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Abstract

In this paper, we consider the following Robin problem:
−∆u =| x|αup, x ∈Ω,
u > 0, x ∈Ω,
∂u
∂ν

+ βu = 0, x ∈ ∂Ω,

where Ω is the unit ball in RN centred at the origin, with N ≥ 3, p > 1, α > 0, β > 0, and ν is the unit
outward vector normal to ∂Ω. We prove that the above problem has no solution when β is small enough.
We also obtain existence results and we analyse the symmetry breaking of the ground state solutions.
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1. Introduction

Let us consider the following problem:
−∆u = |x|αup, x ∈Ω,

u > 0, x ∈Ω,
∂u
∂ν

+ βu = 0, x ∈ ∂Ω,

(1.1)

where Ω is the unit ball in RN centred at the origin, with N ≥ 3, p > 1, α > 0, β > 0,
and ν is the unit outward vector normal to ∂Ω.

Problem (1.1) has different names depending on the different values of the
parameter β. It is called a Dirichlet problem if β = +∞, a Neumann problem if β = 0
and a Robin problem if 0 < β < +∞.
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When β = 0, it is trivial since by integration by parts we can easily prove that (1.1)
has no solution.

When β = +∞, (1.1) is reduced to the following problem:

− ∆u = |x|αup, x ∈Ω, u = 0, x ∈ ∂Ω. (1.2)

Equation (1.2) was proposed by Hénon in [12] when he studied rotating stellar
structures and is called the Hénon equation. A standard compactness argument shows
that the infimum

inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2 dx

(
∫

Ω
|x|α|u|p+1 dx)2/(p+1)

is achieved for any 1 < p < 2N/(N − 2) − 1 and α > 0. In 1982, Ni proved in [14] that
the infimum

inf
u∈H1

0,rad(Ω)\{0}

∫
Ω
|∇u|2 dx

(
∫

Ω
|x|α|u|p+1 dx)2/(p+1)

(1.3)

is achieved for any p ∈ (1, (N + 2 + 2α)/(N − 2)) by a function in H1
0,rad(Ω), the space

of radial H1
0(Ω) functions. Thus, radial solutions of (1.2) exist also for (Sobolev)

supercritical exponents p.
A natural question is whether any minimiser of (1.3) must be radially symmetric in

the range 1 < p < (N + 2)/(N − 2) and α > 0. For α > 0, since the function r 7→ rα is
increasing, neither rearrangement arguments nor the moving plane techniques of [9]
can be applied. Therefore nonradial solutions could be expected. Numerical solutions
obtained by Chen et al. [7] show that for fixed p ∈ (1, (N + 2)/(N − 2)) the ground state
solution of problem (1.2) is nonradial if α is large enough. Smets et al. also proved
in [17] some symmetry-breaking results for (1.2). They proved that minimisers of (1.3)
(the so-called ground state solutions, or least energy solutions) cannot be radial for α
large enough. As a consequence, (1.2) has at least two solutions when α is large. (See
also [18].)

Further results on problem (1.2) can be found in [4–6, 18] for residual symmetry
properties and asymptotic behaviour of ground states (for p→ (N + 2)/(N − 2), or
α→∞) and in [2, 15, 16] for existence and multiplicity of nonradial solutions for
critical, supercritical and slightly subcritical growth.

In [8], Gazzini et al. studied the Hénon equation with Neumann boundary
conditions 

−∆u + u = |x|αup, x ∈Ω,
∂u
∂ν

= 0, x ∈ ∂Ω,

u > 0, x ∈Ω.

(1.4)

They proved that for any p ∈ (1, (N + 2 + 2α)/(N − 2)), (1.4) also admits at least one
radial solution. They pointed out for any p ∈ (N/(N − 2), (N + 2)/(N − 2)), no ground
state solution of (1.4) is radial provided α is large enough.
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Compared with problems (1.2) and (1.4), there are few results on the Robin problem
for the Hénon equation. The purpose of this paper is to fill this gap and to point
out a series of new, interesting and unexpected phenomena that arise in passing from
problem (1.2) to problem (1.4).

To describe our results, we will investigate the functional Qα(u) : H1(Ω)→ R
defined by

Qα(u) =

∫
Ω
|∇u|2 dx + β

∫
∂Ω

u2 dσ

(
∫

Ω
|x|α|u|p+1 dx)2/(p+1)

.

