jYCMS

http://dx.doi.org/10.4153/CMB-2016-041-4 ESvre

Canad. Math. Bull. Vol. 60 (1), 2017 pp. 95-103 ]
© Canadian Mathematical Society 2016

Cubic Functional Equations on Restricted
Domains of Lebesgue Measure Zero

Chang-Kwon Choi, Jaeyoung Chung, Yumin Ju, and John Rassias

Abstract. Let X be areal normed space, Y a Banach space, and f: X — Y. We prove the Ulam-Hyers
stability theorem for the cubic functional equation

fQx+y)+ f2x —y) =2f(x +y) =2f(x - y) ~12f(x) = 0
in restricted domains. As an application we consider a measure zero stability problem of the in-
equality

If2x +y) +f(2x = y) -2f(x +y) = 2f(x - y) - 12f(x)| <€
for all (x, y) in T c R? of Lebesgue measure 0.

1 Introduction

Throughout this paper, we denote by R, X, and Y the set of real numbers, a real
normed space, and a real Banach space, respectively. A mapping f: X — Y is called
cubic if f satisfies the equation

(L1) fQ@x+y)+ fQ2x-y)-2f(x+y)-2f(x—y) -12f(x) = 0

for all x, y € X. It is known [12, Theorem 2.1] that the general solutions f of (1.1) are
given by f(x) = B(x,x,x) for all x € X, where B:X x X x X — Y is a symmetric
function that is additive for each variable when the other two variables are fixed. The
following is a particular result of Jun and Kim [12, Theorem 3.1] when ¢(x, y) = ¢ for
all x, y e X.

Theorem 1.1  Let € > 0 be fixed. Suppose that f: X — Y satisfies the cubic functional
inequality

12)  [f@x+y)+ f2x-y) = 2f(x+y) =2f(x —y) ~12f(x)| <e
for all x, y € X. Then there exists a unique cubic mapping C: X — Y such that
€
-C < —
£ - C)l < &

forall x € X.
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It is a very natural subject to study functional equations or inequalities satisfied
on restricted domains or satisfied under restricted conditions [1-8, 10, 13-15,17-20].
Among the results, Jung (see [14]) and Rassias (see [18]) proved the Hyers-Ulam sta-
bility of the quadratic functional equations in a restricted domain. Here we state a
slight modified version of the results in [14,18].

Theorem 1.2 Letd > 0. Suppose that f: X — Y satisfies the inequality

(13) [fCe+y)+ f(x=y) -2f(x) -2f(y)] < &

forallx,y e D:={(x,y) €e XxX :|x|+|y|| = d}. Then there exists a unique mapping
q: X — Y satisfying

(1.4) fx+y)+ f(x=y)=2f(x) +2f(y)
forall x, y € X such that

15 1£() - a(x)] <30
forallx € X.

Also, itis very natural to ask whether the restricted domain D in Theorem 1.2 can be
replaced by a smaller subset Q) c D (e.g., a subset of measure 0 if X is a measure space).
In [9], the stability of (1.4) was considered inaset Q c {(x,y) e R* : |x| + |y| > d}
of Lebesgue measure m () = 0 when f:R — Y. As a result, it was proved that if
f:R — Y satisfies (1.3) for all (x, y) € Q, then there exists a unique quadratic mapping
q:R — Y satisfying (1.5).

In this paper, we consider the Ulam-Hyers stability of the functional equation (1.1)
in some restricted domains Q) ¢ X x X. First, as an abstract approach, imposing a
condition (C) on Q (see Section 2) we prove that if f: X — Y satisfies the inequality
(1.2) for all (x, y) € Q, then there exists a unique cubic mapping C such that

79
[ f(x) - Cx) - 487(0)] < L e

forall x € X. Since Q = {(x,y) € X x X : |x| + | y| = d} satisfies condition (C), we
obtain the parallel result for cubic functional equation as Theorem 1.2 for quadratic
functional equation.

Secondly, when X = R, constructing a subset I; ¢ R* of measure 0 satisfying the
condition (C) we consider a measure zero stability problem of the inequality (1.2); i.e.,
we consider the inequality

[fx+y)+ f(2x=y) =2f(x+y) -2f(x - y) ~12f(x)] <e
for all x,y € Iy, where iR - Y and I; c {(x,y) € R* : |x| + |y| > d} has
2-dimensional Lebesgue measure 0.

