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Composition operators on p-Bloch spaces

Huaihui Chen and Paul Gauthier

Abstract. Given a positive continuous function 4 on the interval 0 < t < 1, we consider the space of
so-called p-Bloch functions on the unit ball. If u(#) = t, these are the classical Bloch functions. For
, we define a metric F.'(u) in terms of which we give a characterization of u-Bloch functions. Then,
necessary and sufficient conditions are obtained in order that a composition operator be a bounded
or compact operator between these generalized Bloch spaces. Our results extend those of Zhang and
Xiao.

1 Introduction

Let D denote the unit disk in the complex plane C, and H(D) the class of all holo-
morphic functions on D. A function f € H(D) is called a Bloch function if

£l = sup{(1 — |z])| f'(2)| : z € D} < <.

The Bloch functions, with the norm

(1.1) Iflls = 1O+ 1],

form a Banach space, which is called the Bloch space and denoted by B. The Bloch
space of the unit disk has been investigated extensively, see [1].

The notion of Bloch function has been generalized to Riemann surfaces and do-
mains in complex spaces of higher dimension. Let

Bn:{Z:(Zl7...’Zn):|Zl|2+_._+|2n|2<1}

denote the unit ball in the complex space C", and H(B") the class of all holomorphic
functions on B". For f € H(B"), as in [8,9], we define

VS (z)ul

Q2) = Sup{ H, (1, u)'/2

:O;éue(C”},

where Vf(z) = (0f/0z,...,0f/0z,) denotes the complex gradient of f, V f(z)u
denotes the inner product (Vf(z), %) of Vf(z) and % and H,(u, u) is the Bergman
metric on B"” which is defined by

n+1(1— |z*)|ul* +|(u, 2)|?
2 (1—|z[?)?

H,(u,u) =
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We remark that Q‘Jﬁ(z) is the norm of u — Vf(z)u as a linear functional on the
tangent space at z (u € C" regarded as a tangent vector to the unit ball at z, taking the
norm of u to be the norm on tangent vectors associated with the Bergman metric).
A function f € H(B") is called a Bloch function on B” if

(1.2) || fIl = sup{Q¢(2) : z € B"} < o0,

and the Bloch space of B" consists of all Bloch functions on B" with the same norm
(1.1) and is also denoted by B.

Let ¢ be a holomorphic mapping of D into itself. The composition operator Cg
on H(D), induced by ¢, is defined by C4(f) = fo ¢ for f € H(D). Since the classical
Schwarz—Pick lemma [2] asserts that

(1 —[zP)I¢'(2)|
1—[p(2)]?

Cg is always a bounded operator on B. In 1995, K. Madigan and A. Matheson [4]
proved that a composition operator Cy is compact if and only if

<1 forze€ D,

(1 —[2[))]¢'(2)]

P — 0 as¢(z) — ID.

We recall that a linear operator is compact if the image of a bounded sequence con-
tains a convergent subsequence.

In the case of higher dimension, for a holomorphic mapping ¢ of B" into itself
the composition operator C, induced by ¢ is defined in the same way. It is also a
bounded operator on B, because by the Schwarz—Pick lemma for the unit ball B”,

Hy) (9" (2)u, ¢’ (2)u) <

(1.3) H,(u,u)

1

holds for z € B" and 0 # u € (C". Similarly to the case of one dimension, the
necessary and sufficient condition for Cy to be compact on B should be

Hy) (¢ (2)u, ¢’ (2)u)
H(u, u)

— 0 as¢(z) — OB".

This has been proved by J. Shi and L. Luo [7]. Instead of the unit ball, Z. Zhou and J.
Shi [13] consider the composition operators of the Bloch space on the polydisc.

The so-called a-Bloch spaces have been introduced and studied by a number of
authors (for the general theory of a-Bloch functions see [14]). For & > 0, a holo-
morphic function f on the unit disk D is called an a-Bloch function, if

sup{ (1 — [z[")*|f(2)| : z € D} < oo.

The a-Bloch space B is defined in the same way. S. Ohno, K. Stroethoff and R. Zhao
[6] studied the boundedness and compactness of a composition operator C4 between
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a-Bloch spaces, and proved that C, is a bounded operator of B into B” if and only

if
(=2’ @)
SUP{W ZED} < 00,

and that a bounded composition operator C4 of B® into B” is compact if and only if

(1—[2]*)P|¢'(2)]
(1 —|p(2)?)

Let o > 0. We may call an f € H(B") an a-Bloch function on B”, if

— 0 as¢(z) — ID.

[ fllas = sup{ (1 — 2|V f(2)| : z € B"} < 0.
Meanwhile, we define
[ fllaz = sup{ (1 — [z[)*|Rf(2)| : 2 € B"} < o0,

where Rf(z) = Vf(z)z = (Vf(2),z) is the radial derivative of f. The equivalence
of these two norms is proved by W. Yang and C. Ouyang [11]. For o = 1, they are
equivalent to the norm (1.2), see [8,9]. Now, the question is how to define the third
equivalent norm, like (1.2), for an arbitrary «.. For @ > 1/2, the answer can be found
in [15]. In this paper, we solve this problem in a more general situation.

Let M be the class of all positive and non-decreasing continuous functions p(t),
0 < t < 1, such that () — 0 ast — 0. In addition, we assume that every function
in p possesses the property

) there exists a & > 0 such that u(t)/ t° is decreasing for small ¢.
As a consequence of property (t), we have

(i) pion) > 10

for0<o<1,0<t<1.
1,0

For . € M, a function f € H(B") is called a p1-Bloch function if
| £llw1 = sup{ (1 = 21|V f(2)] : z € B"} < 0.

As in the case of a-Bloch functions, for f € H(B") and p € M, we define
I £1l2 = sup{ p(1 = [2[)|Rf(2)] : z € B"} < oo.

p-Bloch functions were recently studied by Z. Hu [3] for the polydisc, and by
X. Zhang and J. Xiao for the unit ball [12]. Since p-Bloch functions are not invari-
ant under Mobius mappings of B”, it is more difficult to treat these function spaces.
Zhang and Xiao gave another definition of y-Bloch function and set necessary and
sufficient conditions for the boundedness and compactness of C4, as a composition
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operator between p-Bloch spaces, under an appropriate assumption on g such that
the equivalence of their definition and the above is guaranteed.