We will describe as ‘ground states’ the functions that minimise Qα over H1(Ω), while
we reserve the term ‘radial minimiser’ for functions that minimise Qα over H1

rad(Ω).
The first result of this paper can be stated as the following theorem.

T 1.1. If 1 < p < (N + 2)/(N − 2) then there exists a positive number β∗ such
that (1.1) has no solution for any β ∈ (0, β∗).

The second result concerns the existence of a solution to (1.1). It may be presented
as follows.

T 1.2. If β > β∗, for any α > 0 and p ∈ (1, (N + 2 + 2α)/(N − 2)), there exists
u ∈ H1

rad(Ω) such that
Qα(u) = inf

v∈H1
rad(Ω)\{0}

Qα(v).

A suitable multiple of u is a classical solution of (1.1).

The purpose of this paper is to study the symmetry properties of the ground states
as α→∞. The final result is as follows.

T 1.3. If β > β∗, for any p ∈ (N/(N − 2), (N + 2)/(N − 2)), no ground state of
Qα is radial provided α is large enough.

R 1.4. Theorems 1.2 and 1.3 give a multiplicity result: for every p ∈ (N/(N − 2),
(N + 2)/(N − 2)) and α large enough, (1.1) admits at least two solutions. One is radial
and the other is the (nonradial) ground state.

This paper is organised as follows. In Section 2 we study the nonexistence result
of (1.1). In Section 3 we establish the main existence result and carry out the
asymptotic analysis of radial minimisers.

2. The proof of Theorem 1.1

Before giving our proof, we need the following lemmas.

L 2.1. If u is a nonnegative solution of the equation

−∆u = up, x ∈ RN ,

with 1 < p < (N + 2)/(N − 2), then u ≡ 0.
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L 2.2. Let u(x) be a nonnegative solution of

−∆u = |x|αup, x ∈ RN ,

with N ≥ 3, α > −2 and p satisfying 1 < p < (N + 2)/(N − 2), p , (N + 2 + 2α)/
(N − 2). Then u ≡ 0.

Lemmas 2.1 and 2.2 are proved in [10].

L 2.3. If α > 0, 1 < p < (N + 2)/(N − 2), for β small enough, then there exists a
number M > 0 independent of β such that any solution u = uβ of (1.1) satisfies

‖u‖L∞(Ω̄) ≤ M.

P. Suppose that the conclusion is not true. Then there exist a sequence β j→ 0
as j→∞, a corresponding sequence of solutions u j = uβ j of (1.1) with β = β j and a
sequence of points x j ∈ Ω̄ such that

M j = ‖u j‖L∞(Ω̄) = u j(x j)→∞, as j→∞.

Suppose that for a subsequence of j as j→∞, x j→ x0 ∈ Ω̄. Here our reduction
procedure breaks down into three cases: (1) x0 ∈Ω, x0 , 0; (2) x0 ∈ ∂Ω; (3) x0 = 0.
Cases (1) and (2) will be treated simultaneously; case (3) is slightly harder and is
treated separately.

Cases (1) and (2). Let λ j be a sequence of positive numbers defined by λ2/(p−1)
j M j =

1 and y = x − x j/λ j. Define scaled functions

v j(y) = λ
2/(p−1)
j u j(x)

and the domain Ω j = {y ∈ RN | λ jy + x j ∈Ω}. Since M j→ +∞, we have λ j→ 0 as
j→ +∞. It is easy to see that v j(y) satisfies

−∆v j = |λ jy + x j|
αvp

j , y ∈Ω j,
∂v j

∂ν
+ β jλ jv j = 0, y ∈ ∂Ω j,

0 < v j ≤ 1, v j(0) = 1, y ∈Ω j.

Let 2d denote the distance of x0 to ∂Ω. For large j, v j(y) is well defined in the ball
Bd/λ j (0), and

sup
y∈Bd/λ j (0)

v j(y) = v j(0) = 1.

Since 0 < v j(y) ≤ 1, given any radius R such that BR(0) ⊂ Bd/λ j (0), by the Lp estimates
in the theory of elliptic equations (see [13]), we can find uniform bounds for
‖v j‖w2,p(BR(0)), p > N. Choosing j large enough, we obtain by Morrey’s theorem [13]
that ‖v j‖C2,γ(BR(0)), 0 < γ < 1, is also uniformly bounded. Hence we may have

v j→ v in w2,p ∩C1,γ (p > N, 0 < γ < 1) on BR(0)
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for j large enough. Furthermore, since y ∈ BR(0),

λ jy + x j→ x0 as j→∞.

