of the disjoint sets Ef1F, E-F, and F - E, wher:
p(E) = aw and p(F) = Bw, a# B. We only consider the case
where | [w(EN F)] | < w0, since all other cases follow in the same
general manner. :

I (i) ||u(E - F)|| <=, then
[WE)] = HWENF) +w(E - F)|| < [ [WENE)]| + | [u(E - F)|]<x,

which gives a contradiction. Therefore ||u(E - F)|| = © and
similarly |[u(F - E)|]| = .

(ii) p(E - F) = y&, for some vy, then Lemma 5
implies that p(E) = yo. Therefore y = . Similarly p(F - E) =pcw.
Thus (E - F) and (F - E) are disjoint, measurable sets with
different infinite measures and Theorem 3 then implies that p is
not a measure on S.

In the above manner the existence of two measurable sets
with different infinite measures always leads to the existence of
two disjoint sets with different infinite measures which
according to Theorem 3 implies that p is not a measure on S.
Thus the range of our measure cannot contain two different
infinite values if it is to be consistently defined on all sets of the
given o-ring. This situation motivates the following definition.

Definition 7. A set function p, defined ona o-ring S
with values in the space T, countably additive on sets of finite
measure, strongly o-finite, and assuming one and only one
infinite value (in the sense of Definition 1) will be called an
unbounded vector measure. We shall usually denote its unique
infinite value by a0 .

THEOREM 8. Let p be an unbounded vector measure
on the o-ring S. Since p is countably additive on sets of finite
measure, it is countably additive on all sets of S.
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Proof. The proof follows immediately from the
definition of an unbounded vector measure and from Lemma 4,
noting that we must make use of the operational definitions for
the use of the symbol aw which were adopted at the beginning
of the paper.

We now consider the possibility of extending the results
of Liapounoff [1] and Halmos [2] to the case of unbounded vector
measures.

Definition 9. If v is a signed (scalar) measure and E
is a measurable set, v(E) # 0, then E is called an atom of v
if FCE, F measurable, implies that v(F) = v(E) or v(F) = 0.

A bounded vector measure can be expressed in the form
TR (TR ..,p.n) where By is a signed measure i =1,...,n. It
1

is called non-atomic if none of its coordinates have any atoms.

An unbounded vector measure is said to be non-atomic if

(i) it is non-atomic on measurable sets of finite measure;

(ii1) p(E) = o implies there exists F CE, F ¢ S, such
that 0 < | |u(F)|]| < .

Definition 10. A half-cylinder on a set S contained in

E" is defined to be the set of all vectors of the form (x + Bt),
where xe¢S, t>0, and B is a fixed direction. An open half-
cylinder on a set S 1is the interior of the associated half-
cylinder.

LEMMA 11. Let A be an unbounded convex set in En.
Then there exists a translate of some m-dimensional vector
subspace of E" (1 < m<n) containing A such that A contains
a non-trivial open half-cylinder in the m-dimensional space.

Proof. Consider the set of all translates of vector

n . . s
subspaces of E which contain A. Select the one of minimal
dimension, m, and take this to be our space. Since A is
unbounded and the unit sphere is compact we can always find a

sequence {xn} n=1 of points belonging to A such that:

(10) Han-—»oo as n=-w
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and

(11) xn/ Han-' @ as n -, for some unit vector o.

There certainly exist m independent points of A,
Yi’ .. .,ym, such that the direction o does not lie in the hyper-
plane spanned by these points. Let H be the open half-cylinder

with base the simplex determined by the vertices YooY,

and extending to infinity in the direction «.
Let z be any point of H and let Ci’ i=1,...,m, be the
cone with base point Y all of whose generators make the same

angle with the vector o as does the line y.z. Then (10) implies
that !
x, ¢ interior C1 N -+ interior Cm

for all but finitely many of the members of the sequence {)ﬁ(} .
This fact and the convexity of A imply that z is contained in

A and therefore that H is a subset of A.

: n

Note. If A is an unbounded convex subset of E then

the above proof can easily be altered to show that for any vector
B in the interior of A or in the interior of A considered as a

subset of some translate of a vector subspace of E”, we have
(B +ta) e A, for all t> 0. The counter example given below
shows that this property need not extend to every point in A.

THEOREM 12. Let p be a non-atomic, unbounded
vector measure. Then

(a) if E and F are any two sets of finite measure, then
for each X\, 0 < A< 1, there exists a measurable set G(\) such
that

(G(\) = xp(E) + (1 - Np(F);

(b) if @w is contained in the range of p, then there exists
n
t >0 and a vector Be E such that (B +to) is contained in the
o
range of p for all t> to.
(These two properties may together be regarded as an
extension of the idea of convexity to the case of T, the com-

n
pletion of E defined above. Thus Theorem 12 states that the
range of a non-atomic, unbounded vector measure is a convex
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subset of T.)

Proof. (a) Since E and F have finite measure so
does EJF. Let p be the restrictionof p to (EUF). Then

Lemma 4 implies that § is a bounded vector measure(i. Thus
the result proved by Halmos in [2] shows that the range of . is
convex which implies (a).

(b) Decompose the range of w into the disjoint
union EiU EZ, where E1 consists of all the finite points and

EZ of all the infinite points in the range of p. Since E2 = {aw }

and each set of infinite measure can be decomposed into a
sequence of sets of finite measure satisfying

n n
[t U Ei)ll =]z H(Ei)ll - o,
i=1 i=1

E is an unbounded convex set. Thus Lemma 11 certainly
implies that E contains a half-line of the form

n
B+vyt t>to, B,ye E
However the range of an unbounded vector measure can only
tend to infinity in one direction, namely o. Therefore we must
have y =a, which concludes the proof of (b).

Counter Example 13. Here we give an example of an
unbounded vector measure whose range is not closed. For
convenience we give the example in the complex plane.

Let p be Lebesgue measure on the real line. Consider
the unbounded complex measure, v, given by

. 2
v(E) = fEmi’w) dp +1£n(1,w) [1/(1 +t%)] du .

Obviously v only takes on values in the first quadrant and tends
to infinity in the direction of the positive real axis. It may
easily be verified that v takes on values as close to any point
(x,0) on the positive real axis as we please. However v takes
on no values on the real axis other than the origin. Thus the
range of v is not closed.

1
( See Gould [5], page 195.
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