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GORENSTEIN WITT RINGS I

ROBERT W. FITZGERALD

ABSTRACT.  Theabstract Witt rings which are Gorenstein have been classified when
thedimension isone and the classification problem for those of dimension zero hasbeen
reduced to the case of socle degreethree. Here we classify the Gorenstein Witt rings of
fields with dimension zero and socle degree three. They are of elementary type.

The elementary type conjecture, stated by Marshall [11] in 1980, is aproposed classi-
fication of noetherian Witt rings R. Thereis till little evidencefor its validity; the basic
known casesare when Ris reduced or has at most 32 generators. The case of Gorenstein
Witt rings wasfirst studied in [5], primarily becauseit seemed tractable. They also have
particularly simple Ext-algebras and often arise in that context (cf. [6], [7]).

Let R denote anoetherian, abstract (in the sense of Marshall [11]) Witt ring. The only
important examples are Witt rings of fields F with F* /F*2 finite. The elementary type
conjecture for the Gorenstein caseis:

©
If RisaGorenstein Witt ring then Risagroup ring extension of aWitt ring of local
type (i.e. aWitt ring of alocal field).

(C) was shown in [5] to hold in the following cases:

(1) dmR#0.

(2) dimR = 0 and the socle degree, o(R), is at most two.

(3) If (C) haldsfor all Rwith dimR = 0 and ¢(R) = 3, then (C) holdsfor all R.

In this paper we show that (C) holdswhen dimR = 0, ¢(R) = 3 and Ris the Witt ring
of afield.

The proof of our result uses quadratic field extensions, atechniquenot availablein the
abstract setting. Moreimportantly, the reduction step (3) used Pfister quotientswhich are
not known to exist in the category of Witt rings of fields. Thus our result does not imply
the classification of all Gorenstein Witt rings of fields. Still it gives the most important
example of the only open case. Further, we are able to classify certain 2-Hilbert fields,
introduced by Szymiczek [13].

From now on Ris a Gorenstein Witt ring with dimR = 0 and o(R) = 3. Let G bethe
associated group of one dimensional forms and g the associated quaternionic mapping.
R Gorenstein and zero-dimensional means, by Bass' criterion, that dim(annlg) = 1. R
having socle degree three meansthat annIr = {0, o'}, for some anisotropic 3-fold Pfister
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form o. Some simple consequencesare that 1§ = 0,13 = {0, ¢} and every anisotropic
2-fold Pfister form represents half of G. Two less obvious consequencesare:
(0.0.1) ann(annl) =1, for any ideal | C R.
(0.0.2) |D(1,—x)[ |D(1, —y)| [D(L, —xy)| = g|D(1, —)ND(L, —y)[*, foranyxy € G.
(0.0.1) is[5,2.8] and (0.0.2) is[5, 2.17]. We will also often use the Block Desigh Count-
ing formula:

(0.0.3)

> ID(L,—x)NB| =3 [D{L,—y)NA]|,

XeA yeB
for sets A,B C G. Both sides of (0.0.3) count the number of pairs (x,y) with x € A,
y € Band x € D{1, —y). A different version of thisfirst appearedin [8] while the above
versionisfrom[10].

F will denote afield of characteristic not two. We are only concerned with the case
that char WF # 0 so we always assumethat F is non-formally real. Let g denote |G|. E,
denotes the elementary abelian group of exponent 2 and order 2". For a multiplicative
group H we use H® to denote H \ {1}. Theindex of an element x € G, i(X), is the index
of D(1,—x) in G. We will work in as great a generality as is convenient. In particular,
we will work with abstract Witt ringsin the first two sections and switch to the field case
in the last two sections. We close this introduction with a statement of the usual way to
verify conjecture (C) for our Gorenstein Witt rings of socle degree three.

ProPosITION 0.1.  Thefollowing are equivalent:
(1) Ghasarigid element.

(2) R= L[E4] for some Wtt ring L of local type.
(3) Risof elementary type.

ProOF. (1)—(2): Lett € G be arigid element. Then, sincecharR # 0, t is birigid
by [1, Corollary to Theorem 1] (the proof in [1] is valid for abstract Witt rings, see [12,
4.15]). ThusR = JE;], for someWitt ring S, by [11, 5.19]. Sisisomorphic to the Pfister
quotient R/ ann(1, —t). So Sis Gorenstein of socle degree two by [5, 2.6], and hence of
local type by [5, 2.5].

(2—(3) is clear. (3)—(1): Risnot of local type since I3 # 0. If Ris aproduct then
G ~ H x K, for some non-trivial subgroupsH and K of G. For eachh € H, k € K we
have:

D(1, —hk) = D(1, —h) N D(1, —k),

by [11, pp. 100-101]. In particular, if h # 1, k # 1 then D(1,—hk) C D(1,—h), so
that, by definition, h € rad(hk). But rad(hk) = {1, hk} by [5, 2.9] which forcesh = 1
or h = hk. Either case contradicts the supposition that h # 1, k # 1. Hence Ris not a
product. R being of elementary type then implies that R is a group ring extension. Thus
G hasarigid element by [11, pp. 115-116]. n
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1. Elementsof Index 4. The case where G has an element of index 4 will be the
first step in the induction argument proving our result. However, it requires a different
treatment than the other cases. We begin that study here for abstract Witt rings. Set:

By = {x€G|i(x) =2}
B} = BoU {1}.
LEmMmA 1.1. (1) Bjisasubgroupof G.

(2) BBy C B. In particular, By isa union of cosets of B3.
(3) Ifae By andx # 1, athen |D(1, —a) N D(1,—x)| = 3|D(1, —x)|.

PrOOF. We start with (3). D(1,—x) is not a subset of D(1,—a) [5, 2.9] and
i(@) = 4 implies that |D(1, —a) N D(1,—x)| = 3|D(1,—x)| or |D(1, —x)|. Suppose
that [D(1, —a) N D(1, —x)| = %|D(1,—x)|. Then by (0.0.2):

ID(1, X ID(L, ~a)| = g 5 D(L, ~X)P

(o]

1
D(1, —ax)| = ;[D(1, —x)|
= |D(1, —a) N D(1, —x)|.
But then D(1, —ax) = D(1,—a) N D(1,—x) C D(1,—a), which is impossible by [5,
2.9]. This proves(3).
Now supposethat x € By. Again using (0.0.2):
g — ol Lipir )
3 ID(L )| - [D(L, —ax)] = o(5ID(L, )]
ID(1, —ax)| = [D(1, —x)|.