As in [13], we may assume that {v j} converges uniformly on any compact domain of
D (RN or RN

+ ) to a function v. Then v(y) is a solution of
−∆v = |x0|

αvp, y ∈ D,
∂v
∂ν

= 0, y ∈ ∂D (D = RN
+ ),

0 < v ≤ 1, v(0) = 1, y ∈ D.

If D = RN , then ṽ = |x0|
α/(p−1)v satisfies
−∆ṽ = ṽp, y ∈ RN ,

ṽ > 0, y ∈ RN ,

ṽ(0) = |x0|
α/(p−1).

This contradicts Lemma 2.1.
If D = RN

+ , then the function ṽ defined by

ṽ(y1, y2, . . . , yn) =

v(y1, y2, . . . , yN−1, yN) if y ∈ RN
+ ,

v(y1, y2, . . . , yN−1, −yN) if y ∈ RN
− ,

satisfies 
−∆ṽ = ṽp, y ∈ RN ,

ṽ > 0, y ∈ RN ,

ṽ(0) = 1.

This also contradicts Lemma 2.1.
Case (3). x0 = 0. In this case we choose λ j such that λ(2+α)/(p−1)

j M j = 1 and define
the scaled functions

v j(y) = λ
(2+α)/(p−1)
j u j(x), y =

x − x j

λ j
.

We also have λ j→ 0 as j→∞, and v j(y) satisfies
−∆v j =

∣∣∣∣∣y +
x j

λ j

∣∣∣∣∣αvp
j , y ∈Ω j,

∂v j

∂ν
+ β jλ jv j = 0, y ∈ ∂Ω j,

0 < v j ≤ 1, v j(0) = 1, y ∈Ω j,

where Ω j = λ−1
j (Ω − x j).
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For large j, v j(y) is also well defined in Bd/λ j (0)(2d = dist(0, ∂Ω)). The difficulty
lies in the fact that |x j|/λ j might be unbounded and |x j|/λ j→ +∞ along a subsequence
j→∞. From [11], we will have

v j(y) ≤
C

|y +
x j

λ j
|(2+α)/(p−1)

near y = 0,

where C is a uniform constant. Since v j(0) = 1,

|x j|

λ j
≤C1.

Thus, up to a subsequence, we have x j/λ j→ P0 with |P0| ≤C1 < +∞. As in cases (1)
and (2),

v j→ v in w2,p ∩C1,γ (p > N, 0 < γ < 1)

on any compact subset in RN and v satisfies−∆v = |y + P0|
αvp, y ∈ RN ,

0 < v ≤ 1, v(0) = 1, y ∈ RN .

By a translation y + P0 7→ y and−∆v = |y|αvp, y ∈ RN ,

v(P0) = 1.

By Lemma 2.2, we conclude that v ≡ 0, which contradicts v(P0) = 1. This completes
the proof of Lemma 2.3. �

P  T 1.1. We argue by contradiction. Suppose that the conclusion
of Theorem 1.1 is false. Then there exists a sequence β j→ 0+ as j→ +∞ such
that (1.1) with β = β j has at least one positive solution uβ j . By Lemma 2.3 and the
standard elliptic estimate, there exists a positive constant C independent of j such that
‖uβ j‖C2,γ(Ω̄) ≤C. Hence, up to a subsequence, we may assume that

uβ j → u in C2(Ω)

as j→∞ and u is a solution of the following problem:
−∆u = |x|αup, x ∈Ω,
∂u
∂ν

= 0, x ∈ ∂Ω,

u ≥ 0, x ∈Ω.

(2.1)

However, it is easy to see that (2.1) has no solutions. This is a contradiction. �
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3. Radial minimisers and their asymptotic analysis

Let Ω be the unit ball in RN with N ≥ 3; the numbers 2∗ = 2N/(N − 2) and 2∗ =

(2N − 2)/(N − 2) are the critical exponents for the embedding of H1(Ω) into Lp(Ω)
and Lq(∂Ω), respectively.

If we denote by λβ1(Ω) the first eigenvalue of−∆ϕ = λϕ, x ∈Ω,
∂ϕ

∂ν
+ βϕ = 0, x ∈ ∂Ω,

then ∫
Ω

|∇v|2 dx + β

∫
∂Ω

v2 dσ ≥ λβ1(Ω)
∫

Ω

v2 dx for any v ∈ H1(Ω).

