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HOMEOMORPHIC SETS OF REMOTE POINTS
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Let X be a completely regular Hausdorff space, and let 8X denote the
Stone-Cech compactification of X. A point p € BX is called a remote point
of BX if p does not belong to the BX-closure of any discrete subspace of X.
Remote points were first defined and studied by Fine and Gillman, who
proved thatif the continuum hypothesisis assumed then the set of remote points
of BR(8Q) isdensein SR — R (BQ — Q) (R denotes the space of reals, Q the space
of rationals). Assuming the continuum hypothesis, Plank has proved thatif X
is a locally compact, non-compact, separable metric space without isolated
points, then BX has a set of remote points that is dense in X — X. Robinson
has extended this result by dropping the assumption that X is separable.
Let 6X denote the smallest cardinal m with the property that X has a dense
subset of cardinality m. In this note it is proved that if X and V are locally
compact, non-compact metric spaces without isolated points, and if 6X = 87,
then the set of remote points of X is homeomorphic to the set of remote
points of Y.

1. Preliminaries. Throughout this paper we shall use the notation and
terminology of Gillman and Jerison [4]. In particular, the cardinality of a
set S will be denoted by [S|, and the set of positive integers will be denoted
by N. In this section we record some known results that we shall need later.

1.1. THEOREM. Let X be a locally compact, non-compact metric space. Then
either:

(i) 86X = N and X is o-compact, or:

(ii) 86X > Noand X is the free union of precisely 6X locally compact, s-compact,
non-compact metric spaces.

Proof. A. H. Stone has proved that every metric space is paracompact (see,
for example, [1, Theorem 9.5.3]. It is well-known (see, for example, [I1,
Theorem 11.7.3] that every locally compact paracompact space is the free
union of a collection of locally compact g-compact spaces. Suppose that there
are m spaces in this collection. If m = N, then X is o-compact, and the
fact that a compact metric space is separable implies that 6X = N,. Suppose
that m > No. Then m < 6X as any dense subset of X must include at least
one point from each member of the collection. Conversely, as each locally
compact o-compact metric space is separable, X contains a dense set of
cardinality m - Xy = m. Thus 6X =< m and so 6X = m.
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Recall that a closed subset of a space X is called regular closed if it is the
closure of some open subset of X.

1.2. TueorewM [12, § 20C]. The family R(X) of all regular closed subsets of
X is a complete Boolean algebra under the following operations:
(i) A £Bifandonlyif 4 C B
(i) Vade = clx[Uade]
(iii) Neda = clx[intyNada]
(iv) A" = clxy(X — A) (4’ denotes the complement of 4).

The following result is a well-known theorem of Marshall Stone (see, for
example, [12, 8.2].

1.3. THEOREM. Let U be a Boolean algebra, and let S(U) be the set of all
ultrafilters on U. For each x € U put N(x) = {a € S(U): x € a}. If a topology =
is assigned to S(U) by letting {\(x): x € U} be an open base for r, then (S(U), 7)
is a compact Hausdorff totally disconnected space and the map x — \(x) is a
Boolean algebra isomorphism from U onto the Boolean algebra of open-and-closed
subsets of S(U).

The space S(U) is called the Stone space of U.

Recall that a continuous map f from a space X onto a space Y is said to
be trreducible if the image under f of each proper closed subset of X is a proper
closed subset of Y. The following result is Theorem 2.18 of [13].

1.4. TueoreM. Let X be a compact Hausdorff space and let U be a subalgebra
of R(X) that is also a basis for the closed subsets of X. Then the map f:S(U) — X
given by

fl@)=N{4A €U ac\NA)} (@€ S))

is a well-defined irreducible continuous map from S(U) onto X (\ is as defined
in 1.3).

The proof of 1.4 is essentially the same as the proof of Theorem 3.2 of [5].

As stated above, a point p € BX is a remote point of 8X if p is not in the
BX -closure of any discrete subspace of X. In [3] Fine and Gillman, assuming
the continuum hypothesis, demonstrated the existence of a set of remote
points of AR that is dense in SR — R (R denotes the real line). Let T (8X)
denote the set of remote points of 8X. The following result comprises a portion
of Theorems 5.3 and 5.4 of [9].

1.5. THEOREM. Let X be a melric space without isolated points. Then
TBX) = N {BX — X) — clgxd: 4 is closed and nowhere dense in X}.

If in addition X s locally compact, o-compact, and non-compact, and if the
continuum hypothesis is assumed (i.e. Ry = 28°), then T (8X) has cardinality
28t gnd is dense in BX — X.
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Robinson [10] extended Plank’s results to show that if the continuum
hypothesis is assumed, and if X is a locally compact non-compact metric
space without isolated points, then T(8X) is dense in X — X. We shall not
use this result, but it does give us the assurance that T (8X) is non-empty
when §X > N,.