As an application we consider an asymptotic behavior of f:R — Y satisfying the
weak condition

[f2x+y) + f(2x = y) =2f(x + y) = 2f(x = y) —12f (x)]| = 0

as|x|+|y| = oo only for (x, y) € [y, where T has 2-dimensional Lebesgue measure 0.
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2 Stability of the Cubic Functional Equation in Restricted Domain
Given x, ¥,z € X, define
Pey = { (x—t,y+2t),(x—t,—y+2t), (x +t,y+2t),(x +t,—y +2t),

(x,y+4t), (x,—y+4t), (-t,x + y+2t), (-t,x — y + 2t),
(t,x+y-2t),(t,x—y-2t),(-t,x+y+1),(-t,x—y+1),
(t,x+y—t),(t,x—y-t),(x-t,y), (x+t,y),(x, y+2t), (x, y-2t),
(0,x+y+4t),(0,x+y—4t),(0,x — y + 4t),(0,x — y — 4t),
(0,x+y+3t),(0,x+y-3t),(0,x— y+3t),(0,x — y—3t),
(0,24 y+28), (0,x+ y=28), (0, x = y+21), (0, x— y=2¢), (0,1) }..

Then throughout this section, we assume Q c X x X satisfies the following condition:

(C) Px,y,t c Q

Theorem 2.1 Let € > 0 be fixed. Suppose that f: X — Y satisfies the cubic functional
inequality

[fx+y)+ f2x - y) -2f(x +y) -2f(x - y) - 12f (x)] <€

for all (x,y) € Q. Then there exists a unique cubic mapping C: X — Y such that

79
21 1(x) = Clx) - 48£(0)] < ¢
forallx € X.
Proof Let

D(x,y) = f(2x +y) + f(2x = y) =2f (x + y) = 2f (x = y) —12f(x)
for all x, y € X. Then we have
D(x—t,y+2t) = f2x+y)+ f(2x —y —4t) - 2f(x + y + 1)
—2f(x—y-3t)-12f(x—1t)
D(x—t,—y+2t) = f(2x—y)+ f(2x+y—4t) - 2f(x -y + 1)
—2f(x+y-3t)-12f(x—1t)
D(x+t,y+2t)=f(2x+y+4t)+ f(2x - y) = 2f (x + y + 31)
—2f(x-y—t)-12f(x + 1)
D(x+t,—y+2t)=f(2x—y+4t)+ f(2x + y) = 2f (x — y + 3¢)
—2f(x+y—t)-12f(x + 1)

D(x,y+4t) = f2x+y+4t) + f(2x —y —4t) = 2f (x + y + 4t)
-2f(x—y—4t) -12f(x)

D(x,-y+4t)= f2x—y+4t) + f2x + y —4t) - 2f (x — y + 4t)
-2f(x+y—4t) -12f(x)
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D(-t,x+y+2t)=f(x+y)+f(-x—y—4t) - 2f(x+ y+1)
—2f(~x—y-3t) - 12f(-t)
D(-t,x—y+2t)=f(x—y)+f(-x+y—4t) -2f(x—y+1)
—2f(—x+y-3t)-12f(-1)
D(t,x+y-2t)=f(x+y)+f(-x—y+4t) -2f(x+y—1)
—2f(—x -y +3t)-12f(1)
D(t,x-y-2t)=f(x—y)+ f(-x+y+4t)-2f(x -y -1)
=2f(—x+y+3t)-12f(1)

D(-t,x+y+t)=f(x+y—t)+ f(—x—y-3t) -2f(x+y)
=2f(—x—y-2t)-12f(-t)
D(-t,x—y+t)=fx-y-t)+ f(-x+y-3t) - 2f(x-y)
=2f(—x+y-2t)-12f(-t)
D(t,x+y—t)=f(x+y+t)+ f(-x—y+3t) =2f(x+y)
=2f(-x—y+2t)-12f(t)
D(t,x—y—t)=f(x—y+t)+ f(-x+y+3t) =2f(x - y)
=2f(—x+y+2t)—12f(t)

D(x-t,y)=fQx+y-2t)+ f(2x—y-2t) - 2f(x+y—1t)

S2f(x-y- ) -12f(x - 1)

D(x+t,y)=f(x+y+2t)+ f(2x—y+2t) = 2f(x+ y+1)

“2f(x—y+t)-12f(x+1)

D(x,y+2t)=f(2x+y+2t)+ f(2x —y—2t) = 2f(x + y + 2t)

—2f(x -y -2t) - 12f(x)

D(x,y-2t)=f(2x+y-2t)+ f(2x -y +2t) - 2f(x + y — 2t)

-2f(x—y+2t) -12f(x)

D(0,x+y+4t)=—f(x+y+4t) — f(-x — y—4t) —12f(0)
D(0,x+y—4t)=—f(x+y—4t) — f(-x - y + 4t) —12f(0)
D(0,x—y+4t)=—f(x—y+4t) — f(-x + y—4t) —12f(0)
D(0,x—y—4t)=—f(x—y—4t) — f(-x + y + 4t) —12f(0)

