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Abstract

Assume that G is a solvable group whose elementary abelian sections are all finite. Suppose, further,
that p is a prime such that G fails to contain any subgroups isomorphic to Cp∞ . We show that if G is
nilpotent, then the pro-p completion map G→ Ĝp induces an isomorphism H∗(Ĝp, M)→ H∗(G, M) for
any discrete Ĝp-module M of finite p-power order. For the general case, we prove that G contains a
normal subgroup N of finite index such that the map H∗(N̂p, M)→ H∗(N, M) is an isomorphism for any
discrete N̂p-module M of finite p-power order. Moreover, if G lacks any Cp∞ -sections, the subgroup N
enjoys some additional special properties with respect to its pro-p topology.
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1. Introduction

A group with finite abelian section rank—referred to in [3] as an FAR-group—is a
group whose abelian sections each have finite torsion-free rank as well as finite p-rank
for every prime p. The present paper examines circumstances under which the
cohomology of a solvable FAR-group coincides with that of either its profinite or pro-p
completion. With regard to profinite completion, we establish the following theorem.

T 1.1. Assume that p is a prime and G a solvable FAR-group without any
subgroups isomorphic to Cp∞ . Then the profinite completion map G→ Ĝ induces an
isomorphism

H∗(Ĝ, M)→ H∗(G, M)

for any discrete Ĝ-module M of finite p-power order.

For a nilpotent FAR-group we prove the analogous result below concerning the
cohomology of its pro-p completion.
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T 1.2. Let G be a nilpotent FAR-group. Assume that p is a prime such that
G fails to contain any subgroups isomorphic to Cp∞ . Then the pro-p completion map
G→ Ĝp induces an isomorphism

H∗(Ĝp, M)→ H∗(G, M) (1.1)

for any discrete Ĝp-module M of finite p-power order.

If, in the above theorem, G were only assumed to be solvable rather than nilpotent,
then the map (1.1) might not be an isomorphism. Nevertheless, our next theorem
shows that, in this case, it is still possible to find a normal subgroup of finite index
with the same cohomology as its pro-p completion.

T 1.3. Let p be a prime. Assume that G is a solvable FAR-group without any
subgroups isomorphic to Cp∞ . Then G possesses a normal subgroup N of finite index
such that the canonical map

H∗(N̂p, M)→ H∗(N, M)

is an isomorphism for any discrete N̂p-module M of finite p-power order.

The above theorem is proved at the beginning of Section 3 of the paper. In the
remainder of that section, we examine more closely the phenomenon exemplified by
this theorem, namely, the presence in a solvable FAR-group of subgroups of finite
index that are blessed with rich, orderly pro-p topologies. Our final result is the
following elaboration of Theorem 1.3 for the case where G lacks any Cp∞-sections.

T 1.4. Assume that G is a solvable FAR-group. Let p be a prime such that G
does not have any sections isomorphic to Cp∞ . Then G contains a normal subgroup N
of finite index with the following three properties.

(i) For any section S of N, the canonical map

H∗(Ŝp, M)→ H∗(S , M)

is an isomorphism whenever M is a discrete Ŝp-module M of finite p-power order.
(ii) Each section of N is an extension of a p′-group by a residually p-finite group.
(iii) For any H ≤ N, the topology on H induced by the pro-p topology on N coincides

with the full pro-p topology on H.

Any nilpotent FAR-group without any Cp∞-sections satisfies properties (i), (ii), and
(iii). Hence Theorem 1.4 asserts the existence of a subgroup of finite index that,
although not necessarily nilpotent, exhibits three salient features of a nilpotent group
with regard to its pro-p topology. Like Theorem 1.3, this result was inspired by
the following theorem of Lennox and Robinson [3, 5.3.9]; indeed our choice of the
subgroup N coincides with theirs for the case of a residually finite minimax group.