In Section 2 of this paper, for 1 € M, we give an estimate of the tangential deriva-
tive of a function f € H(B") in terms of the norm || f|| ... In Section 3, we define a
metric F¥(u), by which the third equivalent norm || f||,, 5 is defined. The equivalence
of these norms is proved in Section 4. In Section 5, interesting examples of p-Bloch
functions are constructed by gap series for an arbitrary ; € M. They will be used in
the proof of the necessity of the conditions for boundedness and compactness in Sec-
tions 6 and 7. One of them will show that our estimate for the tangential derivative
in Section 2 is precise. Sections 6 and 7 are devoted to the discussion of bounded-
ness and compactness. Necessary and sufficient conditions for the boundedness and
compactness of Cy as a composition operator between f-Bloch spaces are obtained.
Under an appropriate assumption on j, our results become those of Zhang and Xiao
[12].

2 The Radial Derivative and Tangential Derivative

In the following theorem and throughout this paper, C,, denotes a positive number
depending on x only, which may assume different values when appearing at different
places.

Theorem 2.1 Lety € Mand f € H(B"). Then, for any z € B" and ( € OB" with
¢ L z we have

1 dt
(2.1) IV f(2)(]| SC/,,Iqu.,z(H/l_IZIZ W)
If
. L Udr
: " _/0 2~

then (2.1) becomes

(2.3) IVf(@2)¢C] < Cull fll w2

Proof To prove (2.1) and (2.3) we may, by a unitary change of coordinates, assume
thatz = (1,0,...,0) with0 < ry < 1and ( = (0,1,0,...,0). Then

(2.4 V@ = Lm0, 00

Let f(z) = ), az®, where A\ = (\j,...,\,) with integers Ay > 0 and =
zj\l -z Then,

ag_z(zz) =Y ahd/zn, Rf) = ;aA|/\|zA,

A0

https://doi.org/10.4153/CJM-2009-003-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2009-003-1

54 H. Chen and P. Gauthier

where [A\| = A + -+ + )\, and

8 oo
a_zj;(zlv 05 cee 70) = Z a()\l-,l-,o-,----,o)zi\l’
A1=0
OR >
%(21, 0,... ,0) = Z(/\l + l)a()\l_rl_’o_’____’o)zi\l.
A1=0
Thus,
0 OR
(2.5) ro-ﬁ(ro,o,...,O)z/ —f(r,O,...,O)dr.
0z, 0 0z,

For a fixed r > 0, the function g(z,) = Rf(r,z,0,...,0) is estimated by

||f||u72 < Cu”f”ul

S = G0y = w— )

1
for |z| < 5(1 — )2,
Here property 17 is used. Using Cauchy’s inequality, we have

ORf

822

Cull flln2

(2 P)Vep(1 = )

(r,O,...,O)‘ =IO < 5=

and, by (2.4) - (2.6),

@7 VA < CHHIiCIHM2 /0 ) = rZ)IZT;L(l —
Since
i/lz| dr <c +2/Zz dr
2l Jo (A=) 2u(1—72) = 7" 7 [y (1 =n)2pu(1 =)
1
=Cy +2/122 tl/zd% for |z| > 1/2,
and

i/ld dr <C, for0#lz[ <1/2
2l Jo (A=) 2u(1—r2) = 7" -
(2.1) follows from (2.7) if z # 0. By continuity, (2.1) also holds for z = 0. (2.3)

follows from (2.1) under the assumption (2.2). The theorem is proved. [ |

The estimate (2.1) for u(f) = * with0 < v < 1/2 or 1/2 < @ < 1 can be found
in Rudin’s book [5]. In Section 5, we will give an example to show that the estimate
(2.1) is sharp.
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Lemma 2.2 Let u € M. Then, we have

(2.8) 1+/1 dr 1 17 foro<t<1
' o TVu(r) T Cu o) -

Proof According to the property (), there exists a 6 > 0 such that u(#)/ 19 is de-
creasing for 0 < ¢t < t; < 1. Then, t1/2+5/u(t) is increasing for 0 < t < t; and,

consequently,
/1 dr S /to V20 gy o 1t1/2+‘5( 1 1)
o TVu(r) T e i) 6 u(e) N0 )

Thus, there exists a positive ' < t; such that

/1L>Lﬁ for0 <t <t
12u(r) © 26 p(r) '

This shows that (2.8) holds for 0 < ¢ < t’. (2.8) is obviously true fort’ <t < 1. The
lemma is proved. ]

Lemma 2.3 Let ;i € M. If there exists & > 0 such that u(t)/t'/>* is increasing for
sufficiently small t, or 1 /M < pu(t)/t'/* < M for 0 < t < 1, then I, = oo and

(2.9) 1+/1 o 1 for0<t<1
. _ .- —— for <.
o T T ()

Proof Let ju(t)/t'/>*9 be increasing for 0 < t < ty < 1. Then,

I > /[" dr > té/2+() bodr
- =
H 0 Tl/zﬂ(t) ,Lb(to) 0 7140

As in the proof of the preceding lemma, for 0 < t < t;, we have

/to dr /to 1/2+6 3 < F1/240 o g0 § 1¢/2
mRp(r) S T ) o) ST T S )

Thus, there exists a positive ' < t; such that
1+/1 dr <2t1/2 for0 <t <t
—— < ——— for ,
o TVPu(r) O u(t)

since t'/2/u(t) — oo ast — 0 by the assumption that z(t) /t'/>* is increasing for

small t. This shows that (2.9) holds for 0 < ¢ < t’. (2.9) is obviously true for
t'<t<1.
Now, assume that 1/M < ju(t)/t"/**% < M for 0 < t < 1. Then,

1 1/2+6dT
IL = =
f /0 7.1+o'u(7) / 7,1+5
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and there exist at’ < 1 such that

+/1L<1+M/1d—7
o TVu(r) T p T

M(l 1) 2M  2M t1/?