Accordingly,∫
Ω

(|∇v|2 + v2) dx ≤
∫

Ω

|∇v|2 dx +
1

λ
β
1(Ω)

∫
Ω

|∇v|2 dx +
β

λ
β
1(Ω)

∫
∂Ω

v2 dσ

≤

(
1 +

1

λ
β
1(Ω)

)(∫
Ω

|∇v|2 dx + β

∫
∂Ω

v2 dσ
)
.

By trace inequalities, ∫
∂Ω

v2 dσ ≤C
∫

Ω

(|∇v|2 + v2) dx,

which implies that∫
Ω

|∇v|2 dx + β

∫
∂Ω

v2 dσ ≤C
∫

Ω

(|∇v|2 + v2) dx for any v ∈ H1(Ω).

Hence, the norm ‖u‖H1(Ω) = (
∫

Ω
|∇u|2 + u2 dx)1/2 is equivalent to(∫

Ω

|∇u|2 dx + β

∫
∂Ω

u2 dσ
)1/2

:= ‖u‖.

Now we study the function Qα(u) : H1(Ω)→ R defined by

Qα(u) =

∫
Ω
|∇u|2 dx + β

∫
∂Ω

u2 dσ

(
∫

Ω
|x|α|u|p+1 dx)2/(p+1)

=
‖u‖

(
∫

Ω
|x|α|u|p+1 dx)2/(p+1)

.

The functional is well defined and of class C2 over H1(Ω) if p ≤ (N + 2)/(N − 2). We
shall see in a while that its restriction to H1

rad(Ω), which is the space of radial functions
in H1(Ω), is still well defined and C2 for a much wider interval of p.

In order to establish the main existence results, we need the following lemmas.
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L 3.1. There exists a positive constant C such that, for all u ∈ H1
rad(Ω),

|u(x)| ≤C
‖u‖

|x|(N−2)/2
, x ∈Ω \ {0}.

P. This follows by the radial lemma of [14]. �

From Lemma 3.1 and similar to the method for the Dirichlet problem obtained
in [14], we have the following result.

L 3.2. The space H1
rad(Ω) embeds compactly into Lp(Ω, |x|α dx) for any p ∈

[1, 2∗ + 2α/(N − 2)), where Lp(Ω, |x|α dx) is the space of Lp functions on Ω with
respect to the measure |x|α dx.

We are now ready to give the main existence result.

T 3.3. If β > β∗, for any α > 0, p ∈ (1, (N + 2 + 2α)/(N − 2)), there exists
u ∈ H1

rad(Ω) such that
Qα(u) = inf

v∈H1
rad(Ω)

Qα(v).

P. This follows by Lemma 3.2 and similarly to the proof of [14]. �

C 3.4. For any α, β and p as in Theorem 3.3, (a suitable multiple of) the
minimiser u is a classical solution of the problem−∆u = |x|αup, x ∈Ω,

∂u
∂ν

+ βu = 0, x ∈ ∂Ω.
(3.1)

Moreover, u is strictly positive in Ω̄.

P. From the symmetric criticality principle and standard elliptic regularity, we
know that u is a classical solution of (3.1). Replacing u by |u|, we may also assume
that u is nonnegative. By the maximum principle, we have u > 0 in Ω. Assume that
there exists x0 ∈ ∂Ω such that u(x0) = 0. Then (∂u/∂ν)(x0) < 0 by the Hopf lemma,
but the boundary condition implies that (∂u/∂ν)(x0) = 0, a contradiction. The result
follows. �

For β > β∗, α > 0 and p ∈ (1, (N + 2 + 2α)/(N − 2)), let

S rad
α = min

u∈H1
rad(Ω)\{0}

Qα(u).

Then any (positive) minimiser uα of Qα over H1
rad(Ω), when normalised by ‖uα‖ = 1,

satisfies −∆uα = (S rad
α )(p+1)/2|x|αup

α, x ∈Ω,
∂uα
∂ν

+ βuα = 0, x ∈ ∂Ω.

Now we will consider the asymptotic behaviour of S rad
α and uα as α→∞. We begin

with a fundamental result.
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L 3.5. If p ∈ (1, (N + 2)/(N − 2)), the asymptotic relation

(α + N)
∫

Ω

|x|α|u|p+1 dx =

∫
∂Ω

|u|p+1 dσ + o(1), as α→∞,

holds uniformly on bounded subsets of H1
rad(Ω).

P. This result can be found in [8]. �

From [1, 3], we have the following lemmas.