T 1.5 (Lennox and Robinson). Assume that G is a residually finite solvable
minimax group. If p is a prime such that G does not contain any sections isomorphic
to Cp∞ , then G contains a normal subgroup N of finite index that is residually p-finite.
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For the special case of polycyclic groups, Lennox and Robinson’s result was first
proved by S̆mel’kin [7].

N  . A section of a group is a quotient of one of its subgroups.
If p is a prime, an abelian group is said to have finite p-rank if its p-torsion subgroup

is a direct sum of finitely many cyclic and quasicyclic groups.
If G is a solvable FAR-group, then its spectrum, denoted spec(G), is the set of all

primes p for which G has a section isomorphic to Cp∞ .
A solvable FAR-group is reduced if it does not contain any radicable subgroups.
If G is a group, the finite residual of G is the kernel of the profinite completion

map G→ Ĝ. Moreover, for any prime p, the p-residual of G is the kernel of the pro-p
completion map G→ Ĝp.

Let G be a group and p a prime. If H is a subgroup of G of finite index, we write
H ≤ f G (or H E f G if H is also normal). If H is a subgroup of G of finite p-power
index, we write H ≤p G (or H Ep G if H is also normal).

If H is a subgroup of G such that the topology on H induced by the profinite
topology on G coincides with the full profinite topology on H, then we say that H
is topologically embedded in G and write H ≤t G. Notice that the following three
statements are equivalent:

(1) H ≤t G;
(2) for every K E f H, there exists N E f G such that N ∩ H ≤ K;
(3) the map Ĥ→ Ĝ induced by the inclusion map H→G is an injection.

If H is a subgroup of G such that the topology on H induced by the pro-p topology
on G coincides with the full pro-p topology on H, then we say that H is topologically
p-embedded in G and write H ≤t(p) G. As above, we observe that the following three
statements are equivalent:

(1) H ≤t(p) G;
(2) for every K Ep H, there exists N Ep G such that N ∩ H ≤ K;
(3) the map Ĥp→ Ĝp induced by the inclusion map H→G is an injection.

If every subgroup of G is topologically p-embedded in G, then we say that the pro-p
topology on G is homogeneous, or that G is p-homogeneous.

2. The classes G(p) and G∗(p)

This paper is concerned primarily with the following class of groups.

D 2.1. Let p be a prime. Define G(p) to be the class of all groups G such
that, for each discrete Ĝp-module M of finite p-power order, the pro-p completion
map G→ Ĝp induces an isomorphism H∗(Ĝp, M)→ H∗(G, M).

Our main goal in this section is to show that, for any prime p, G(p) contains every
nilpotent FAR-group without any subgroups isomorphic to Cp∞ . In this endeavor, we
will employ the following simplification of the defining property for G(p).
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P 2.2. Let p be a prime. A group G belongs to G(p) if and only if,
for every trivial discrete Ĝp-module M of finite p-power order, the canonical map
H∗(Ĝp, M)→ H∗(G, M) is an isomorphism.

P. If M is a finite discrete Ĝp-module and N = CG(M), then there is an exact
sequence 1 −→ N −→G −→ Q −→ 1, where Q is a finite p-group. This yields an
exact sequence 1 −→ N̂p −→ Ĝp −→ Q −→ 1 of pro-p groups. Hence the proposition
follows immediately from the Lyndon–Hochschild–Serre (LHS) spectral sequences
for the two extensions. �

Closely related to the class G(p) is the class defined below.

D 2.3. Let p be a prime. Define G∗(p) to be the class of all groups G such
that, for each discrete Ĝ-module M of finite p-power order, the profinite completion
map G→ Ĝ induces an isomorphism H∗(Ĝ, M)→ H∗(G, M).

As a consequence of our theorem on nilpotent groups in G(p), we will deduce that
G∗(p) contains every solvable FAR-group that does not have any subgroups isomorphic
to Cp∞ .

In [6, Exercises 1 and 2, pp. 15–16], Serre provides an enlightening introduction
to groups that belong to G∗(p) for all primes p. He refers to such groups as ‘good
groups’, the appellation which inspired our designations G(p) and G∗(p). Using
Serre’s insights, Weigel [8, Proposition 3.1] establishes the following connection
between the classes G(p) and G∗(p).