—(=—1) <= < t<t.
6 t6 _5t5 >~ 6 M(t), 01'0< <

=1+
This shows that (2.9) holds for 0 < ¢ < t’. (2.9) is obviously true fort’ < < 1. The
lemma is proved. ]

The above lemmas show that if 4 € M satisfies the condition formulated in
Lemma 2.3, then

(2.10) 1 ¢1/2 /1 dr c t1/2 ;
2.10 — = <1+ ——<C,-—, for0<t<I,
Cpup(t) ~ T2u(r) = ()
and (2.1) can be replaced by
CL(I _ |Z|2)1/2
Vi < 22— . 12

3  u-Metrics

Let u € M. If the integral I, defined in Theorem 2.1 is divergent, we denote

1 1 At —1
v(t) = vu(t) = (m +/z W) ;

otherwise, let v, (¢) = p(1). The metric F/'(u) corresponding to p is defined by
[n+1 1 1—|z|*)? 1—|z|*)? 2y 12
Ff(u) — n { ,LL( |Z| ) |M|2 + (1 _ ,LL( |Z| ) ) |<M,Z>| }
2 w1 —1z?) Ll —|z?)? V(1 — |z]?)? |z|?

for0# z € B"and u € C". Forz = 0, we put Fy (u) = \/(n+ 1)/2]u|/u(1).
It is easy to verify that for z € B", we have

(3.1)
v+ 1yl < Fi(u) < . Vn+1ul .
V2max{u(1l — |z2),v(1 — |2]?)} V2min{u(1 — |z[2), v(1 — |z]?)}

Indeed, if z # 0, we may write u = u,z/|z| + up(, where z L ¢ and || = 1. Thus,
i > = [(u, 2)* /|2, |uz|* = |u|* — [u1|* and

2 2 1/2
Fg(l/l): n+1( |M1| + |M2| ) 7
Vo2 \u(l =z v(l—[ef?)?
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from which (3.1) follows. Note that

1 1 1 dr 1 2 3

< 4 - = .
v(t) = p(1)  op@) Jo V2 () op(t) T op)
Thus, (3.1) becomes

vVn+1 3vn+1
(3.2) _ Vil gy < VAL e
3v2v(1 — |2]?) V2u(l — |z]2)
It follows from (3.2) that
vn+1
(3.3) oy > Y g e
V2u(1)
and since p is non-decreasing,
3vn+1
Fl'(u) < 3yt dul for|z] <r< 1.
V2p(1 —1?)

Lemma 3.1 If yu satisfies the condition in Lemma 2.3, then F!'(u) is equivalent to
(1= [2)/p(1 = |2*)Haa, )72,
where H,(u, u) is the Bergman metric of B" formulated in the Introduction.
Proof Assume that 4 satisfies the condition in Lemma 2.3. Then, by (2.10),
1 t1/2 1 t1/2
C—HMSESCN-M, for0 <t <1,

and

F;‘(u)z _ n+1 1 {u(] — |Z|2)2(|u|2 B |<u7z>|2) . |<u7z>|2}

2 p(d—=1[z))? Lol — [27)? > 2>
n+1 C |(u, 2)|? |(u, 2)|?
< G- ) B
== VO )+
n+1 C, Il 12 2}
e 1— +
3 L (0 Pl + L)
1—z]> \?2
=C (7) H,(u,u).
SVTEEED)
For the same reason
L/ 1—|z* \?
F? 2 () Halu,w).
Cu \ (1= [2*)
This proves the lemma. ]

Note that in terms of the function v, (2.1) in Theorem 2.1 can be written in

C/LHf“/LJ

(3.4) Vil s
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4 Equivalent Norms of ;-Bloch Functions
For yp € M and f € H(B"), we define

Vf(2)ul

o _ . n 7
Qf(z)—sup{ ) .O;Aue(C}, for z € B”,

and
Il = sup{ (2) iz € B"} :
If o satisfies the condition in Lemma 2.3, by Lemma 3.1 F¥(u) is equivalent to

(1= |21/ p(1 = |2*)) Ho(u, u)"/?,

and || f|| ., is equivalent to

w1 — |2V f(2)ul
S“p{ (1 — 21 H,(u, u)

:O#uE(C"},

It is the norm that was defined by Zhang and Xiao in [12].
Theorem 4.1 For jn € M, the norms || f|,.1, || fll .2 and || f|| .3 are equivalent.

Proof Assume that f € B" and € M. It is obvious that || ||, < || f||,1. Let
z€ B IfVf(z) # 0, letting u = Vf(2)/|V f(z)], we have

u(1 = |2V ()| = p(1 = |2V f(2)a]

1
< ull - [2DQ @R @ D' < 3| "= Q)e),

where (3.2) is used. This shows that

(4.1) Il < 33/ (n+ 1) /2] f]l -

Now, let 1/2 < |z] < 1and 0 # u € C". There exists a ¢ such that [{| = 1,
(¢,z) = 0and u = uyz/|z| + usC. Then, |ul?> = |u;|* + |ua|* and u; = (u,z)/|z|. By
(3.4), we have

IV@ul? = [V f(@)(z/|z]) + 1V f(2)¢ < 8(Jm [V f(2)z] + [wa [V f(2)C]P)

8CHIIf1I7.2 p(l — [z
< s 2 2
7| |2)2(|u1| +|1/l2| (1—|Z|2)2)

_8C2If 12, (u(1—|2| 2+ (1_M)|u1|2)

Cop(l - |z|)2 \ v(1 — |z]?)? V(1 — |z]?)?
~ 8CHIfI, o1 — 22 p(1 — |2\ [u, 2)]?
= - |z|2)2(u(1 e (1- (1 —|z|2)2) EE )
16C2|\f|\pz o
n+1 F ()
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It is proved that

(4.2)

Vi@l G,
F = Varil e

holds for 1/2 < |z| < 1 and 0 # u € C". Combining (4.2) with (3.2) gives

(4.3) V@l < Cpull flls2lul

for |z| = 1/2and 0 # u € C". Since |V f(z)u| is subharmonic for a fixed u, (4.3)
holds for |z| < 1/2. Tt follows from (4.3) and (3.3) that (4.2) holds for |z| < 1/2 and
0 # u € (" also. This shows that

Cu
(4.4) 1fllus < —== [ fll2-
n+1

The theorem is proved. ]

The equivalence of the norms for u(¢) = * with « > 1/2 was indicated in [14].

5 Examples of ;-Bloch functions

The following lemma is due to Z. Hu [3]. For the convenience of our readers, we
include the proof.

