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Note on Legendre’s and Bertrand’s Proofs of the
Parallel-Postulate by Infinite Areas.

By Dr D. M. Y. SoMMERVILLE.

(Read and Received 8th December 1911).

One of the most plausible of the host of  proofs” that have
ever been offered for Euclid’s parallel-postulate is that known as
Bertrand’s,* which is based upon a consideration of infinite areas.
The area of the whole plane being regarded as an infinity of the
second order, the area of a strip of plane surface bounded by a
linear segment AB and the rays AA’, BB perpendicular to AB is
an infinity of the first order, since a single infinity of such strips
is required to cover the plane. On the other hand, the area
contained between two intersecting straight lines is an infinity of
the same order as the plane, since the plane can be covered by a
finite number of such sectors. Hence if AP is drawn making any
angle, however small, with AA’, the area A’AP, an infinity of
the second order, cannot be contained within the area A'ABB/, an
infinity of the first order, and therefore AP must cut BB, And
this is just Euclid’s postulate.
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Fig. 1.

* L. Bertrand, Développement nouveau de la partie ¢élémentaire des
mathématiques. Genéve, 1778., t. IL, p. 19.
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The fallacy consists in dealing with infinities as if they were
magnitudes of a definite size, whereas the whole question is one of
limits.

Without leaving the field of Euclidean geometry it is possible
to show that the order of infinity of the area included between two
rays proceeding from a point is a variable thing depending upon
the way in which the area grows. Thus, taking a line NY
and a point O, divide NY into an infinite number of equal parts at
A, B, C, .., and joint these points to O. The triangles NOA,
AOB, BOC, .., are all equal in area. Draw N'Y’ parallel to NY
and produce the rays from O to cut this linein N', A’, B, C', ....
Then the same thing holds for the triangles N'OA’, A'OB, ....
Let N'Y' move off to infinity, always remaining parallel to NY ;
we have then an infinite number of infinite sectorial areas round
O which are all equivalent, though the angles are all unequal and
ultimately tend to zero.

If the principles of hyperbolic geometry be assumed, let us
consider the area of a sector of a circle AA'P and of a strip
A'ABB’ bounded by the straight lines AB, AA’, BB’ and the arc
of a curve A'B’ equidistant from the base AB. (Fig. 1.)

The area of the circular sector of radius r and angle 6 in “circular
measure,” t.e. the measure in which 27 is the number of units in
four right angles, is 20&%sinh*/2k, where & is the space-constant.
And the area of the strip bounded by the equidistant curve is
kxsinhr/k, where AB=x. The ratio of these is 6k/x.tanhr/2k,
which tends to a finite limit 6k/z as r—»>». Thus the sector and
the strip appear to be infinities of the same order.

There still appears this paradox. If the area of the strip bears
a finite ratio to the area of the sector, and the area of the sector
bears a finite ratio to the area of the plane, the area of the strip
should bear a finite ratio to the area of the plane; and yet it
appears to require infinitely many identical strips laid side by side
to cover the plane. The following considerations throw a different
light upon this.

Consider any two strips whose bases are AB=z, CD=y, and
let y>«. Place the strips with CC’ lying along AA’ and move the
second strip to the right until DD’ || BB'. This is possible, since
when CD lies on AB, DD’ does not meet BB’, and if CD is moved
sufficiently far to the right DD’ will cut BB/, as, for example, when
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D lies on BB. Now draw a line KK’ 1 AA’ and || BB'; this line
is also || DD’. The figures KABB' and KCDD' each have the
area }4’r, and each strip therefore has the area }i%r+ A'KK'.
Hence all strips have the same area.
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Fig. 2.

Again, the strip with the larger base can be placed so as to be
included in the strip with the smaller base. It is only necessary
to move CD until D lies on BB. In fact, any strip may include
an infinity of strips with the same base as its own. For KK’ may
be divided into an infinity of parts, each equal to AB, and these
form the bases of an infinity of strips, all of which are included
within the strip A’ABB'. And each of these again can contain
o strips all identical with the first, and so on, so that any strip
can contain o strips identical with itself.