L 2.4 (Weigel). Let G be a group and p a prime. If every subgroup of finite index
in G belongs to G(p), then G is contained in G∗(p).

In addition to G(p) and G∗(p) we will refer to two other classes of groups.

D 2.5. Let FS be the class of all groups G such that, for each n ∈ N, G has
only finitely many subgroups of index n.

D 2.6. Let FH be the class of all groups G such that, for any finite G-module
M, Hn(G, M) is finite for all n ≥ 0.

A group G is in the class FS if and only if the set Hom(G, F) is finite for every
finite group F. From this observation it is easy to see that FS is closed under
group extensions. Moreover, every solvable FAR-group has a normal series of finite
length whose factor groups are either infinite cyclic or torsion abelian FAR-groups.
Therefore, since the latter two sorts of groups are both in FS, we can quickly deduce
the following proposition.

P 2.7. Every solvable FAR-group belongs to FS.

From the LHS spectral sequence it is apparent that FH , too, is closed under group
extensions. As a result, using the same type of normal series as above, we can make
the following assertion.
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P 2.8 (Robinson [5, Lemma 4.4]). Every solvable FAR-group belongs
to FH .

P. The presence of a normal series of finite length whose factor groups are either
infinite cyclic or torsion abelian FAR-groups permits a reduction to the case of a
torsion abelian FAR-group. Let G be such a group and M a finite G-module. Without
incurring any significant loss of generality, we may make three further reductions:
(1) the action of G on M is trivial; (2) M has p-power order for some prime p;
(3) G �Cp∞ . Since integral homology commutes with direct limits, Hn(G) is a
p-group of rank one for n ≥ 1, making it either a finite cyclic p-group or a quasicyclic
one. In either case, it follows from the universal coefficient theorem that Hn(G, M) is
finite for n ≥ 1. �

R 2.9. Robinson’s proof of the above proposition differs slightly from ours and
reveals more about the cohomology of quasicyclic groups.

The relevance of FH to the study of the class G∗(p) is made clear by the following
lemma, gleaned from [6, Exercise 2, p. 16].

L 2.10 (Serre). Let 1 −→ N −→G −→ Q −→ 1 be a group extension in which
N ≤t G. Suppose, further, that N belongs to FH . If both N and Q are in G∗(p), then
G is contained in G∗(p).

P. A comparison of the LHS spectral sequences for 1 −→ N −→G −→ Q −→ 1
and 1 −→ N̂ −→ Ĝ −→ Q̂ −→ 1 yields the conclusion. �

When applying the above lemma it is essential that the normal subgroup be
topologically embedded in the group. One situation where this holds in a solvable
FAR-group is described below.

L 2.11. Let G be a solvable FAR-group and N EG. If N is closed in the profinite
topology on G, then N ≤t G.

P. Let K E f N. Take K′ to be the intersection of all the conjugates of K in G.
Then K′ EG. Moreover, since N belongs to FS, [N : K′] is finite. As a residually
finite group, G/N is reduced. Therefore, G/K′, too, is reduced, so that, by [3,
Corollary 5.3.2], it is residually finite. Thus there exists L E f G such that K′ ≤ L and
L ∩ N ≤ K′. It follows, then, that N ≤t G. �

Lemma 2.10 has the following pro-p analogue, proved in much the same way.

L 2.12. Assume that p is a prime. Let 1 −→ N −→G −→ Q −→ 1 be a group
extension in which N ≤t(p) G. Suppose, further, that N belongs to FH . If N and Q are
in G(p), then G belongs to G(p).

Lemma 2.12 requires that the normal subgroup in question be topologically
p-embedded in the ambient group. One pair of conditions that implies this property is
described below—similar observations may be found in [4].
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L 2.13. Assume that p is a prime. Let G be a group and A ≤ Z(G). If G/A belongs
to G(p), then A ≤t(p) G.