D(0,x+y+3t)=—f(x+y+3t)— f(—x - y—3t) -12f(0)
D(0,x+y—-3t)=—f(x+y—-3t)— f(—x - y+3t) -12f(0)
D(0,x—y+3t)=—f(x—y+3t)— f(—x+y—3t) -12f(0)
D(0,x—y—-3t)=—f(x—y—-3t)— f(—x+ y+3t) -12f(0)
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D(0,x+y+2t)=—f(x+y+2t) - f(-x—y-2t)—12f(0)
D0, x+y-2t)=—f(x+y-2t) - f(-x—y+2t)—12f(0)
D(0,x—y+2t)=—f(x—-y+2t) - f(-x+y-2t)—12f(0)
D(0,x—-y-2t)=—f(x-y-2t) - f(-x+y+2t)—12f(0)

D(0,t) = (1) - f(=1) —12/(0).

Thus, we obtain the functional identity
(2.2)
fQx+y)+ f(2x—y)-2f(x+y) - 2f(x - y) —12f(x) + 672f(0) =

ID(x—t,y+2t) +iD(x - t,—y +2t) + ID(x + t, y + 2t)
+3D(x+t,—y+2t) = 3D(x,y +4t) = 3D(x, -y + 4t)
+D(-t,x+y+2t)+D(-t,x - y+2t)+ D(t,x + y—2t) + D(t,x — y - 2t)
+D(-t,x+y+t)+D(-t,x-y+t)+D(t,x+y—t)+D(t,x -y —1t)
-D(x+t,y)—=D(x—t,y)+D(x,y+2t) + D(x,y - 2t) - 48D(0, t)
+D(0,x+y+4t)+D(0,x+y—4t) + D(0,x — y + 4t) + D(0,x — y — 4t)
-D(0,x+y+3t)-D(0,x+y-3t) - D(0,x — y+3t) - D(0,x — y — 3¢)
-2D(0,x + y +2t) -2D(0,x + y — 2t)

-2D(0,x — y+2t) -2D(0,x — y — 2t)

for all x, y, t € X. Since Q satisfies the condition (C), for given x, y € X, there exists
t € X such that

(2.3) |D(u,v)|| <€

for all (u,v) € Py, ;. Thus, from (2.2) and (2.3) and using the triangle inequality we
have

24) [fQ2x+y)+ f(2x=y) =2f(x +y) = 2f (x - y) —12f (x) + 672f(0) |

<79
forall x, y € X. Let F(x) = f(x) — 48£(0) for all x € X. Then from (2.4) we have
(25)  |IF(2x+y)+F(2x—y) -2F(x+y) —2F(x - y) - 12F(x)| < 7%
for all x, y € X. Using Theorem 1.1 with (2.5), we get (2.1). This completes the proof.
|

Remark  Letting x = 0in (2.1) and dividing the result by 47, we have | f(0) | < {72%-.
Thus, inequality (2.1) implies

7505
< —

I£(x) - C()l < 48] £(0)] + e <

€
14 658
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forall x € X.

Letd > 0. It is easy to see that {(x, y) € X x X : ||x| + ||y|| > d} satisfies condition
(C) Indeed, for given x, y € X if we choose t > | x| + ||y| + d, then P, ;, c {(x,y) €
X x X :|x| +|y| = d}. Thus, as a direct consequence of Theorem 2.1 we obtain the
following result (see [14,17,18] for similar results).

Corollary 2.2 Lete,d > 0 be fixed. Suppose that f: X — Y satisfies the cubic func-
tional inequality

If2x+y) + f(2x —y) =2f(x +y) - 2f(x - y) - 12f(x)[ <e

forall x,y € X such that ||x| + |y| > d. Then there exists a unique cubic mapping
C: X — Y such that

79
If(x) = C(x) -48(0) < ¢

forall x € X.
In particular, if € = 0, we have the following corollary.

Corollary 2.3  Suppose that f: X — Y satisfies

(2:6) f@x+y)+f(2x-y) -2f(x+y)-2f(x-y) -12f(x) = 0
forall (x,y) € Q. Then the equation (2.6) holds for all x, y € X.

3 Further Developments

Condition (C) is quite complicated, and it is not so easy to see what kind of set ) c
X x X fulfills the condition. In this section, we show that even a set Q) of Lebesgue
measure zero can satisfies the condition (C) when X = R. From now on, we identify
R? with C. The following lemma is a crucial key of our construction [16, Theorem 1.6].