Lemma 5.1 Let v(p), 0 < p < 1, be an non-decreasing and positive continuous
function with the property that v(p) — oo as p — 1 and there exist positive numbers &
and po, po < 1, such that v(p)(1 — p)? is decreasing for py < p < 1. Then, there exists
a function I'(w), holomorphic in the unit disk D and represented by a gap series with
positive coefficients, such that v(p) /M < T'(p) < M~y(p) withM > 0for0 < p < 1.

Proof Let pi be the smallest p such that

(%) 10ok) _ g fork=0,1,2,....
v(pr)

Let . = [A/log(1/pp)] fork =0,1,2,. .., where A = log(4 - 8°). Then there exists
a positive integer K such that for k > K, we have

L=pe o ('Y(pkﬂ)) g,
1 — pra ¥ (pr)

since y(p)(1 — p)? is decreasing for py < p < 1, and

875

(%) A — pf/bg(l//)k) < ka < p;;\/bg(l//)k)—l <2e A — =
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Ni+1 S A/ log(l/pk+1) —1 A/(Z(l — pre1)) — 1

Gexx) e = Allog(l/p) 40— po)
_ (1/2 = (1 = prs1) /AL = i)
I — pre1
>8(1/2 — (1 — pr1) /A) > 2.
We define

T(w) =Y Y(pw™.
k=K

Let px < pm—1 < p < pm. By (%), (3x), and ( * *),
[e%} m—1 [o%¢)
T(p) < T(pm) = > VpR)Pht = > v (o + > 1pop)y
k=K k=K k=m

m—1 o)
< ) + D> i) (o)™
k=K k=m

m—1 00 8,5 ok—m
<) D8I 4 () Y 80 7)

k=K k=m

m—1 oo —0 _

o _ 8 k—m+1

<Alpm) Y 87" () > 8 ’”)5(7)

k=K k=m

8o s 2.879

< v(pm)( g "8 °) <1—g=s 7 om)-

On the other hand, by (xx),

Nm—1 — 876
L(p) > T(pm—1) > Y(pm-1)pm=) > e Y (pm-1) = — - Y(Pm—1)-

4
Thus, since 7 is non-decreasing, we have
87 87 Ypwr) _Tlp) _ 2:87°  Alpw) _ 2
4 4 Alpm) ~p) T 1-87 y(pmr) 1-879

The above estimate has been proved for p > px. For0 < p < p, theratioT'(p) /v(p)
is bounded above and has a positive lower bound, since both I'(p) and «(p) are posi-
tive and continuous. This shows that I'(w) is the function required and the lemma is
proved. ]

By using the above lemma, we may construct useful examples of u-Bloch func-
tions.
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Example 1 For 1 € M, let ', (w) be the function constructed for y(p) = 1/u(1 —
p) in the above lemma. Let

G,(w) :/ I'y(w)dw forw € D.
0

For zy € OB", define g(z) = g,.,,(2) = G.((z, z)) for z € B". Then, for z € B,
(5.1) Vg(z) = Tu((z,20))Zo

and

Cup(1 — |Z|2)

(1 = 2P)IVe(@)| = n(1 = [Pz 2] < 1 = D) < ZHE= T

It follows from (}7) that

pd—r) . pd—r)

(5.2) < <C, for0<r<l.
p(l—=r = p(@-my/2) ~
Thus,
(5.3) Hg”u,l = sup pu(1 — |Z|2)|Vg(z)| <Cy.
zEB"

This means that g € BX.
On the other hand, taking z = rzy with 0 < r < 1, we have Vg(z){ = 0 and

u(1 = [2*)[Vg(2)| = (1 — |21)|Vg(2)z|
1 w(l—r?) 1

_ _ 42 . _
=p =P 2 o= e e

This shows that on the line z = rzy with 0 < r < 1, all tangential derivatives of g
are equal to 0, and the radial derivative attains 1/u(1 — |z|*) up to a constant factor
depending on p only.

Example 2 For u € M, let I',,(w) be the function formulated in Example 1,

I'(w)

Au(w) = m

and o
L,(w)=1 +/ Ay (z)dz forw € D.
0
Then, for 0 < r < 1, since 1/(C,u(1 — p)) < T'(p) < C,/p(1 — p) by Lemma 5.1,
we have

dp
2u(1 = p)

. L Cy
(5.4) W) <1+ ,/0 T
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and

1 r dp B 1 1 dt
(5.5)  Lu(r) > C_,L(l +/0 (1= p)2u(1 — p)) - C_ﬂ(l +/1,, tl/zu(t))'

For zp, { € OB" with ¢ L z, define I(z) = I, ¢ = (z,{)L,.((z,2)) for z € B".
Then, for z € B",

(56) VZ(Z) = L;L(<Zu ZO>)Z + <Zu C>A;L(<Zu ZO>)ZO
and
(5.7)  p(1 = [zP)|VI2)| < p(1 = [2*)Lu(|2]) + (1 = [2*)](z, O)|Au [z, 20)]).

Since A, (p) < Cpu/((1 = p)"2pu(1 = p)), by (5.2), we have

Cul(z, Q)| (1 — [z
. — |z? AL (| (z, < !
(5.8) (1 = [z[)[{z, OAL((z, 20)]) < (1— |z, 20) )72 p(1 — | (2, 20)])

< Cull — Iz, ZO>|2)1/2 p(1 = [z*) < C/,,\/Zu(l — |z
= U™ p—RD = (=)

<C,,

where the inequality |(z, )|* + |(z, 20)|* < |z|* < 1is used, and by (5.4) and (5.2),

dr
—)2p1—r)

Cup(1 —|2)?) /1 dr ,
< p(1) + = <Cl.
= pll) p(l—lz)) Jo (1=nt2 ="

2|
(59 (1l = L2l < (1) + Cupa(1 = |2) / -
0

It follows from (5.2), (5.7), (5.8), and (5.9) that

(5.10) 111 = sup p(1 = [2)|VI(2)] < C,
zEB"

and [ € B~
On the other hand, taking z = rz, with r > 0, we have VI(z)zy = 0 and by (5.5),

1 1 dt
VIAC = L) > L) 2 (14 /1_,2 )