P. To begin with, we consider the case where A is a finite p-group. Set Q = G/A
and let ξ ∈ H2(Q, A) be the cohomology class of the extension 1 −→ A −→G −→
Q −→ 1. The group H2(Q̂p, A) is the direct limit of the cohomologies with coefficients
in A of all the p-finite quotients of Q. In view of the surjectivity of the map
H2(Q̂p, A)→ H2(Q, A), this means that there exists R Ep Q such that the image of ξ in
H2(R, A) is trivial. Thus we have U Ep G containing A such that U splits over A. Let
V ≤ U such that U = AV and A ∩ V = 1. Then V Ep U. Take N to be the intersection
of all the conjugates of V in G. Then N EG and N ∩ A = 1. Notice that each conjugate
of V in G is a normal subgroup of U with finite p-power index; also, there are only
finitely many such conjugates. These two observations together imply that [U : N] is
a finite p-power, so that N Ep G. It follows, then, that A ≤t(p) G. Now we treat the case
where A is an arbitrary abelian group. Let B ≤p A. By the first case, A/B ≤t(p) G/B.
Hence there exists M Ep G with M ∩ A ≤ B. Consequently, A ≤t(p) G. �

Lemmas 2.12 and 2.13 allow us to conclude that the class G(p) is closed under the
formation of certain central extensions.

P 2.14. Assume that p is a prime. Let 1 −→ A −→G −→ Q −→ 1 be a
central group extension such that A belongs to FH . If A and Q are both contained in
G(p), then G also belongs to G(p).

With the above closure property, we can establish that every torsion-free nilpotent
FAR-group is in G(p).

L 2.15. If G is a torsion-free nilpotent FAR-group, then G belongs to the class
G(p) for each prime p.

P. The group G has a central series whose factors are each torsion-free abelian
groups of rank one. Thus, in view of Proposition 2.14, it suffices to consider the case
where G is torsion-free abelian of rank one. Let M be a trivial discrete Ĝp-module of
finite p-power order. The cohomologies of any group and its pro-p completion with
trivial p-finite coefficients are always isomorphic in dimensions zero and one. Hence
we only need to look at cohomology in dimension n ≥ 2. Because Ĝp is either trivial
or isomorphic to Ẑp, Hn(Ĝp, M) = 0. Applying the universal coefficient theorem, we
obtain an exact sequence

0 // Ext(Hn−1(G), M) // Hn(G, M) // Hom(Hn(G), M) // 0.

Since G is a direct limit of infinite cyclic groups and homology commutes with direct
limits, Hn−1(G) is torsion-free. Hence Ext(Hn−1(G), M) = 0. In addition, we have
Hn(G) = 0, so that Hn(G, M) = 0. Therefore, H∗(Ĝp, M) � H∗(G, M). �

Before extending Lemma 2.15 to nilpotent FAR-groups without any
Cp∞-subgroups, we need to investigate FAR-groups that are both torsion and abelian.
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L 2.16. Let p be a prime. Assume that A is a torsion abelian group of finite
p-rank. If A fails to contain any subgroups isomorphic to Cp∞ , then A belongs to the
class G(p).

P. Let Ap and Ap′ be the p-torsion and p′-torsion subgroups, respectively,
of A. Assume that M is a discrete trivial Âp-module of finite p-power order. Then
H∗(A, M) � H∗(Ap, M). Therefore, since Âp = Ap, we have H∗(Âp, M) � H∗(A, M). �

Now we have everything in place to prove the first of our two theorems.

T 2.17. Let p be a prime. If G is a nilpotent FAR-group without any subgroups
isomorphic to Cp∞ , then G belongs to G(p).