Lemma 3.1 There exists a set K c R of Lebesgue 0 such that R \ K is of first Baire
Category, i.e., F is a countable union of nowhere dense subsets of R, and K is of Lebesgue
measure 0.

Using Lemma 3.1 we obtain the following lemma.

Lemma 3.2 Let K c R of Lebesgue measure 0 such that K := R \ K is of first Baire
category. Then, for any countable subsets U c R, V. c R~ {0} and M > 0, there exists
A > M such that

U+AV={u+Av:ueU,veV}cKk.

Proof Let

U= {ul,uz,ug,...}, V= {‘Vl,Vz,Vg,,...},

K5, = v (K€ = uy), myn=123,....
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Then, since K¢ is of first Baire category, K, , are also of first Baire category for all

m,n =1,2,3,.... Since, each K}, , consists of a countable union of nowhere dense
subsets, by the Baire category theorem, countable many of them cannot cover [ M, c0),
ie,

U K;,, 3 (M, ).

m,n=
Thus, there exists A > d such that A ¢ K, , forall m,n =1,2,3,.... This means that
Up +vmA e Kforallm,n =1,2,3,.... This completes the proof. ]

Theorem 3.3 LetT;=e s (KxK)n{(x,y) e R?:|x|+|y| > d}. Then T satisfies
condition (C) and has two-dimensional Lebesgue measure 0.

Proof Letx,y,teRandletPy , ; be the setin condition (C). We first prove that for
every x, y € R, there exists t € R such that
(3.1) ei'p, , cKxK.

Since

the inclusion (3.1) is equivalent to

V31 1 3
Qx,y,t = {7“ - EV, iu + 71/ : (M,V) € Px,y,t} c K.

It is easy to see that the set Q.  is written in the form {a;x+bjy+cjt: j=1,2,...,r}
for some aj, bj,cj e Rwithcj # 0forall j=1,2,...,r. Let

U={ajx+bjy:j=12,....r}, V={cj:j=12,...,r}.

Then we have Qy,,,; c U+tV c K. By Lemma 3.2, for given x, y € R and M > 0 there
exists t > M such that

QuyicU+tVcK.
Now, for given x, y if we choose M > |x| + |y|, then we have
Pyt C {(x,y) eX xX:|x|+|yl 2 d}

for all t > M. Thus, T; satisfies (C). This completes the proof. [ |

Now, as a direct consequence of Theorems 2.1 and 3.3 we have the following corol-
lary.
Corollary 3.4 Lete,d > 0 be fixed. Suppose that f:R — Y satisfies the cubic func-
tional inequality

|f(2x+y)+ f(2x = y) = 2f (x + y) = 2f(x - y) —12f(x)] <e
forall (x,y) € T4. Then there exists a unique cubic mapping C:R — Y such that
79
1£(x) = Cx) ~487(0)] < e

forallx e R.
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As a consequence of the Corollary 3.4 we obtain an asymptotic behavior of f sat-
isfying the weak condition

3.2) Ifx+y)+f(2x—y)=2f(x+y) - 2f(x - y) - 12f(x)| = 0

as |x| +|y| = oo only for (x, y) € Ty.

Corollary 3.5 Suppose that f:R — Y satisfies condition (3.2) . Then f is a cubic
mapping.

Proof Condition (3.2) implies that for each n € N, there exists d,, > 0 such that

[fx+y)+ f(2x - y) =2f(x +y) = 2f(x - y) - 12f (x) ] <

for all (x, y) € Iy,. By Corollary 3.4, there exists a unique cubic mapping C,: X - Y
such that

63 IF() = Calx) =48 O)] < -

for all x € R. Replacing #n by m in (3.3) and using the triangle inequality we have

79 79 79
(3.4) [Cm(x) — Cu(x)| < T <7
for all x € R. Let Cyy n(x) = Cu(x) — Co(x) for all x € X. Then by (3.4), Cp,, is a
bounded cubic mapping. Thus, we have C,, , = 0 and hence C,, = C,, := C for all
m,n € N. Letting n — oo in (3.3) we have f(0) = 0 and hence f(x) = C(x) for all

x € R. This completes the proof. ]

[~

Remark 3.6 If we define T' ¢ R*" as an appropriate rotation of 2n-product K*" of
K, then I has 2n-dimensional measure 0 and satisfies conditions (C). Consequently,
we obtain the following theorem.

Theorem 3.7  Suppose that f:R" — Y satisfies
[f2x+y) + f(2x =y) =2f(x +y) =2f(x - y) ~12f (x)[ <e

for all (x,y) € T. Then there exists a unique cubic mapping C:R" — Y such that

79
1/(x) = Clx) - 48£(0)] < ¢

for all x e R".
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