1.6. LEMMA. Let f be an irreducible mapping from Y onto X. If S is dense
in X, then f~[.S] is dense in Y.

Proof. 1f f7[S] were not dense in Y, then clyf™[S] would be a proper closed
subset of V. As fisirreducible, flclyf“ [S]] would be a proper closed subset of X
containing the dense set .S, which is impossible.

2. The Main Results. In this section we prove the theorem quoted in the
last sentence of the first paragraph of this paper. We proceed as follows:
if X is a locally compact, non-compact metric space without isolated points,
we let ¥ be the free union of §X copies of the Cantor set and construct an
irreducible mapping f from ¥ onto X. The Stone extension of f, namely, f8,
takes 8V onto BX and we show that f# maps the remote points of 3Y homeo-
morphically onto the remote points of gX.

2.1. LEMMA. Let K be a compact metric space without isolated poinis. Then
there exists an irreducible map f from the Cantor set C onto K with the following
property: If D is a discrete subspace of C, then there exists o discrete subspace F
of K such that f[D] C clgF.

Proof. As K is a compact metric space it has a countable basis & of closed
subsets. As K is a regular Hausdorff space, the family {clg(intgB): B € &} =
Z* is also a countable basis for the closed subsets of K. Let.o/ be the sub-
algebra of R(K) generated by 2* (see [12, 1.3 and §4]. Then |2/ | = X,
since | 2| = No. Hence S(&7 ) is a compact Hausdorff space with a countable
basis, so S(.%/ ) is a compact totally disconnected metric space. Since K has
no isolated points, .7 has no atoms (see [12, § 9] and so S(./ ) has no
isolated points. But any compact totally disconnected metric space without
isolated points is homeomorphic to the Cantor set C (see [6, 2.97]); hence
S(&7 ) and C are homeomorphic. Hence the irreducible map f defined in 1.4
takes C onto K.

Let D be a discrete subspace of C. Since C has a countable basis, |D| < No.
Put D = (d.)neny. In the notation of 1.3, for each # € N there exists
A(n) € &/ such that XA @®»)) N D = {d,}. By replacing each A(4(n))
by A4 (7)) — U <n M4 (7)) if necessary, we may assume that ¢ 5 j implies
NMAG)NANAG)) =0. Put H=K — Ugew bdgd (bdxAd denotes the
topological boundary of 4 in K). By the Baire category theorem H is dense
in K, and so, by 1.6, f“[H] is dense in C. It is now easy to see that for each
n € N we can find a subset E(n) of N\(4 (#)) N f[H] such that E(n) is a
discrete subspace of C and d, € clcE(). Put E = Unew E(®). Then E is
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a discrete subspace of C and D C cl¢E. Since E is discrete it is countable; put
E = (x,)nen. As above, there exists {B(n): n € N} C.o7 such thatx, € \(B(%))
and ¢ # j implies N(B (1)) M A(B(j)) = @, which in turn implies

intKB (1) N intKB (]) = 0.

It follows from the definition of f that f(x,) € B(rn) M\ H C intgB(n), so
flE] is a discrete subspace of K. Evidently f[D] C flcl¢E] = clgf[E], so f[E]
is the set F whose existence was claimed.

2.2. LEMMA. Let X be a locally compact, o-compact non-compact Hausdorff
space without isolated points. Then there exists a sequence {K(n): n & N} of
compact regular closed subsets of X with the following properties:

(i) X = Unew K(n).
(ii) Each K (n) has no isolated points.
(iii) K(n) N\ K(m) # 0 implies |m — n| < 1.
(iv) For eachn € N,bdxK(n) = K(n) N[K(n — 1) UK + 1)].

Proof. 1t is known (see [1, Theorem 11.7.2]) that any locally compact,
o-compact Hausdorff space X can be written in the form X = U,exy 77 (#) where
for each n € N, V(n) is open in X, clxV (n) is compact, and

cxVn) S Ve + 1).

Since X is non-compact, we may assume this last inclusion to be proper.
Without loss of generality we may assume that each V(n) is regular open
(i.e. the interior of some closed set), for if we let U(n) = intyclyV (z), then
the family {U(#): » € N} has the same properties as those listed above for
the family {V(r): » € N}. Define V(0) to be the empty set, and put K (n) =
clxV(#n) — V(n — 1) for each # € N. Obviously each K (z) is compact, and
a straightforward argument shows that K(n) = clx[V(z) — clxV(n — 1)].
Hence each K (n) is regular closed, and intyK(®) = V(n) — clxV(n — 1),
since this latter set is the intersection of two regular open sets and hence is
regular open. Assertion (i) is obviously true. If p were an isolated point of
K (n), then there would exist W, open in X, such that W N intyK (n) = {p};
this contradicts the assumption that X has no isolated points. Hence (ii) is
true. To prove (iii), without loss of generality, suppose thatm < % — 2. Then
Km) CcxVim) S Vim+ 1) STV —1),s0 K@m) N\ K(n) = @. Finally,

bdxK (n) = K(n) — intxK (n)
=[cxV(n) = V(n — 1)] — [V(n) — clxV(n — 1)]
=[clxV(n) — Vmn)]YlcdgVn —1) — V(n — 1)]
=[Kn)NKn+ 1)]U[KHn)NKHn—1)]

and (iv) is verified.