P. We argue by induction on the nilpotency class of G. First we assume that
G is abelian. Let T be the torsion subgroup of G. Then T belongs to G(p) by
Lemma 2.16. Also, G/T is in G(p) by Lemma 2.15. Consequently, we can conclude
from Proposition 2.14 that G belongs to G(p). Next we consider the case where the
nilpotency class exceeds one. Initially, we suppose that G is residually finite. In this
case, Z(G) is a closed subgroup of G with respect to the profinite topology, implying
that G/Z(G) is residually finite. Therefore, by the inductive hypothesis, G/Z(G) is in
G(p). In addition, by the base case, Z(G) belongs to G(p). Proposition 2.14, then,
yields that G is contained in G(p). For the general case, we let R be the finite residual
of G. According to [3, 5.3.1], R is radicable. Moreover, by the residually finite case,
G/R is contained in G(p). Let T be the torsion subgroup of R. In a group that is
both radicable and nilpotent, all elements of finite order are contained in the center
(see [3, p. 98]). Hence T ≤ Z(R). Therefore, by Lemma 2.16, T belongs to G(p).
Also, R/T is in G(p) by virtue of Lemma 2.15. Invoking Proposition 2.14 once again,
we obtain that R belongs to G(p). Furthermore, as a radicable subgroup, R must be
topologically p-embedded in G. It follows, then, from Lemma 2.12 that G is inG(p). �

From Theorem 2.17 and Lemma 2.4 we obtain the following corollary.

C 2.18. Let p be a prime. If G is a nilpotent FAR-group without any
subgroups isomorphic to Cp∞ , then G belongs to G∗(p).

Corollary 2.18 allows us to prove our second theorem.

T 2.19. Assume that p is a prime. If G is a solvable FAR-group without any
subgroups isomorphic to Cp∞ , then G is contained in G∗(p).

P. The proof is by induction on the derived length. With the result already
established for G abelian, we proceed directly to the case where the derived length
of G is greater than one. First we suppose that G is residually finite. Let A be the
closure in the profinite topology of the last nontrivial group in the derived series of G.
Then A is abelian and, by virtue of Lemma 2.11, A Et G. By the base case, A is
in G∗(p); moreover, by the inductive hypothesis, G/A belongs to G∗(p). Lemma 2.10,
then, yields that G is in G∗(p). For the general case, we let R be the finite residual of G.
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Then G/R belongs to G∗(p) by the residually finite case. According to [3, 5.3.1], R is
both nilpotent and radicable. In view of Corollary 2.18, the former property implies
that R is in G∗(p). In addition, the radicability of R guarantees that R ≤t G. Hence G is
in G∗(p) by Lemma 2.10. �

R 2.20. The case of Theorem 2.19 where G is virtually torsion-free was first
proved by Kropholler [2].

We conclude this section with an example illustrating the necessity of the finite-rank
hypothesis in both Theorems 2.17 and 2.19.

E 2.21. Let G be the restricted direct product of countably many copies of C∞.
We will show that G is not contained in either G(p) or G∗(p) for any prime p. To
accomplish this, we employ the group Γ with the following presentation:

Γ = 〈a, x1, x2, . . . | a
p = 1; [a, xi] = 1, [xi, xi+1] = a,

and [xi, x j] = 1 for all i, j ∈ N with |i − j| , 1〉.

This group is nilpotent of class 2 and fits into a central extension 1→ 〈a〉 → Γ→

G→ 1. If G were in G(p), then, according to Lemma 2.13, Γ would necessarily
contain a normal subgroup of p-power index that intersected 〈a〉 trivially. We claim
that no such subgroup exists, implying that G must lie outside G(p). To establish
this, let N Ep Γ. Then xix−1

j ∈ N for some pair of distinct natural numbers i and j. If
j , i + 2, then

a = [xix
−1
j , xi+1] ∈ N.

Further, if j = i + 2, then
a = [xi+3, xix

−1
j ] ∈ N.

Thus our claim follows. A similar argument verifies that G is also not a member of
G∗(p). Moreover, our reasoning can be easily adapted to establish that the restricted
direct product of countably many copies of Cp is another example of an abelian group
outside both G(p) and G∗(p).