So ax € By giving (2). When k = 2 thisis (1). ]

Fix a € B, and by, by, b3 = biby suchthat G = {1, by, by, b3}D<1, —a). Set p =
g(a, by) fori = 1,2,3. Then Q(a@) = {1, p1, p2, p3}- Further, we will always assume that:

[D(L, =by)| > [D(L, =bp)| > [D(1, —bg)|.
LEMMA 1.2. Leta,8 € D(1,—a)andleti # jfor 1 <i,j <3.ThenD(1,—hia) N
D(1, —bg) = {1}.

PrOOF.  If x € D(pj) N D(p{) then pi, pj € Q(X) N Q(a). Hence Q(a) C Q(x) and
x=a. Thatis,

D(p() ND(p) = {—a}.

Lety € D(1,—bia) N D(1,—b;3). Then p; = g(a, by) = q(ay, bir) and p; = qa, bB) =
a(ay, bjB). Thus —ay € D(p{) N\D(p)) = {—a} andsoy = 1. "
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LEMMA 1.3. If Risnot of elementary type then B, C D(1, —a) for all a € B;.
PrROOF. Letx € B, \ D(1,—a). We may assume that x € b;D(1, —a). By (1.2)
D(1, —x) N D(1, —by) = {1} and so by (0.0.2):
ID(L, )| [D{L, ~b2)| [D(1, —xbz)| = g.
Sincex € By, |D(1, —by)| |D(1, —xby)| = 4. So b, and xb, arerigid and R is of elemen-
tary type by (0.1). ]

THEOREM 1.4. Let R be a Gorenstein Witt ring of dimension zero and socle degree
three. Suppose a € G hasindex 4. If Ris not of elementary type then there exists an
m > 3, such that:

B,...,Bm1 C D(1,—a),
B ¢ D(1,—a),

@)

byD(1,—a) C By
2 b,D(1,—a) C B
bsD(1, —a) C B,

for somes>r > m.

PROOF. Letb = by, by or bs. We will show that for al « € D(1,—a) we have
|D(1,—b)| = |D(1,—ba)|. This proves the result since this omits only the statement
that m > 3, which follows from (1.3). We may assume, without loss of generality, that
b = b;. We have by (1.2) and (0.0.1):

ID(1, —by)| [D(1, —b283)| [D(1, —bsa3)| = |G|

for al o, 3 € D(1,—a). Replacingin turn o and 8 by 1; 3 aloneby 1; 8 by «; and « by

1, 3 by « gives:
ID(1, —by)| |D(1, —b2)[ [D(1, —bs)| = |G|
ID(1, —by)| [D(1, —b2)[ |D(1, —bs)| = |G|
ID(1, —by)| [D(1, —bpa)[ [D(1, —bs)| = |G|
ID(1, —by)| [D(1, —bpa)[ |D(1, —bser)| = [G].
Thus:
(i) [D(L, =by)[ |D(1, =bs)| = [D(1, —byex)| |D(1, —bzar)|
(if) [D(L, —by)[ |D(1, —bp)| = [D(1, —byex)| |D(1, —bpar)|
(iii) |D(1,—by)|[D(1,—

Suppose |D(1, —by)| < |D(1, —bie)|. Then (i) gives |D(1, —by)| > |D(1, —b«a)| and
(ii) gives |D(1,—bs)| > |D(1, —bse)|. But this contradicts (iii). Thus we have that
ID(1, —by)| = |D(1, —bya)|. "

)
)

,—bs)| = |D(1, —byar)| |D(1, —bzar)|.
i
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2. Improvementswhen —1isasum of twosquares. Thegoal of thissectionisto
refine (1.4). The additional assumption that —1 isasum of two squareswill turn out not
to be restrictive in the field case. However, we continue to work here with abstract Witt
rings.

LEMMA 2.1. g=|D(1,—x)| (mod 3) iff x € D(4).

Proor. (R/ann(1,—x),G/D(1,—Xx)) is Gorenstein of socle degree two [5, 2.6],
hence of local type [5, 2.5]. Theng = |D(1,—x)| (mod 3) iff |G/D(1, —x)| = 2% for
somekiff —1isasumof twosquaresin R/ ann(1, —x) iff <(1, 1, —x>> = 0iffx € D(4).m

From now on suppose that —1 € D(2). We thus have that g = |D(1, —x)| (mod 3)
foral xin G. Set

Ac={xe G |i(x) =2*}
A = AU{1)
Thus, in terms of the notation in the last section, A, = By.

PROPOSITION 2.2.  Suppose G hasan element a of index 4. Theng = 2 (mod 3).

PROOF. Leta € A; and g = 2. We count using (0.0.3), with A = Gand B =
D(1,—a). For each x € A, x # 1 we have by (1.1) that |D(1,—a) N D(1,—x)| =
3ID(1, —x)| = 2721, Thus:

n .
(LHS) 3 |D(1,—a)ND(1, —x)| = 2- 22+ (JA]| — 2023+ 5 |A 221
i=2

xeG
wheren < &2, Using G = A UJA::
(LHS) — 2k—2 + 22k—2n—1 + (Zk_3 _ 2k—2n—l)|AI|
n—1 i
+ Z(Zk_ZI_l _ 2k—2n—l)|Ai|_

i=2

And thus we have;
(LHS) =2+22 (mod 3).

Next we have:

(RHS) > |D(L,—-y)| =2+ (JA{ND(1,—a)| — )22
yeD(1,—a)

+ i |A N D(1, —a)| 22,
i=2

Using D(1, —a) = (A} N D(1, —a)) U U(Ai N D(1, —a)):
(RHS) = 2K — 2k=2.4 0220 4 (Qk=2 _ 2k=2m)| At N D(1, —a)|

+3 @7~ 2M)A ND(L, ~a)|
i=2

And so we have:
(RHS) =1 (mod 3).
Since LHS = RHS, we have 22+ 2 = 1 (mod 3), 2 = —4 (mod 3) and so g =
2% =2 (mod 3). .
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COROLLARY 2.3. If G hasan element of index 4 then |D(1, —x)| # 4 for all x € G.
PrOOF. We havethat G = D(4) so that for any x € G (2.1) and (2.2) combine to
give:
ID(1,—X)| = g=2 (mod 3).
Thus |D(1, —x)| # 4. "
We recall the setup and result of (1.4). We continue to assume that —1 € D(2),
and that G has an element a of index 4. Fix by, by,bs = bib, such that G =

{1, by, by, b3}D<1, —a). Set pi = q(a, b,) fori = 1,2,3. Then Q(a) = {1, P1, P2, pg}.
Now using (1.3) set g = 221, Further, we assume that:

ID(1, —by)| > [D(1, —b2)| > |D(L, —bg)|.
(1.4) said that thereares > r > m > 2 such that:

Ag, ..., An1 C D(1,—a),
Am ¢ D(1,—a),
b;D(1,—a) C Anm,
b,D(1,—a) C A,
bsD(1, —a) C As.