L 3.6. The first eigenvalue λ1(Ω) of the eigenvalue problem−∆ϕ = 0, x ∈Ω,
∂ϕ

∂ν
+ βϕ = λϕ, x ∈ ∂Ω,

(3.2)

is positive, and the first eigenfunction ϕ1, corresponding to λ1(Ω), does not vanish
in Ω̄. Moreover, λ1(Ω) = δ1(Ω) + β, where δ1(Ω) is the Steklov eigenvalue for −∆.

L 3.7. The first eigenvalue λ1(Ω) is simple. Let ϕ1, ϕ2 be two eigenfunctions
associated with λ1(Ω). Then there exists C such that ϕ1 = Cϕ2. Moreover, ϕ1 is unique
up to a constant factor and it is radial.

In the statement of the next result, λ1 and ϕ1, which is positive in Ω̄ and normalised
by ‖ϕ1‖ = 1, are the first eigenvalue and eigenfunction of problem (3.2), respectively.

T 3.8. Let p ∈ (1, (N + 2)/(N − 2)) and let uα, with ‖uα‖ = 1, be the minimiser
of Qα over H1

rad(Ω) such that S rad
α = Qα(uα). Then, as α→∞,

S rad
α ∼ (α + N)2/(p+1)|∂Ω|1−2/(p+1)λ1. (3.3)

P. We adapt an argument in [8]. Let u ∈ H1
rad(Ω) with u ≥ 0, ‖u‖ = 1. By

Lemma 3.5, as α→∞,

Qα(u)
(α + N)2/(p+1)

=
1

((α + N)
∫

Ω
|x|α|u|p+1 dx)2/(p+1)

=
1

(
∫
∂Ω
|u|p+1 dσ + o(1))2/(p+1)

=
1

(
∫
∂Ω
|u|p+1 dσ)2/(p+1)

+ o(1),

where o(1) does not depend on u. Since u is radial,(∫
∂Ω

|u|p+1 dσ
)2/(p+1)

= |∂Ω|2/(p+1)−1
∫
∂Ω

u2 dσ.
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Now let u = uα, so

S rad
α

(α + N)2/(p+1)
=

Qα(uα)
(α + N)2/(p+1)

=
1

(
∫
∂Ω
|uα|p+1 dσ)2/(p+1)

+ o(1)

≥ |∂Ω|1−2/(p+1) min
v∈H1

rad(Ω),‖v‖=1

1∫
∂Ω

v2 dσ
+ o(1)

= |∂Ω|1−2/(p+1)λ1 + o(1).

On the other hand, for any u ∈ H1
rad(Ω) with ‖u‖ = 1,

S rad
α

(α + N)2/(p+1)
=

Qα(uα)
(α + N)2/(p+1)

≤
Qα(u)

(α + N)2/(p+1)

≤ |∂Ω|1−2/(p+1) 1∫
∂Ω

u2 dσ
+ o(1)

= |∂Ω|1−2/(p+1)λ1 + o(1),

and, choosing u = ϕ1,

S rad
α

(α + N)2/(p+1)
≤ |∂Ω|1−2/(p+1)λ1 + o(1).

Thus (3.3) is proved. �

T 3.9. If β > β∗ and p ∈ (N/(N − 2), (N + 2)/(N − 2)), then, for α large enough
(depending on p and β),

min
u∈H1(Ω)\{0}

‖u‖

(
∫

Ω
|x|α|u|p+1 dx)2/(p+1)

< min
u∈H1

rad(Ω)\{0}

‖u‖

(
∫

Ω
|x|α|u|p+1 dx)2/(p+1)

. (3.4)

P. Choose a nonnegative function u ∈C1
0(Ω) and extend it to zero outside Ω.

Define vα(x) = u(α(x − xα)), where xα = (1 − 1/α, 0, . . . , 0). Then∫
Ω

|x|α|uα|
p+1 dx ≥

(
1 −

2
α

)α
α−N

∫
Ω

|u|p+1 dx

and

Qα(uα) ≤
α2−N

∫
Ω
|∇u|2 dx

α−2N/(p+1)(1 − 2
α

)2α/(p+1)(
∫

Ω
up+1 dx)2/(p+1)

≤Cα2−N+2N/(p+1).

By Theorem 3.8, we know that S rad
α ∼ α

2/(p+1). Since 2 − N + 2N/(p + 1) < 2/(p + 1)
for all p ∈ (N/(N − 2), (N + 2)/(N − 2)), we see that (3.4) holds for α large enough. �
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