3. Subgroups of finite index with rich pro-p topologies

Our aim in this section is to find subgroups of finite index in a solvable FAR-
group that have pro-p topologies replicating the properties of the pro-p topology of a
nilpotent group. In our first theorem we establish that any solvable FAR-group without
Cp∞-subgroups has a subgroup of finite index in G(p).

T 3.1. Let p be a prime. Assume that G is a solvable FAR-group without any
subgroups isomorphic to Cp∞ . Then there exists N E f G such that every subgroup of
finite index in N belongs to the class G(p).
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P. First we treat the case where G is residually finite. We proceed by induction
on the derived length of G, the abelian case having already been established in
Theorem 2.17. For the inductive step, let A be the closure in the profinite topology
of the last nontrivial group in the derived series. Then A is an abelian characteristic
subgroup of G, and G/A is residually finite. By the inductive hypothesis, there exists
M E f G such that A ≤ M and every subgroup of M/A with finite index belongs toG(p).
Now we set N = CM(A/Ap). Then N E f G. We will prove that, in addition, A ≤t(p) N.
To begin with, we show by induction on i that N/Api

is in G(p) for each i ≥ 0. The case
for i = 0 follows from our selection of M. If i ≥ 1, we invoke the central extension

1 −→ Api−1
/Api
−→ N/Api

−→ N/Api−1
−→ 1,

deducing on the basis of Proposition 2.14 that N/Api
is in G(p). Since N/Api

belongs
to G(p) for all i ≥ 0, it follows from Lemma 2.13 that Api−1

/Api
is topologically

p-embedded in N/Api
for all i ≥ 1. Hence, for each i ≥ 1, there exists Ui Ep N such that

Api
≤ Ui and Ui ∩ Api−1

≤ Api
. For each k ∈ N, let Vk be the intersection of U1, . . . , Uk.

Then Vk Ep N and Vk ∩ A ≤ Apk
. Therefore, A ≤t(p) N. Now let H ≤ f N. Any subgroup

of finite index in an abelian group is topologically p-embedded; hence H ∩ A ≤t(p) A.
As a result, H ∩ A ≤t(p) H. Moreover, H/H ∩ A � HA/A ≤ f M/A, so that H/H ∩ A is
in G(p). Therefore, by Lemma 2.12, H is contained in G(p).

For the general case, we let R be the finite residual of G. By [3, 5.3.1], R is both
nilpotent and radicable. From the first property we can conclude that R belongs to
G(p). Moreover, the radicability of R ensures that it is topologically p-embedded in G.
By the residually finite case, G contains a normal subgroup N of finite index such that
R ≤ N and all the subgroups of N/R with finite index are in the class G(p). Suppose
that H ≤ f N. Then R ≤t(p) H, and H/R is in G(p). Therefore, by Lemma 2.12, H is
in G(p). �

In the remainder of this section, we discern the presence of subgroups of finite
index that share even more properties with nilpotent groups. Our goal is to prove the
following theorem.

T 3.2. Assume that G is a solvable FAR-group. For any prime p < spec(G),
there exists N E f G with the following three properties.

(i) Each section of N belongs to the class G(p).
(ii) The p-residual of any section of N is a p′-group.
(iii) The pro-p topology on N is homogeneous.

Before embarking on the proof of Theorem 3.2, we require some preliminary
lemmas concerning the pro-p topology of a group. The first of these is very simple to
deduce; hence we omit its proof.

L 3.3. Assume that p is a prime, G a group, and S a section of G. If G is
p-homogeneous, then so is S .
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L 3.4. Assume that G is a group in the class FS. Let p be a prime and N Ep G.
If N is p-homogeneous, then so is G.

P. Let H ≤G and K Ep H. Then

K ∩ N Ep H ∩ N ≤ N.