(Note that, aswritten, (1.4) in fact saysm > 3, but that refers to the index of B; while
we are now working with Aj = By;. So in this notation we have only that m > 2).

THEOREM 2.4. SupposeRis not of elementary type. Then thereexistsanodd m > 3
suchthat Ay,...,An1 C D{1,—a) and Ay, ¢ D(1, —a). Further:
(1) 2% < g < 2*™1 (or, equivalently, 3(3m— 1) < k < 2m—1).
@)
D(1,—a) CA{UAU--- UAy
b1D<1, —a> C Anm
m—1

{bp,bs}D(1,—a) = A, wherer = k— —

(3) Ift ¢ [1,m U{r}then A = 0.

PROOF. Setp=2k—2r+1landq= 2k— 2s+1. Then|D(1,—h,)| = g/2% = 2P
and |D(1, —bg)| = g/2% = 29. Note that p > g. Also, from (2.1) and (2.2) we have that
p and g are odd. (1.2) gives:

ID(1, —by)[ [D(1, —b2)| [D(1, —bs)| = g
2p+q — 22m

p+q=2m.
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Since p > g, thisimpliesm > q. Further, for 1 # 3 € D(1, —a) then (0.0.2) gives:

ID(L,—5)/ID(L, ~bs)|[D(L, ~bs5)| = 6lD(L,—5) N D(L,~bo)l? > g
ID(1,—p)| > 221
i) < 20.

SoD(1, —a) C AjJUAU- - -UAq. If x € Acwheret ¢ [1, q]U{r,s,m} thenx ¢ D(1, —a),
x ¢ biD(1, —a) C Am, x ¢ boD(1,—a) C A, andx ¢ bsD(1,—a) C As. Thus A; = 0.

Sterl. m=gandr =s.
Wehaves>r >m>qgand2m= p+q. Thusm = qiff g = piff r = s. Suppose
that m > g. Then:
s>r>m>q.

We claim that:
(i) D{L,—a) =AU ---UAq
(i) {b1,b2}D(1,—a) = AnUA
(iii) bsD(1,—a) = As.
Namely,
AjU---UAy 1 CD(l,—a) CAJU---UAq

and m > gimplies:

AlU---UA CATU- - UAp 1.
Thus (i) holds. If x € Asthenx ¢ D(1,—a) by (i), and x ¢ {bs,b,}D(1, —a) by (1.4).
So x € b3D(1, —a). This proves (iii). And (ii) follows from (i) and (iii).

We use block design counting (0.0.3) with A = D(1, —a) and B = G\ D(1, —a). We
break the sum on the left into sums over biD(1, —a), for i = 1, 2,3, each of sizeg/4 =
2%~1 Recall from (1.1) that for z # 1,awe have|D(1,—a) N D(1,—2)| = 3|D(1,—2)|.
We thus get on the lft:

ST |D(1,—2)ND(1, —a)| = 22122 4 2p~1 4 2071,
z¢D(1,—a)

Theright hand side sums over D(1, —a). Working with sumsover 1,a,A; \ {a}, A, . . .,
Aq and again using (1.1)(3) gives:

q .
S ID(L,—w)\ D{1,—a)| = 3- 2% 1+ (JAg] — 2% 2+ Y |A|2 2
weD(1,—a) i=2

q !
=5. 22k—2 + Z |Ai|22k_2|
i=1

=5. 22k—2 + 24k—2q—l _ 22k—2q

q-1 .
+ Z |A| |(22k72| _ 22k72Q),
i=1
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where the |ast equation comes from UA; = D(1,—a) \ {1}, and so >° |A| = 2% — 1.
Equating the two sides of (0.0.3) and dividing by 2224 gives:

22q—1(22k—2m + 2p—l + 2q—1)

2.4.1 q-1 ]
( ) =5. 22q—2 + 22k71 —1+ Z |Ai|(22q72l _ 1)
i=1

We have 224-1(22~=2m 4 2p—1 4 2a-1) > 22-1 Djvide by 2241 to get:
22k72m + 2p—1 + 2q71 —1> 22k72q.

Sincep > q:
2P > P14 0t
> 22k—2q _ 22k—2m

S gk-20-1

Thusp > 2k—2g—1and &2 > k—q—1. Thusr = k— (%) < k—(k—q—1) = g+1.
But r > g, acontradiction.

Hencem=gandr = s.

We summarize. We have mis odd sincem = . By (1.3) m # 1sotham > 3.
Combining (1.4) and Step 1 gives:

D(l,—a) CAJU---UAy
b1D<1, —a> C Anm
{bz, b3}D<l, —a) C A,

wherer = k — ("51) = s. Also, (3) was verified in the last sentence before Step 1. To
prove (2) we need only show {by, b3}D(1,—a) = A,. Nearly all of (1) remains to be
shown. At this point, we can only show that 2°™ < g. Namely, p = 2k + 1 — 2r, by
definition, andr > mby (1.4). Thusp < 2k+1 — 2m. Step 1 givesthat p = m = @, so
2k +1 > 3m(and g = 2%*1 by definition of k).

SteP2. 2°M < gand {by, bs}D(1, —a) = A.