This shows that on the line z = rzy with r > 0, the radial derivative of [ is equal to 0

and the tangential derivative along ¢ attains the upper bound (2.1) in Theorem 2.1
up to a constant factor depending only on p. So (2.1) is sharp.
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6 Bounded Composition Operators Between y:-Bloch Spaces
Theorem 6.1 Let jiy, uy € M, and let ¢ be a holomorphic mapping of B" into itself.
Then the following conditions are equivalent:
(i) Cy: B"M — B2 is bounded;
(ii) sup{u2(1 — |z|2)Fg(lz)(¢’(z)z) 1z € B} =M, < oc;
(i)
Fii\(¢'(2)u)
{% 1z € B, O;éue(C”} =M, < oo.
F2* (u)

Proof It is immediate that (iii) implies (ii). In fact, for 0 # z € B", we have F/?(z) =
|z|/112(1 — |2|*) and, by (iii),

| Bi(@0'@)2)

22 o >l — EPE (602

Now assume that (ii) holds. Let f € B and z € B". If ¢’(z)z = 0,

(1= |2V (f 0 ¢)(2)z] = pua(1 — |2|H)|V f(¢(2))¢' (2)2] = 0.

If ¢'(z)z # 0, then

pa(1 = |2V (f o ¢)(2)z]

- _ 2\ g
= m2(1 = [2)F Fii,(¢'(2)2)

¢(z)(¢/(Z)Z) : < MleHp,l,Z»-

It is proved that ||Cy(f) 4,2 < M1l f|| 13- Consequently, by (4.1) and (4.4),

C/HCHZMI
vn+1

C/H Cuz M 1

1Cs (MM < Ners

Nl < N flln -

On the other hand,

¢(0)
FO)] < [£0)] + / VA ldc]
0

Bl gy
<|f(0)| + — = Cuullfllen.
SOl [ 55 = Coalfllam

Thus,

Cu G My
vn+1

This shows that Cy : B** — B2 is bounded. It is proved that (ii) implies (i).

ICs(Npr = |f(@(0))] + Nl < CuaCon (1 + M| fll 3 -
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Finally, assume that C,: B"' — B/ is bounded. Forz’ € B"and 0 # u € C"
with ¢(z’) # 0 and ¢’ (z’)u #£ 0, letw’ = ¢(z'), zg = w/|W|, v = ¢'(z")u =
nzo + ¢ = % v |zo + €%|vy|¢ with ¢ L w’ and |¢| = 1. Define

(@) = fouz) =e g, . (2)+e ™, , (2) forzeB",
where g, -, and [, ;, ¢(2) are the functions defined in Examples 1 and 2. Then,
(6.1) f0)=0 and|fllu1<Cpy
by (5.3) and (5.10). On the other hand, it follows from (5.1) and (5.6) that

Viw') =e T, (w'))zZo + e "L, (Jw'|)C
and
VW) = [Ty ((w']) + [v2] Ly, (W'D
We have

L(jw L, (Jw

(Ey— B 1
~ Cuym(1 = w])’ = Cuyp (L= |w'2)

The last inequality follows from (5.2). Thus,

[v1] |v2|
Viw' )| > ( )
VI 2 et =y o
N 1 ( [v1]? |va|* )1/2 — 7\/5 F(v').
p(1 =W vy, (1= [w!]?)? CuVntl
This shows that
(6.2) VAW, 1

Fo() — Cuvntl

Since C, is bounded, by (6.1) and (6.2), we have

CunllColl Z NICs[l - 1 fllx = ol - [ fllmon = [|Co ()]l pr2

Vn+l Vin+ 1|Vf(¢(z")'(z")ul

>HC¢(f)H/121> Cuz HC¢(f)H/123> Cuz FZZ(M)
VA L|V(@(2)! (2 )u| Fyoy (0 (2)u)
 Cu (@2 FI2 (u)
VAT V| Bl (9@ 1 Bl (¢hw)
Cn FI(v) F”Z(u) = CMCM Fff(u) '

Thus, ”
Pl (00 _
FQJIZ( ) zCIHHCOHu

when ¢(z') # 0 and ¢'(z")u # 0. The same inequality also holds if ¢(z’) = 0
and ¢'(z')u = 0 by continuity. This shows that (i) implies (iii). The theorem is
proved. ]
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Lemma 6.2 Cy: B" — B" is bounded for any ¢ € Aut(B") and p € M.

Proof Let ¢ € Aut(B") and pr € M. Assume that ¢ = 1 o ¢,, where 1/ is a mapping
defined by a unitary matrix and ¢, is a mapping in Aut(B") which exchanges a with
the origin. A well-known identity asserts that

(1—la)(0 — |2

2 2 _
1—[¢(2)]" =1—[da(2)]" = - GaP

Thus,

L= [6)P 1 JaP

6.3
(63) 1— |z — 2

for z € B".

Letz € B". If |¢(2)| < |z|, by (3.2), we have

3vn+ 1p(1 — |2]*)]¢' (2)z]

< G0 ),
i lem - e

pu(l - |Z|2)Fg(z)(¢/(z)z) <

where |¢’(z)| is the operator norm of ¢'(z), which is defined by
|¢'(2)| = sup{|p’(2)u| : u € OB"}.
In the case |¢(z)| > |z, because of (6.3) and ({7),

Cup(1 = |2|?)]¢’ (2)]

(1 — |p(2)|?)

Cup(1 = |2])[¢" (2)]
— (1= a»)(1 = 22)/2)

pu(l - |Z|2)Fg(z)(¢/(z)z) <

< CuCayuld'(2)].

Now ¢ is holomorphic on the closed ball B" and so |¢/(z)| is bounded on B".
This shows that the condition (ii) in Theorem 6.1 is satisfied. By Theorem 6.1,
Cy: B* — BH is bounded and the lemma is proved. ]

Lemma 6.3 Let ;1 € M with the property that (i(t) /t is increasing for small t or there
isad > 0such that mt'* < p(t) < Mt'* for 0 < t < 1, and let ¢ be a holomorphic
mapping of B" into itself such that $(0) = 0. Then Cy: B* — BH is bounded.