Since N is p-homogeneous, we have a subgroup L Ep N such that L ∩ H ≤ K. Let
L′ be the intersection of all the conjugates of L in G. Then L′ EG and L′ ∩ H ≤ K.
Moreover, each conjugate of L in G is normal in N with finite p-power index, and,
since G is in FS, there are only finitely many such conjugates. It follows, then, that
L′ Ep N, implying that L′ Ep G. Therefore, H ≤t(p) G. �

L 3.5. Let p be a prime. Assume that 1 −→ N −→G −→ Q −→ 1 is a short exact
sequence of groups such that N ≤t(p) G and G belongs to FS. If both N and Q are
p-homogeneous, then G is as well.

P. First assume that N is a finite p-group. Then there exists U Ep G such that
U ∩ N = 1. Since U is isomorphic to a subgroup of Q, it is p-homogeneous. Thus, by
Lemma 3.4, G is p-homogeneous.

Now we consider the general case. Let H ≤G and K Ep H. Then K ∩ N Ep H ∩ N.
Since N is p-homogeneous and N ≤t(p) G, there exists L Ep G such that L ∩ H ∩ N ≤
K ∩ N. Let M = N ∩ L. By the case proved above, G/M is p-homogeneous. Thus
there is a subgroup P Ep G such that M ≤ P and P ∩ HM ≤ KM. Suppose that
x ∈ P ∩ H. Then x = km for k ∈ K and m ∈ M. It follows that m ∈ H ∩ M, which
implies that m ∈ K. Consequently, P ∩ H ≤ K. Therefore, H ≤t(p) G. �

L 3.6. Let p be a prime. Assume that 1 −→ N −→G −→ Q −→ 1 is a short
exact sequence of groups such that N ≤t(p) G. If the p-residuals of both N and Q are
p′-groups, then the p-residual of G is also a p′-group.

P. Consider the commutative diagram

1 // N //

��

G //

��

Q //

��

1

1 // N̂p
// Ĝp

// Q̂p
// 1

with exact rows whose vertical maps are p-completion maps. Since the kernels of the
first and third vertical maps are both p′-groups, this holds for the second as well. �

Next we observe that any nilpotent FAR-group without p in its spectrum fulfills
properties (i), (ii), and (iii) of Theorem 3.2.

P 3.7. Let G be a nilpotent FAR-group and p a prime such that p < spec(G).
Then G satisfies the following three properties.
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(i) Every section of G is in G(p).
(ii) The p-residual of G is a p′-group.
(iii) The pro-p topology on G is homogeneous.

P. Property (i) follows at once from Theorem 2.17. To establish the other two
properties, we observe that the group G has a central series whose factor groups are
each either a copy of C∞ or a torsion abelian FAR-group without p in its spectrum.
Moreover, the latter two species of groups satisfy both (ii) and (iii). Therefore, by
Lemmas 2.13, 3.5, and 3.6, G satisfies (ii) and (iii). �

Now we are prepared to prove Theorem 3.2.

P  T 3.2. The argument proceeds very much like the proof of
Theorem 3.1. As before, we reason by induction on the derived length of G. Having
already disposed of the abelian case in Proposition 3.7, we assume that the derived
length of G exceeds one. Let A be the last term in the derived series of G. By the
inductive hypothesis, G contains a normal subgroup M of finite index such that A ≤ M
and M/A satisfies properties (i), (ii), and (iii). Again we take N = CM(A/Ap). As
argued in the proof of Theorem 3.1, we have that A ≤t(p) N. Therefore, by Lemma 3.5,
the pro-p topology on N is homogeneous. To verify the other two properties, let N̄ be a
section of N. Then N̄ fits into an extension of the form 1 −→ Ā −→ N̄ −→ N/A −→ 1,
where Ā and N/A are sections of A and N/A, respectively. Also, the p-homogeneity of
N ensures that Ā ≤t(p) N̄. Thus N̄ must be in G(p) by virtue of Lemma 2.12, and the
p-residual of N̄ is a p′-group in view of Lemma 3.6. �

R 3.8. We point out that a special case of Theorem 3.2 appears as [1,
Corollary 2.4]. There it is observed that a polycyclic group contains a normal subgroup
of finite index satisfying property (ii).
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