First notethat if g > 25™then 2k + 1 > 3mandr = k— (%1) > 31— ml —m
If x e Arthenx ¢ {1,b;}D(1,—a) C A U--- UAn Sox € {by,b3}D(1, —a). Thusto
complete Step 3 we need only show g # 23™

Supposeg = 2°™. Thenr = m. Also A, N D(1,—a) = (). Otherwise, if x € ApN
D(1,—a)andb ¢ D(1,—a) then

ID(1, —x)| |D(1, —b)| |D(1, —bx)| = 2°™D(1, —x) N D(1, —b)|?

hence|D(1, —x) ND(1, —b)| = 1. Thisshowsthat if b ¢ D(1, —a) then —b ¢ D(1, —x)
(else —b € D(1,—x) N D(1,—b)). Thus D(1, —x) N —{by, bz, bs}D(1, —a) = 0. Now
ae A C D(1,—a),s0—1 € D(1,—a). ThusD(1, —x) N {b1, by, b3 }D(1, —a) is empty
and D(1, —x) C D(1, —a), acontradiction.
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Thus D(1,—a) = A U--- UAq 1 and G\ D(1,—a) = An. Apply (2.4.1) with
m=p=gand2k+1=3m:

m—1 .
22m—l(2m—1 + 2m—1 + 2m—1) —5. 22m—2 + 23m—2 —1+ Z |Ai|(22m_2| _ 1)
(2.4.2) =1
m—1 .
23m—1 _5. 22m—2 +1= Z |Ai|(22m_2I _ 1)
i=1

Now |Aq| +- -+ +|An1| = |D(1,—a)| — 1 = 2°™2 — 1. Solve for |An_1| and plug into
(2.4.2). Since the coefficient of |Ay—1| is 3 we have:

m—2 .
23m—1_5. 22m—2+1: 3_23m—2_3+ Z |Ai|(22m_2I _4)
i=1

_93m=2 _ g o92m-2 __ 2 |(o2m=2i __
4-2 5.2°% = 3 |A(2 4).
i=1

But the sum on the right is non-negative while the left is negative since m > 3. This
contradiction proves Step 2. Thusthe proof of (2) is complete. To finish the proof of (1),
and hence of the Theorem, we need:

STEP3. g < 24™ 1
Fix ¢ € {by,b3}D(1,—a). Theni(c) = r = k— (2) so that |D(1, —c)| = 2™ For
any x € D(1, —a):
ID(1, —x)| |D(1, —c)| |D(1, —cx)| = 2%*1|D(1, —x) N D(1, —c)|?
ID(1, —x)| = 2%~2™1|D(1, —x) N D(1, —c)|?
ID(1, —x) N D(1, —c)| = 2™ forx € A.
We will use block design counting (0.0.3) for A = D(1,—a) and B = D(1,—c).
Summing over {1}, Ay, ...,Amn1, and AN D(1, —a) gives:
m—1 )
(LHS) > |D(1,—x)ND(1,—c)|=2"+ > |A|2™" +|AnND(1, —a)|.
xeD(1,—a) i=1
Since "™ 1A + |AnND(1, —a)| = |D(1, —a)| — 1 = 2%~ — 1 we have:
m=1 )
LHS = 2% 14+2m_ 14+ 3" 2™ — 1)|A].
i=1
Now if y € D(1,—c) andy # 1, then |D(1,—y) N D(1,—a)| = 3|D(1,—y)| by
(2.2)(3). Thus:
m—1 .
(RHS) > |D(L,—y)ND(1,—a)| = 2%"*+ 3~ |A ND(L,—¢)[2**
yeD(1,—c) i=1
+|AnN D(1, —a) N D(1, —c)|2%~2m
+|byD(1, —a) N D(1, —c)|2%~2m
+|{b,,b3}D(1, —a) N D(1, —c)|2™ ™.
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Now b;D(1,—a) N D(1,—c) = 0 by (1.2) and |[{bz,b3}D(1,—a) N D(1,—c)| =
2|D(1, —c)| = 2™ L. so:

m-1 )
RHS = 22kfl + 22rrk2 + Z |A| a D<1, —C>|22k72|

+|AnND(1, a>mD< —c)[222m,
Since "™t |AND(1, —c)| +|AnND(1,—a)ND(1, —c)| = |D(1,—a)ND(1,—c)| —1=
2rrk1 l,

m—1 .
RHS = 22'(71 + 22m72 + 22k7m71 _ 22k72m + 22k72m Z (ZZWZI _ l)|A|+ 2 D<1, —C>|

i=1

Equating LHS=RHS and cancelling 22! gives:

m—1 .
-1+ Z (Zm_l — 1)|A| = 22k—m—l + 22m—2 _ 22k—2m
(2.4.3) =
m-1 ]
+ pZk=2m Z(sz_zl — 1)|A ND(1,—c)|.
i=1

Dividing (2.4.2) by 3 gives:
1 3m—1 2m—2 21 2m—2i
|A,1H|:§(2 —-5.2 +1)—¥§(2 — 1A
i=
Plugging into (2.4.3) gives:

1(2?“*1 —5.22M 24 1)42M _ 1 4 p-2m

— 22m—2 + 22k—m—1
+ Z ( (22W2I o 1)_ (2rrH o 1))|A4|

m-1 .
+ 222 N (2m2 ) A N D(1, —c)).
i=1

We thus have:
}(23m—1 _5. 22m—2) +2M 4 22k—2m > 22m—2 + 22k—m—1

}(23m—1 22m) 22m—2 +m-1 22m—2 + 2m—1 > 22k—m—1 _ 22k—2m

3
%ZZm(Zm—l _ 1) _ 2m—1(2m—1 _ 1) + 2m—l _ %ZZm—Z > 22k—2m(2m—1 _ l)

Now 2m~1 — 222™2 < 0, sincem > 3impliesthat 22™2 = (2™1)2 > 3. 2™, Thus:

(2m71 1)( 22m 2m71) > (2m71 _ 1)22k72m

:_13'2 m __ 2m71 > 22k72m

22m—2 > 22k—2m
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andsok <2m—1landg < 24™1, "

REMARK. By adetailed analysis of equations (2.4.2), (2.4.3) and similar equations
one can show that if —1 € D(2), G has an element of index 4 and R is not of elemen-
tary type then m > 9 and g > 2%. Unfortunately, we are unable to eliminate this case
completely. To improve these results further requires the use of field techniques.

3. Quadratic Extensions. The key to better results for Witt rings of fields is the
result [5, 2.6] that if WF is Gorenstein of socle degreek then WF(,/w) is also Gorenstein
of socle degreek.

We will be working with several fields at once, so for clarity we now write Gg for
F* /F*2, De(q) for the valuesrepresented by aquadratic form g defined over F, and ir(X)
for the index [Ge : Dg(1, —x)]. We begin with two results valid for any field F (of
characteristic not two).

LEMMA 3.1. Let p be a Pfister formover F and let K = F(,/w). Let N denote the
restriction of Ny /¢ to Dk (p). Then:

Dk(p) NGr i

1= LwiFz

Dk(p) — D(p) N De(1, —w) — 1

is exact.