Proof Assume that u(t)/t is increasing for 0 < t < t; < 1. Then p satisfies the
assumption in Lemma 2.3. By the Schwarz—Pick lemma, |¢(z)| < |z] and 1 — |z]* <
1 — |¢(2)|? since ¢(0) = 0. Forz € B"and 0 # u € C", applying Lemma 3.1 and
(1.3), we have

Fio@'@u _ - p(1— [z 1-|é()P
Fw) =" (=[P u(—[e@P)
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If1 — |¢p(2)|* < to, since u(t)/t is increasing for 0 < t < t,, we have

p— 2P _ p( = 6@)P)
L=l = 1=[e@)P

If1 — |¢(2)|* > to, then

_ 2
% < max{t/p(t) i tg <t < 1}.

If 1 — |z|* < to, since u(t)/t is increasing for 0 < t < t, we have

p(=lzP) _ ptto)
=P = o

If1 — |z|> > ty, then

% < max{u(t)/t: 10 <t <1}.

Combining the above estimates we conclude that the condition (iii) in Theorem 6.1
is satisfied and Cy4: B¥ — B* is bounded.

If thereisa d > 0 such that mt'*0 < p(t) < Mt'*9) for 0 < t < 1, then p satisfies
the assumption in Lemma 2.3 also and, for z € B" and 0 # u € C",

Fj (¢ (2)u) _GM (-] _CM
Flw) — m  (1—1¢p@*° ~ m

The condition (iii) is satisfied and C, is bounded. The lemma is proved. [ |
As a consequence of the above two lemmas, we have the following theorem.

Theorem 6.4 Let u € M with the property that uu(t)/t is increasing for small t or
there is a 6 > 0 such that mt'* < p(t) < Mt'* for0 < t < 1, and let ¢ be a
holomorphic mapping of B" into itself. Then C, is a bounded operator of B! into itself.
Further, if iy € M and p,(t) > mu(t) for small t with m > 0, then C, : B — B
is bounded.

Proof Let ¢ = 1) o o, where ¢» € Aut(B") and ¢(0) = 0. Then Cy, = C, o Cy.
By the above lemmas, C, and Cy, are both bounded operators of B* into itself and,
consequently, Cy is.

If i (1) > mu(t) for 0 < t <ty = 1 — r3, then, for f € H(B"), we have

sup (1 = IV @] < — sup (1= 2PV @] < s

|z|>ro |z|>ro
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On the other hand,

sup u(1 = 2|V f(2)| < p(1) max |V f(2)|

|z|<ro |z|=ro

p(1) e
= w1 (to) E}iﬁ“l(l 2|V f(z)| < o

u(1)
tO)HfH’“"'

It is proved that || f||,,; < max{1/m, p(1)/p1(t6)}||flu1- So, if we let i be the
identity mapping of B", then C; is a bounded operator B/ into B*. It follows that
C, = Cy o C; is a bounded operator of B#! into B#, since we have proved that C; is
a bounded operator of B* into itself. The theorem is proved. ]

7 Compact Composition Operators Between p-Bloch Spaces

Lemma 7.1 Forp € Mwithl, = 00,0 # w € B"and 0 # v € C", there exists a
function f,, ,,, such that

(1) fu,w,v(o) = 0 and ”fu,w,v”u,l < C;u'
(ii) |vﬁ1,,w,v(W)V|/F{f,,(V) > I/C/L,n-
Further, for a fixed p, fuwy,(z) — 0asw — OB" locally uniformly in B". Precisely

speaking, for e > 0,0 < r < 1, there exists an r,, . . such that |f,...,(2)| < € for
|w| > 1/, |z| < rand0 #v e C"

Proof Lety € M,0# w € B"and 0 # v € C" be fixed, let v = viw/|w| + v2( with
¢ Lwand|¢| = 1,and let v; = |v;|e”" and v, = |v;|e®2. We define

f@) = fumwn(2) = e (1 — |w) 2L, ((z,w) /W]

ez, L ((z,w)? e (1 —|w)!?
+ - )
L,(lw}?) [wl

where L(w) = L,(w) is the function defined in Example 2. Then, f(0) = 0 and

Vi(z) = e (1 — |w)2A((z, w))w/|wl

=% L((z, W)’ . 2e7 (2, O)L({z, w))A((z, W))W
L([w]?) L(|w|?) '

It is obvious that

Az, w))| < Al|[(z, w)]) < Adlz]|w]) < A(lw]),
IL({z,w)| < L(Iw]), |L((z,w))| < L([z]).
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Thus, since A(p) < C,./((1 — p)1/2u(1 —p)) for 0 < p < 1, we have
L(zDL(w]) | 2|z Q)IL(wDA(|z, w)])
L(|w|?) L(lw]?)

o1 = [w?)12 L(lz)L(w))

T (= [elwDV2u(1 = 2|l L(w]?)
2C,|{z, O IL(w)

(1= [{z, w)D)V2u(1 — [z, w) DL(Iw]?)

IVF@2)] < (1 — [wP)2A(z]|w]) +

+

and
Cup(1 = |2P) (1 — |w)'?
p(l—lz)) (1 —|w)/?

L(w)  2CGp( =z |Ol  L(w)
LwP) ~ p—=lzh A =[zw)V> L(wP)

(71) M(l - |Z|2)|vfu,w,v(z)| S

+u(1 — |z)L(Jz]) -

If jw| > 1/2, since

/IW dp _ /WI2 dp
2 (L=p)2u=p) = Jiu (= /p)V2pu(1 = /p)

Iwl?
< \/E/ dp
e (1 —p)l/Zu((l —p)/2)

|w]? d
<V2C, / P

e (L=p)2u((1—p)’

where the property (1) is used, we have, by (5.4) and (5.5),

/ vl dp ’
(7.2) L(|wl) §C,1(1+/0 (l—p)l/zu((l—p)) < C/L(w]).

The above estimate is evidently true for |w| < 1/2.
It is obvious that

(1 _ |W|2)1/2
72 = <V
and, by (5.2),
,u(l - |Z|2) n
(7.4) m S C/l forz € B".

Forz € B", letu = (z, w/|w|)w/|w| + (z,{)C. Then, (z — u) L uand

1> |2 > [ul® = [z, w/ W) + {2, O > [(z,w)[* + {2, )"
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Consequently,

.0 V2|(,0)
(1- |<Zv W>|)1/2 < (1- |<z, W>|2)1/2 < \/E

Now, replacing (5.9), (7.2)—(7.5), in (7.1), we obtain

(7.5)

p(1—|z)|Vf(z)| <C, forze B".