Such paradoxical results show that the notion of equality of
infinite areas must be widely different from that of finite areas.
Paradoxes of an entirely similar character are familiar in the
theory of aggregates. Thus between the aggregate of all the
rational numbers and that of the positive integers a (1, 1) corres-
pondence can be established by arranging the rational numbers p/g
in rows such that in each row p+g¢ is constant. The number in
each row is finite, and so each rational number has a definite
numbered place. But, on the other hand, a (», 1) correspondence
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can also be established. For example, to the integer n can be
made to correspond the infinite aggregate of numbers p/n where
p is prime to n. Two such aggregates are said to be equivalent or
to have the same potency or cardinal number when there exists a
(1, 1) correspondence between them. The area of an infinite strip
is therefore analogous to the potency of an aggregate, and any two
strips are equivalent since a (1, 1) correspondence can be established
between pairs of equivalent elements.

These remarks have an interesting application to a proof of
Euclid’s axiom which was given by Legendre.* Desiring to
simplify Bertrand’s proof by considering only infinite strips or, as
he calls them, biangles, he proceeds as follows. AC, BD are two
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Fig. 3.

straight lines both perpendicular to AB, and therefore forming a
right biangle. At M, any point on AC, a perpendicular MN is
erected meeting BD in N. It is required to prove (1) MN =AB,
(2) MN L BD.

Join N to I, the middle point of AB, and produce it to cut AC
in P, and also backwards to Q so that NQ=NP, and through Q
draw GQY, making the angle GQN =QND. Also produce MN to
meet GY in G.

* A, M. Legendre, Réflexions sur différentes maniéres de démontrer la
théorie des paralléles ou la somme des trois angles du triangle. Paris, Mém.
Acad. sc. Inst., xii. (1833), 367-410. §§18-23.
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Then it is easily proved that the angle APN=BNP=DNQ=NQG;
the angle at G is a right angle, and NG =MN. Then the right
biangle CABD and the oblique biangle CPND are equivalent since
the triangles API and BNTI are congruent. So also the oblique
biangles CPND and DNQY are superposable, and therefore
equivalent, and the oblique biangle CPQY is equivalent to the
right biangle CMGY. 8o far, everything is in agreement with the
ideas of equivalence.

He proceeds. Hence CPQY, double of CPND, is equivalent
to CMGY, and consequently double of the right biangle whose
base is MN, half of MG. It follows from this that the oblique
biangle CPND, which is equivalent to the right biangle whose base
is AB, is equivalent also to the right biangle whose base is MN.
But two equal right biangles must have their bases equal. Hence
MN is equal to AB.

The second result, that MN j BD, follows easily from the
result that MN = AB.

On reading over this proof for the first time, I was struck by
what appeared to be a very crude argument in a circle. In
referring to the right biangle whose base is MN, Legendre appeared
to assume that CMND is a right biangle, that is, that MN | ND,
and this is only proved in the second part by the aid of the first
part. Such a striking example of a circulus in probando by one of
the foremost mathematicians appeared to me worthy of being
recorded, and I had prepared to bring it before the notice of the
members of this Society. On going more closely into the matter,
however, I discovered that the fallacy involved in Legendre’s proof
is of a much more subtle nature, and I therefore cancelled my
communication. Quite recently, however, I have come across a
criticism of this proof by H. Meikle,* in which he makes the same
mistake as I did, and I have therefore thought it worth while
bringing up the matter again and vindicating Legendre from the
charge of such an elementary fallacy.

The actual fallacy will be apparent in the light of the preceding
remarks. We may admit that the right biangle with base AB is
equivalent to the right biangle with base MN, as this in no way

* H, Meikle, On the theory of parallel lines. Edinburgh New Philos. J.,
xxxvi. (1844), p. 316.
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implies that CMND is the biangle in question; but we cannot
conclude that the bases AB and MN are therefore equal since we
have seen that any two right biangles are equivalent, whatever
be their bases.

It is only fair to add that Legendre perceived a difficulty in the
proposition that two right biangles with equal bases are equal, for
in ordinary geometry we have two such biangles CABD and
CMND, with equal bases, but unequal since one contains the other.
He explains this, however, in the usual way by remarking that
their difference is infinitesimal compared with either of them.
He did not appear to realise the difficulty in accepting the
converse theorem that equivalent biangles have their bases
equal. It is not necessary to go into non-Euclidean geometry to
obtain equivalent biangles with unequal bases. If we take any two
right biangles A'ABB’, P'PQQ), a (1, 1) correspondence can be
established between pairs of equivalent elements by dividing
AA’, PP into parts inversely as AB, PQ.

Legendre’s claim of having found at last ‘“a demonstration of
the theory of parallels, as simple as it is rigorous, and very suitable
for being introduced into the elements,” like all such claims before
or since, breaks down, and the only course where rigour is aimed at
is to state the assumptions clearly and frankly.
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