PrOOF. Themapiinducedby inclusionisclearly injectiveanditsimageisthekernel
of N. That N mapsinto Dg(p) N Dg(1, —w) follows from Scharlau’s Norm Principle [9,
VII 4.3]. Thus we need only show that N is surjective. Pick an a € Dg(p) N Dg(1, —w).
Thenthereisaz € K suchthat N(z) = a, sincethe norm mapsonto De(1, —w) by [9, VII
3.4].Thens.(p®(1,—2)) = p®@s.((1,—2)) = p®@si({—2)), using Frobeniusreciprocity
[9, VII 1.3]. So for someb € F, we haves.(p @ (1,—2)) = (b)p @ (1,—N(@) =
(b)p®(1,—a) = 0. Thusp ® (1,—2z) isdefinedover F. By [3,2.11], p® (1, —2) = p®
(1, —c)®K, for somec € F. Thencz € Dk (p) and (modulo squares) N(cz) = N(z) = a.=

COROLLARY 3.2. LetK = F(y/w) andlet x € F°.
(1) 1Dk(L,—x)| = 3|Dr(1, —=x)[ [DE(L, —xw))].

(2) If x hasfiniteindexin Gg then:

- .y [DE(L —Xw))|
ik(¥) = ie()=—"——F-
K( ) F( ) |DF<11 —W>|

PROOF. We begin with the

CLAIM. DK<1, —X> NGk = D|:<1, —X>D|:<1, —XW>.

Namely, z € Dy (1, —x) Ni(Ge /{1, w}) if and only if ((—x,—2)) ® F(/W) = 0if
and only if (1, —w) divides ((—x, —2)) if and only if —w € Dr(—x,—2 x2) if and only
if —w € Dp(—x,za) for some a € De(1, —x) if and only if za € De(—x, w) if and only
if 2w € De(1, —x)Dg(1, —xw) if and only if z € Dg(1, —X)Dg(1, —xw).
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The Claim combined with (3.1) gives:
IDk(L, —X)| = 3[Dr(2, ~%) (1 D(1, ~w)| [De {1, ~x)De (L, )
= 21D (1, )| D (1, xw)].
Also |G| = 1|Gr| [Dr(1, —w)| by [9, VII 3.4]. So:

3/Gr|[DE(L, —w)|
31Dr(L, —X)| [De(L, —xw)|
|De(L, —w)|
Dr (L, —xw)|
PROPOSITION 3.3.  Suppose WF is Gorenstein of socle degreek + 2 for somek > 1.

Suppose further that WF(,/w) & L[E], for some Wtt ring of local type L. Then WF =~
L'[Ex] for some Wtt ring of local typeL'.

ikK(X) =

= ir(x) .

PROOF. First supposethat k > 2. Lett,s,ts € Gk, where K = F(,/w), be birigid.
Then ({t,s)) ~ ((x,@)) for somex € F, by [2, Lemma2]. But then x € D(t,s ts) =
{t,s,ts}. Thussome x € Fishirigid in K. That is, |Dk (1, —x)| = 2. Then (3.2) implies
that |De(1, —x)| |De(1, —xw)| = 4. But then either x or xw is rigid. So, as char WF # 0,
either x or xw is birigid by [1, Corollary to Theorem 1] (or [12, 4.15]). WF is then a
group ring extension and a simple induction argument shows WF isin fact agroup ring
extension of aWitt ring of local type.

Now suppose that k = 1. We may assume |Dk (1, —x)| # 2 asin the previous para-
graph. Since WK = L[E;], we must haveix(x) = 4. Thus |Dk(1, —x)| = |Gk|/4 =
|Ge| |IDe(1, —w)| /8using [9, V11 3.4] again. Hence, multiplying (3.2)(1) by |De(1, —w)]:

1 1
5/Grl ID(1, —W)[* = SIDe(1, )| [Dr(1, —xw)| De(1, —w)].
Now apply (0.0.2):
IDE(1, —w)|? = 4|Dg(1, —x) N De(1, —w)|?
|De(1, —w)| = 2|Dg(1, —X) N De(1, —w)|.
We use block design counting (0.0.3) for A = Gg, B = Dg(1, —w). Break the sum
over Gg into sumsover {1, w} and Gg \ {1, w}. Setd = |Dg(1, —w)|.

(LHS) 3" |De(1,—X) N De(1, —w)| = 2d + %(g— 2)d = d(g + 1),

xeG

(RHS)  >° |De(L,—2)|=9g+ > |De(1,-2).
zeDp(1,—w) zeDy (1,—w)

Thus: q
> IDr(L-2)|=g(5 - 1) +d.

zeDy(1,—w)
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Thusthereexists 1 # z € Dg(1, —w) such that:

g(§—1)+d
IDe(1,—2)| > T d—1

We claim that |Dg(1, —z)| > 2, which isimpossible (as then (1, —z) € annlF) and so

finishesthe proof. If not then:
g d
2(d—1 >al = —
2(@d—-1>g(5-1)+d
@ > @ +d
4 — 4
3g > gd+4d > gd.
Hence3 > d andd = |Dg(1, —w)| = 2, which impliesthat WF is of elementary type by
(0.2). ]

We will concentrate on the socle degree three case even though the reduction of the
general caseto thisoneis not known to be valid in the category of Witt rings of fields.

THEOREM 3.4. Let R = WF be a Gorenstein Wtt ring of a field F. Suppose R has
dimension zero, socle degree three and an element of index 4. Then R is of elementary

type.

PrROOF. Suppose Ris not of elementary type. Let a € F be an element of index 4.
Wefirst show that we may assume —1 isasquarein F. If not, set L = F(v/—1). By (1.1)
IDe(1,a)| = |De(1,1)|,s0by (3.2) iL(a) = 4 aso. WL isstill Gorenstein of socle degree
three by [5, 2.6]. If we show that WL is of elementary type then so is WF by (3.3). Thus
we may replace F by L if necessary and assumethat —1 is a square.

We review the notation and results of §2 for afield E satisfying our conditions (WE
is Gorenstein of socle degree three, not of elementary type, with an element of index 4
and having —1 a square). Choose by, by, bs = bih, with Gg = {1, by, by, b3}De(1, a),
and |DE<1, b1>| > |DE<1, b2>| > |DE<1, b3>| SetA,(E) = {X € Ge | iE(X) = 22i}. Write
Ge = 224®*1 Then there exists an odd m(E) > 3 such that:

(i) AE),...,amp-1(E) C De(1,a); Ang)(E) ¢ De(1, ).

(II) leE<1, a) C Am(E)(E)

(iii) {bz,bs}De(1,a) = Aug)(E), with r(E) = k(E) — "G=2.

(iv) 3(3m(E)+1) < k(E) < 2m(E) — 1.