This shows that || f||,,; < C,,, and (i) is proved.
On the other hand, since A(p) > 1/(C/,,(1 — )21 — p)) for0 < p < land
L(r) > 1/(C,v(1 — 1)) by (5.5), we have

IV Fw)v] = |1 — [w)2A(w]?) + |va|L(w]?)

> L( ] + [v2] )
T C N (1= wlr) (1= |w]?)
L L( iy
- Cp, ,LL(I - |W|2)2 V/L(l - |W|2)2
1
= - FF(v).
Con W)

This shows (ii).
Let 0 < r < 1 be given. For |z| < r, we have
(1= [wH'PLu(r)  Lu()* (= [wP)"?
+ 2
|w| L. (Jw|*) (1) |wl

The right side of the above tends to 0 as |[w| — 1 since L, (|w|) — oo as |w| — 1 for
I, = oo. The second part of the lemma is proved. ]

| fum(2)] <

Lemma 7.2 Forp € M withl, < coand0 # w € B", there exists a function f,,,
such that

(1) fu,w(o) = 0and ||f/¢,w.,v||u < Cp,;
(i) p(1 = WV fuww)vl/[(v,w)] = 1/C,..

Further, for a fixed 1, f,4(2) — 0asw — OB" locally uniformly in B".

Proof For ;€ MwithI, < coand 0 # w € B", let

(1 _ |W|2)1/2
Wl

Then, as in the proof of Lemma 7.1, we have f,,,,(0) = 0, || fuwll,1 < C, and, for
0#£v=wvw/|lw|+n(with¢ L wand (| =1,

f(@) = fuw(@) = (1= [w)'2L,((z, W)/ |w| —

_ 2y1/2 o L nl _ 1 (ww)
IVfw)v| = [vi|(1 = |w[") “A(Iw]") > Co (=)~ Co il =P

The second part of the lemma is obvious. ]
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Lemma 7.3 Let f € H(B") and p € M with I, < oo. If [V f(2)| < m for |z| < ro,
1/2 <1y < 1, then forry < |z| < 1and L zwith || = 1, we have

V(@) < m+Cppll fllt,

whereC,,, — 0asry — 1.

HsTo

Proof It is sufficient to prove the lemma for z = (p,0,...,0) with p > 1y and
¢=1(0,1,0,...,0). As in the proof of Theorem 2.1,

0 9] 7 OR
P f(p707"'70)_r0 f(r0707"'70):/ f(21707"'70)dzlu
822 822 o 822

0
|vf(z)<| = ‘8_£(p707"'70)‘

dr
Pu(l — 1)

of ’
< ’a_ZZ(rO,O,...,O)‘ +Cu||f||u,2/m (1—r2)!

1—r5 dt
<m+C, ” —_—.
<mrClfla |

Theorem 7.4 Let piy, o € M, and let ¢ be a holomorphic mapping of B" into itself
and Cy : B" — B be bounded. If I, = oo, then the following conditions are
equivalent:

(i) Cy:BM — B is compact;

(i) pra(1— [2P)FA (¢ (2)2) — 0 as ¢(z) — OB

(i) 2200 0 as g(z) — OB
If1,, < oo, then the following conditions and (i) are equivalent:
(i) NV
el EDI SO o as ote) — om
(iii’)

(9" (2)u, P(2))]
F2 (u)p (1 — |p(2)]?)

Proof As in the proof of Theorem 6.1, it is obvious that (iii) implies (ii) and (iii’)
implies (ii’). Since C; is bounded, by Theorem 6.1,

— 0 as ¢(z) — OB".

(7.6) sup{pa(l — |z|2)Fgéz)(¢’(z)Z) :z€B'} =M < .

First assume that [, = oco. Let (ii) hold. Let f; € B" and || fy||gn = 1, for k =
1,2,.... Applying Montel’s theorem, by choosing a subsequence, we may assume
that fi converges to a function f locally uniformly in B”. It is easy to see that || f||pn <
1. Let gt = fx — f. Then, g — 0 locally uniformly in B” and

(7.7) llgllzm <2 for k=1,2,....
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Let € > 0 be given. By the assumption (ii), there exists an ry < 1 such that
(7.8) pa(1 — |z|2)ngz)(¢’(z)Z) <e if|p(z)| > ro.

Since gy (w) — 0 uniformly for |w| < ry, by (3.3), there exists a K such that

[Vgiwiv| _ 3v2u(1)
Fl(vn2 = Vn+l
fork > K, |w| <rypand 0 # v € C".

Let k > K and z € B". To estimate (1 — |z|*)|RC,(gi)(2)|, we distinguish three
cases.

(a) If ¢'(2)z = 0, p2(1 — |2]*)|RCy(gk) (2)| = p2(1 — |2*)|Vgk(9(2)) 9" (2)2| = 0.
(b) If ¢'(2)z # 0 and | ()| < ro, then, by (7.6) and (7.9),

|Ver(o(2))9’ (2)z]
Fil\(¢'(2)2)

(c) If ¢'(2)z # 0 and |p(2)| > 1y, it follows from (7.7) and (7.8) that

(7.9) IVa(w)| < e

12(1 = [2])|RCy(2) (2)] = p2(1 = |2|)EL, (6" (2)2) < Me.

p2(1 = [2)|RCo(g)(@)] < €llgillins < Cpre.
We conclude that ||Cy(gk)]| 2 < e max{M,C,, } for k > K. This shows that
€82 — 0

and, consequently, ||C4(g)||B= — 0ask — oo, since

Hcﬁﬁ(gk)Huz-,l < Cqucﬁﬁ(gk)Huz.,Z

and gx(¢(0)) — 0as k — oo. Thus, fy o ¢ — f o ¢ according to the B> norm. The
compactness of Cy is proved. This shows that (ii) implies (i).