Set K = F(v/by). Again (1.1) gives |De(1,by)| = |De(1,ab,)| so that (3.2) gives
ik(@ = 4. WK is not of elementary type by (3.3). So (2.4) appliesto WK as well asto
WF. Note:

|GK| = %|G|:| |DF<1, b2>| — 24k(F)—2r(F)+1.

CLaiM. m(F) < m(K). Suppose instead that m(F) < m(K). By (iv) 221 <
24m)=1, 50 Z(K(K) + 1) < m(K) < m(F). Now k(K) = 2k(F) — r(F) so that:

KF) — 37(F) + 5 < (F),
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By definition r(F) = k(F) — 3(m(F) — 1) so

(F) — SK(F) + Zm(F) — 7 + 2 < m(F)

:—Zlk(F) + % < Zm(F)
2k(F) + 1 < 3m(F).

But (iv) gives 3m(F) < 2k(F) + 1. This provesthe Claim.

Let x € b1Dg(1,a). Then by, box € {by, b3}De(1, @) = Arr)(F), and so we have that
IDE(1,2)| = |De(1,box)|. By (3.2) ik(X) = ir(X) and ig(x) = 22™F) by (ii). Thusx €
A (K). By the Claim m(F) < m(K), so x € Dk(1,a) by (i). Thus {1,b1}De(1,a) C
Dk(1,a). Since b, is, by construction, asquarein K, b,Dg(1,a) C Dk(1,a) aso. Thus
Gr C Dk(1,a). Butthen ((—a,—x)) @ F(y/b) = 0, for all x € G¢. Then Q(a) C Q(by),
contradicting [5, 2.16]. n

4. The Field Case. Throughout this section we will assume that R = WF is a
Gorenstein Witt ring of dimension zero and socle degree three. We begin with a gen-
eralization of (1.1).

LEMMA4.1.  Supposethat amongall Rwith —1 asquarein F and Rnot of elementary
typeweknow A; = --- Ay_; = () for somep > 1. Then for suchan R:

(1) ApAm C Ay, for all m> p.

(2) Ifae Ayandx # 1,athen|Q(a) N Q(X)| = 2°.

PrROOF. We use induction on m. The casem = p — lisvacuous. Fix a € Ay and
X € Am, where we assume a # x if m = p. We note that ax € A for | < m. When
m = p thisistrue by the assumptionthat Ay = --- = A,_1 = (). Whenm > p thisis by
induction: if ax € A; with| < mthen x = a(ax) € A, not Am. So supposeax € Ag with
k > m. We get by (0.0.2):

9 99 2
>3 52m 5% — 91D(1,8) N D(1,x)|
22p 22m 92k
4.1.2) 9" o1 o1
sk = [D(L:@) ND(LX)].

Now |D(1,ax)| > |D(1,a)ND(1, x)|, sinceotherwise D(1, ax) = D(1,a)ND(1,x) C
D(1,a), contradicting [5, 2.9]. So g/2%* > g/2P**Mand p+m > k > m. Writek = m+i.
Set K = F(y/ax). Then by (3.2)(2):

De(Lax)| _ ir(a)

(e) = i) e =

Thisimpliesthat a € A,—i(K). Now K has —1 asquare and WK is not of elementary type
by (3.3). Thus our hypothesis applies to WK and we have A,_i(K) = 0 for al i > O.
Hencei = 0 and ax € A asdesired.
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For statement (2), (4.1.1) givesD(1,a) N D(1,x)| = g/2P*?M. So:

|D(1, ax)| _ g/22m _
ID(1,a)ND(Lx)| g /2°*2m

Q@ NQX)| =

(4.2) isnot known to hold in the category of abstract Witt rings. The following result
isvalid for abstract Witt rings.

LEMMA 4.2. Let (R, G, B) bean abstract Wtt ring that is Gorenstein of socle degree
three. For any ay,...,as, by,...,b in G

e niee)| - o) 00-0))|

(fipa—)(

PrROOF. For any set Sin G, let Is be theideal in R generated by {(1,—a) | a € S}.
To avoid confusion, in this proof we will denote the fundamental ideal of R by IR. Let
Js be the ideal in R generated by all ¢ € 12 such that G(») contains S. Here G(p) =
{x € G| (1,—x)p = 0O}. Further, let C(S) denote the intersection of all D(1, —a), for
aes

We begin with results that appeared at least implicitly in [5].

CLAaim 1.

(I) annlg = IC(S) + Js.

(i) If SC Gisasubgroupthen|Js| = 2|G|/|S.

(i) If Sc GisasubgroupthenannJs = Is+I?R.

(iv) If ST C Garesubgroupsthen JsN Jr = Jgr.

(V) [IsN 1T NI2R| = 2| Tacs Q@) N ITpet Q(b)].

(i) Lety € annlsand write v = (1, —d) + o, whered = disy and ¢ € I°R. Then
(1,—d)and ¢ areinannls. Thus (1, —d){1, —a) = Oforal a € Sandsod € C(S). Also
SC G(p) s0 ¢ € Js. Thusy € Igg + Js. Thereverseinclusion is easy to check.

(i) Le¢e A = {H C G | Hasubgroupof index at most2,S C H}. Then |A| =
Gl /[S]. Map:

a:Js/IPR—A Dby
© +1°R— G(p).

That G() € A for p € Jsispart of [5, 2.11]. Also, I°R = {0, 0} with ¢ universal, so
that G(¢) = G(p + o) and « is well-defined. « is surjective by the second part of [5,
2.11]. If G(p) = G(v), for someforms ¢, € I2R, thenann(y) = lg(,) +12R = ann(y).
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Taking annihilators of both sides and applying (0.0.1) yields (¢) = (¥). Thusp = Xy =
Y+ (x,— 1)1, sothat ¢ +1°R = ¢ + I3R. Hence « is also injective. We obtain:

9s/1°Rl = |G| /|9
sl = 2|G|/|S.

(iii) Js C I’Rand1*R= 0s0I?R C annJs. Let (1, —a) € annJs. Then (1, —a)p = 0
for all ¢ € Js, hencea € G(yp) for al ¢ € 12Rhaving S ¢ G(y). From the proof of (ii)
we havethat a € H for all subgroupsH C G of index 2 containing S. And Sequals the
intersection of all subgroups of index 2 containing it (think of G as a vector space over
Zy). Thusa € Sand (1, —a) € ls. Theinclusion Is C annJsisclear.

(iv) If ¢ € IsNIrthen SUT C G(p). Since G(p) isagroup, ST C G(¢). And if
p €Jsrthen ST C G(p) sothat p € IsN Jy.

(v) We beginwith asmall technical point. Since I°R consists of 0 and a 3-fold Pfister
form [5, 2.4], the Arason-Pfister property AP(3) holdstrivially. Thusthereis an embed-
dingi: B — I?R/I3R, that sendsq(a, b) to ((—a, —b) ) + 1R, by [11, 3.16, 3.23]. We may
replace B with the group it generates (inside the universal Steinberg symbol). Note that
B isamultiplicative group while 12 /I3Ris an additive group. We havein particular that:

i(Q(@) = (1,—a)IR/I’R
i(I1Q@) = X (1-a)R/I"R

aes acsS
=1s-IR/I*R
=IsNI?R/IPR,
where the last equality isby [4, 2.15]. (The proof in [4] uses the Arason-Pfister theorem

which we have shown is valid for our abstract Witt ring. The result can also easily be
proven without the Arason-Pfister theorem for any abstract Witt ring.) We thus get:

i(]‘[ Q@ N[ Q(b)) = IsN 1t NIZR/IFR

aesS beT

[1Q@E N I Q)| = 2/lsN It NI*R.
aes beT

This completes the proof of Claim 1.

CLAIM 2. IsN I2R = JC(S)-

L et gSdenote the group generated by S. ThenJs = Jgssince S C G(yp) iff gS C G(y).
If ¢ = > 4i(1,—a), whereeach a € S thenfor al c € C(S we have (1, —c)p = 0.
ThUS|5ﬁ|2 C Jos- Also,annls = I +ds = lgg +Igs: by (i). Sotaking annihilators of

. . . - _ )
both sidesand applying (0.0.1) givesls = ann(lg +Jgs) = (IC(C(S) +Jcg)N(lgs*I?R),

by (i) and (iii). Clearly Jcg C | +Jgg and Jgg C lgs + I°R, so we have that

C(C(S))
Jeg C ls. Hence Jgg C 1sM I?R, asdesired. This proves Claim 2.
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LetS= {ay,...,as} and T = {by,...,b}. Then:
T Q@) N [T Q)| = Flisnirn 2 by (v
=|(IsNI’RN (T NI%R)|

1 .
= §|JC(5)ﬂJC(T)| by Claim 2

1 .
=3 egem| by (iv)

|G| .
= ————, by(i).
cocmr
which completes the proof. ]
We remark that (4.2) appears to be the key combinatorial result for Gorenstein Witt

rings of socle degreethree. Whens =t = 1 (4.2) isequivalent to (0.0.2).

THEOREM 4.3. If WF is Gorenstein of dimension zero and socle degree three then
WF is of elementary type.

PROOF.  Suppose not. We may assume —1 isasquarein F by passing to F(v/—1), if
necessary and applying (3.3) to see that the extended Witt ring is still not of elementary
type. Let p be the minimal index with Ay # () among all Gorenstein WF of socle degree
three, —1 a square and not of elementary type. We note that p > 2 by (3.4). Among all
Gorenstein WF of socle degree three, —1 a square, not of elementary type and A, # 0,
let k be the minimal index such that A ¢ D(1, a), for somea € A,.

Let F be afield that achieves both minima, that is, with an element a € A, and an
element by € Ac\ D(1,a).

STEP1. Letbhy,..., by beindependent modulo D(1,a). Then ﬂl”j D(1,b) = {1}.

Set pi = ((a,bi)). Thenthe p; areindependent modulo I°F, sinceif ©((a, b)) € I°F
then ((a,T1by)) € I3F. But then IThb; € D(1, a), contradicting the independence of the
bi modulo D(1, a). In particular, the p; generate a subgroup of order 2°*1 in Q(a).

Supposethat z € ND(1,b;). Thenz € a- ND(p;i/). Thus {pi} C Q(a) N Q(az) and so
|Q(@) N Q(az)| > 2**1. By (4.1)(2) az= aand z = 1. This proves Step 1.

Sterp2. Forall x,y,xy ¢ {1,b1}D(1,a), wehave|D(1,x) N D(1,y)| < 2%,

Set b, = xand by = y. Write G = gp(bs, by, ..., by)D(1, @), where the notation
gp(S) meansthe group generated by S. Wefirst Claim:
(4.3.1) ID(1,b1) ND(1,by) ND(1,bs)| < 2%
Thisisclear if p = 2 since then the left-hand side of (4.3.1) is 1, by Step 1. Suppose
p > 2. Then:
g
o5 = QM)
< |Q(b1)Q(b2)Q(bs) N Q(1)Q(ba) - - - Qbp+1))|

9
ID(1, by) N D(1, b,) N D(1, bg)| |D(L, by) N D(1,ba) -+’
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by (4.2) and Step 1. This proves(4.3.1).
Now using (4.2) again, we have:

1 < |Q(b2)Q(bs) N Q(by)|

g|D(1, by) N D(1, bp) N D(1, bs)|
~ |D(1,bz) N D(1, bs)| |D(1, by)]
22k22k

1 BA By Db

by (4.3.1). This gives Step 2.
STEP3. If Ay ¢ {1,b1}D(1, a) then 23m8& < g < 23m+12k

Suppose b, € An \ {1,b1}D(1,a). Choose bs, bs, . . ., by, (recalling that D(1, a) has
index 2p in G), such that G = gp(by, by, bs, ..., by)D(1, &). Recall that p > 2. Now by

(0.0.2):
D(1,b2)| |D(1, bs)| [D(1, babs)| = g|D(1, b) N D(1, bs) .

Hence by Step 2:
432 9 < |D{1,b2)]|D(1, bs)|D(1, bbs)| < g- 2*

22M < |D(1, b3)| |D(1, bobs)| < 22™8,
Similarly:
(4.33) 22™ < |D(1, by)| |D(1, boby)| < 228K
(4.34) 22™ < |D(1, bsby)| |D(1, bybshy)| < 22™8

Without loss of generality we may suppose |D(1, bs)| < |D(1, bybs)|. So |D(1,bs)| <
2™ py (4.3.2). Set o = |D(1,by)| |D(1,b3by)| and 5 = |D{1, byby)||D(1, babgby)|.
Now:

(4.3.5) g < min{|D(1, bs)|a, |D(1, b3)|8} < 2™* min{q, 3},

wherethe first inequality is from (0.0.2) and the second is from our bound on |D(1, bz}|.
The product of (4.3.3) and (4.3.4) gives af < 2*™16k Thus the minimum of «, § is at
most 22™8_ Then (4.3.5) givesg < 25™1%

Next, since |D(1, bzbs)| > |D(1,bs)|, (4.3.2) implies |D{(1, bybs)| > 2™. We repeat
theprevioustrick andsety = |D(1, ba)| |D(1, bobsba)| ands = |D(1, boba)| |D(1, bsba)|.
Then:

max{|D(1, b2b3>|7, |D<1, b2b3>|5}
= max{g|D(1, bobs) N D(1,ba)[?, g|D(1, bobs) N D(1, boba)[*}
<g-2%
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The equality here is (0.0.2) while the inequality is Step 2. So 2™ - max{7,6} < g- 2%,
The product of (4.3.3) and (4.3.4) gives Y6 > 2™ We obtain max{7,6} > 22™. Thus
g > 28™8 This gives Step 3.