Now, assume that (i) holds. Suppose on the contrary that (iii) doesn’t hold. Then,
there exist § > 0, sequences z; and u; # 0, such that

Bl (8 (1))

(7:10 F? (i)

>4, fork=1,2,...,

where w, = ¢(z) — OB" ask — oo. Fork = 1,2,...,let vi = ¢'(z)uy and
fi = fu,m.n be functions defined in Lemma 7.1. Then, f; and, consequently, C4( fi)
converge to 0 locally uniformly in B". Since C, is compact and f; is a bounded se-
quence in B by (i) in Lemma 7.1, by choosing a subsequence, we may assume that
there is a function ¢ € B*2 such that ||Cy(fx) — g||s= — 0. g must be equal to 0
identically for Cy( fi) converges to 0 locally uniformly in B". Thus, ||Cy(fi)|sm — 0.
In particular,

IVCs () (@)u] |V fillg(z)) ¢ (z) | o

(710 FE () F2 ()

https://doi.org/10.4153/CJM-2009-003-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2009-003-1

72 H. Chen and P. Gauthier

However, by (ii) in Lemma 7.1,

|V fild(z) o' (zi) u] o1
Fil,0(@"(zu)  ~ Cupy’

Combining (7.10) and (7.12), we have

IV fild(z) @' (zx) ] S0
Fi () = Cop

(7.12)

fork=1,2,....

This contradicts (7.11). This shows that (i) implies (iii). The theorem is proved for
I, = .

Now we consider the case that I, < oco. Assume that (ii’) holds. As above, for a
bounded sequence in B!, we have subsequence f; € B* and an f € B/ such that
g = fx — [ — 0locally uniformly in the unit disk, || fx||g= < 1and (7.7) holds. Let
€ > 0 be given. By Lemma 7.3 and the assumption (ii’), there exists an ry > 1/2 such
that Cy,, ,, < €, where C,,, ,, is the number in Lemma 7.3, and

pa(1 = [2H) (¢’ (2)z, ¢(2))|
(1= [o(2)]?)

Since gx(w) — 0 uniformly on |w| < 1, by (3.3), there exists a K such that

(7.13) if |p(2)| > 1.

(7.14) |[Va(w)| < e fork>K, |w| <r,
and
V
% <e fork>K, |w|<r, 0£veC".

Let k > K and z € B". By the same reasoning as in the case I, = co, we have
p2(1 — |2]5)|RCy () (2)z] < Me

if ¢’ (z2)z = 0or ¢'(2)z # 0 and |¢(2)| < rp. In the case ¢'(z)z # 0 and |p(z)| >
10, let @' (2)z = wdp(2)/|P(2)| + up¢ with ¢ L ¢(z) and || = 1. Then u; =
(9 (2)z, p(2)/|9(2)]), Uy = (@' (2)z, (), and we have

|RCy (k) (2)z] = |Vgr(¢(2))¢' (2)z]
= |Vg(d(2)) (@' (2)z, p(2) /|4 (2)|)p(2) [ |p(2)| + (¢ (2)z, )|
< 4|(¢"(2)z, 9(2))||Ve(d(2)p(2)| + [(¢' (2)z, C)||Vgk(d(2))C|

and

(7.15)  pa(1 — |2)|RC () (2)2] < pa(1 — |2[H)[{(¢(2)z, {)||Vgr(p(2))(]

p2(1 = 2| {9/ (2)z, ¢(2))]
(1 —|p(2)]?) '

+4p(1 — |(2)]) | Var(p(2))p(2)] -
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Estimating the right side of (7.15), we have, by (3.3) and (7.6),
(7.16) p2(1 = 2] (@"(2)2, Q)| < 21 = |2)] " (2)z]
< (D (1 = |2y (¢ (2)2) < (1M,
and, by Lemma 7.3 and (7.14),
(7.17) IVak(@(2))C] < €+ Cruy o llgill it < €+ ellgillmm < 3e,

and, by (7.7) and the definition of F¥,

n+1|0(2)||Vg(d(2))d(2)|

2 i (6(2)

(7.18) (1= |6(2)])|Ver((2)d(2)| =

n+1
<
o 2
< C, llgellem <2C;,.

Hng#1~,3 < CHngkH#hl

Thus, substituting in (7.15) by (7.16), (7.17), (7.18) and (7.13), we obtain
12(1 = [2*)|RCy(gi) (2)z] < (Bpa(1)M + 8C, e.

Thus, ||C(gk)|| .2 — 0as k — oco. Asabove, this shows that fro$ — fo¢according
to the B2 norm, and C,: B* — BH2 is compact. We have proved that (ii’) implies
).

Now, assume that C,: B — BH2is compact. To prove (iii’), suppose on the
contrary that there exist § > 0, sequences z; and uy # 0, such that ¢(z;) — OB" and

[(d (z) g, P(zk)) |

(7.19) F2 (u) i (1 — | (z0) )

>4, fork=1,2,....

Fork =1,2,...,let wy = ¢(z) and fx = f,, w, be the functions defined in Lemma
7.2. Then, as above, by choosing a subsequence, we may assume that ||Cy(fi)|| B2 —
0 as k — oo. In particular,

IVCs(f)(zux| |V fiulwi)d' (zx) | _
(720 o) Fem) 0

However, by (ii) in Lemma 7.2,

2w |V filwi) &' (zi) u 1
(7.21) pa (L — |wi|%) o o wdl c

fork=1,2,....

(7.19) and (7.21) contradict (7.20). This shows that (i) implies (iii’). [ |
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If v =viw/|w| + v,¢ with ¢ L wand |{| = 1, then

" - n+1 |‘V1|2 |‘l/2|2 1/2
E) =4/ (u(1—|w|2)2+uﬂ(1—|w|2)2)
n+ 1 [{vw/w])? (v, Q) 12 [n+1  |[{v,w)]
B z(uu—wmemvmwv) N2 wa—

This shows that the conditions (ii’) and (iii’) are weaker than (ii) and (iii) respec-
tively.

If 1 and py satisfy the condition in Lemma 2.3 (then I,, = I,, = o0), then
condition (iii) in Theorems 6.1 and condition (iii) in Theorem 7.4 become

(1 = |21 = [¢(2)|)) Hpz) (@' (2)u, ' (2)u1) . . .
sl e B e F 0 ue ) <o

and

(1 = |z (1 = [¢(2)|H) Hpz) (@' (2)u, ' (2)u1)
w1 —|p(2) ) (1 — |2]?)H,(u, u)

— 0 as¢(z) — OB",

respectively. These are the necessary and sufficient conditions established by Zhang
and Xiao in [12].
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