Write g = 29 for some0 <i < 8.

Ster4. If x ¢ {1,b1}D(1,a) then:

28mi-6k-6 < |p(1, x)| < 238k,
Say x € Am. Then by Step 3:
3m—8k <9n+i < 3m+ 12k.
Thefirst inequality gives:
m<3n+ gk+ |§ <3n+3k+3,
while the second inequality gives:
m > 3n—4k+:i—3 > 3n— 4k.

Step 4 then follows from |D(1, x)| = 29™i—2m,

STEPS. g< 2108k+125
Pick w ¢ D(p1) where py = ((a, by)). Since byw ¢ D(p1) also, we may assume that
|D(1, byw)| > |D(1, w)|. Set K = F(,/w). We check that K satisfies our hypotheses. WK
is not of elementary type since WF isnot, using (3.3). —1isasqguarein K sinceitisin
F. By (4.1):
ik (a) = ir ()|Dr (1, W) /|De (1, aw) ,

and so ik (a) = ir(a) by (4.2)(1). Thusa € Ay(K) and Ay(K) # (. Further:
ik (01) = ir-(01)| D (1, W) /|De(1, baw)| < i(by) = 2k

If ik(b1) < 2k then by our minimality assumptions, by € Dk (1,a). But then p; ®
F(vw) = 0andw € D(p}), which is impossible asw ¢ D(p1). Thusix(b1) = 2k,
that is, by € A(K) \ Dk(1,a). Thusall of Steps 1-4 apply to K.

Now:
|De(1, aw)|

||DF<1, a) N De(1,w)|

= [Dr(1,2)] Q@) NQ(W)|

= 2°|De(1, @)|.
Thus |De(1,a)De(1, aw)| = g/2P. Choose then x € Gg \ {1,b;}Dg(1,a)De(1, aw),
which is possible since p > 2. Then x ¢ {1, b;}Dk(1, a), using the Claim of (3.2). So
we can apply Step 4 to K and x.

|De(1,a)De(1,aw)| = |Dg(1, a)
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First, however, apply Step 4 to F and w, noting that w ¢ {1, b;}D(1,a) C D(p1):

1 1 ; ;
|GK| — E|GF| IDF<1'W>| < E29n+|23n+|+8k

S 212n+2i +8k.

Write 12n+ 2i + 8k = 9N +j, for some 0 < j < 8. Now apply Step 4 to K and x:
|DK<1, X>| < 23N+j+8k'

Now 3N +j +8k = 4n+ 2i + 8k — L +j + 8k < 4n+ 11k + 12, sincei,j < 8. Thus
|DK<11 X>| S 24n+11k+12'

However, x ¢ {1,b:}Dg(1,a), by constuction. Also xw ¢ {1,b:}Dg(1,a), since
otherwise xw € {1,b1}Dr(1,a)De(1, aw) and x € {1, b;}Dg(1, a)De(1, aw), contrary
to our original choice of x. So using the lower bound of Step 4 applied to F, X, xw gives:

1
Dk (1,%)] = 5IDr(L,X)[ [Dr(L, xw)]
> :_LZGn+2i712k712

— 9b+2i—12k-13

> 9BN—12k-13
Hence:
6n— 12k — 13 <4n+ 11k + 12
2n < 23k+ 25
n <12k +13.
Thus:

— I 99(12k+13+8 _ 5108k+125

g

Step 6. Completion of the proof.

Out of all G suchthat () Risnot of elementary type, (b) —1 = 1, (¢) there exists
an element ain Ay, and (d) Ax ¢ D(1,a), pick the maximal one. This is possible by
Step 5. Again, if we pick w ¢ D(ps), where by € A\ D(1,a) and p1 = ((a,by)), then
WK satisfies (a)—(d) aswas shownin thefirst part of the proof of Step 5. By maximality,
|Gk| = |Gg|. But then |De(1,w)| = 2, sow isrigid and WF is of elementary type, by
(0.2). This contradiction to property (a) provesthe result. ]

Szymiczek [13] called afield F an-Hilbert field if |F* /Do| < 2for all n-fold Pfister
forms o, with equality holding for at least one o. We can classify certain 2-Hilbert fields.

COROLLARY 4.4. Let F beanon-formallyreal linked 2-Hilbert field with trivial rad-
ical and |F*/Do| = 2 for all anisotropic 2-fold Pfister forms. Then F is Witt equivalent
(i-e. has a Witt ring isomorphic) to K((t)), where K is a local field.

PROOF. We check that WF is Gorenstein of socle degree three. I°F = {0,7}, for
someanisotropic 3-fold Pfister form 7 by [13, 2.3]. And T isuniversal by Kneser’sLemma
[9, XI 4.5]. In particular, I*F = 0 and WF has socle degree three.

https://doi.org/10.4153/CJM-1997-023-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-023-1

GORENSTEIN WITT RINGSII 519

To show WF is Gorenstein we check Bass' criterion. Let ¢ € ann|F. We can write:
e=(1,—x) Lo L,

where ¢ is a 2-fold Pfister form and ¢» € I°F, since F is linked. Then (1, —x) and o
arein annlF. But (1,—x) € annIF implies that <(—x, —y>> = Oforadly € F* and
S0 X € radF. By assumption, radF = F*2 so that (1, —x) = 0in WF. Also ¢ € annlIF
impliesF* = Do, which, by our assumption, forceso = 0inWF. Thus¢ = v € I®Fand
so annlIF = I3F. From the first paragraph then dim(annIF) = 1 and WF is Gorenstein.
Apply (4.3). WF = L[E;], for some Witt ring of local type. L is the Witt ring of some
local field K by [11, p. 97]. ThusWF ~ WK((t)), by [11, p. 114]. .
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