The following result appears as Lemma 2.1 of [13].
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2.3. LEMMA. Let X be a locally compact, o-compact, non-compact Hausdorff
space and let {A(n): n € N} be a countable family of closed subsets of X. For
each n € N, define k(n) € N as follows:

E(n) = min {j € N: A(n) N\ V(j) = 0}

(V' (G) is as defined at the beginning of the proof of 2.2). If lim, ., k(n) = o0,
then \Unen A (n) s closed in X.

2.4. LEMMA. Let X be a locally compact, non-compact metric space without
isolated points, and let 'V be the free union of 6X copies of the Cantor set. Then
there exists an irreducible perfect map from Y onto X.

Proof. First assume that X is o-compact; then §X = N,. Write
X = UnGN K(n);

where the collection {K(n): » € N} has the properties described in 2.2. For
each # € N, we can, by 2.1 and 2.2 (ii), find a copy C(n) of the Cantor set
and an irreducible map f, from C(z) onto K (z). Let Y be the {free union of
these Ny copies of the Cantor set, and define f: ¥ — X by requiring that
S lew = for Evidently f is a well-defined map from ¥ onto X, and as each f, is
continuous and each C () is open in Y, f is continuous. Let 4 be closed in Y.
Then

FIA] = f[Unex AN C#))] = Unewn f[A N Cn)],

and f[4 N C(»n)] is a compact subset of X contained in X — V(r — 1).
Thus by 2.3, f[4] is closed in X and f is a closed mapping. If p € X, by
2.2 (iii) there exists # € N such that# 5 & £ n + 1 implies p ¢ K (k). Thus
FE@p) S Cn) U C(n + 1), and hence f<(p) is compact. Consequently f is
a perfect mapping. To prove that f is irreducible, note that if 4 is a proper
closed subset of ¥, then there exists # € N such that 4 M C(n) is a proper
closed subset of C(n). As f, is irreducible, f,[4 M C(n)] is a proper closed
subset of K (). Thus there exists W open in X such that

WNKm)=K@n) —f[4NCHh)] #0.
Hence WN [V(n) — clxV(n — 1)] = 0. If & 5 n, then
KE)N[Vm) —cdyVe —1)] =6;
thus X — fA] 2 WN [V(r) —clxV(m — 1)] £ @ and f is irreducible.

Now suppose that X is not ¢-compact. By 1.1, X is the free union of §X
locally compact, s-compact non-compact spaces-say X = Uaez X (@), Where
|Z] = 6X and each X («) is locally compact, o-compact, and non-compact.
For each @ € 3, let Y (&) be the free union of 8, copies of the Cantor set. The
preceding argument shows that there exists an irreducible perfect map f, from
V() onto X (o). Let ¥ = Uges V() and define f: ¥V — X by f|y@ = fa
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Then Y is a free union of 6X copies of the Cantor set, and f is an irreducible
perfect map because each f, is.

2.5. LEMMA. Let X be a locally compact, non-compact metric space without
isolated points, let Y be the free union of 6X copies of the Cantor set, and let
f: Y — X be the irreducible perfect map constructed in 2.4. If f8: BY — BX is
the Stone extension of f (see [4, 6.5]), then fA[T(BY)] = T(BX).

Proof. Suppose that p € BY and fé(p) ¢ T(BX). By 1.5 there exists a
closed subset 4 of X such that inty4 = @ and f8(p) € clgxd. As X — A is
dense in X and f is irreducible, by 1.6, f[X — A] = ¥V — f<[4] is dense
in Y. Thus inty f[4] = 0. Evidently p € (f#)“[clgx4]. It follows that
p € clgyf[4]; to prove this we adapt the argument used by Isiwata in
Lemma 1.2 of [7]. Suppose that p ¢ clgyf “[A]. Then there exists g € C(8Y)
such that g(p) = 0 and g[clsyf [4]] = {1}. Put M = Y N g[—1%, 1]; this is
a zero-set of Y. Obviously M N f[A] =0, so f[M]MN A = @. Since f is a
closed map, f [M] is closed in X. As X is metric, it follows that

C]gxf [M] N ClﬁxA = Q
(see [4, 6.5 IV]). Now g(p) = 0, so p € clgyM. Thus
JE@) € fPlcley M] = claxfP[M] = claxf [M].

Hence f#(p) € clgxA, which contradicts the hypothesis. We conclude that
p € clayf “[A]. Since Y, being a free union of compact metric spaces, is itself
a metric space, it follows from 1.5 and the fact that intyf<[4] = @ that
p ¢ T(BRY). Thusp € T(BY) implies f8(p) € T(BX) and f5[T(B8Y)] C T (8X).

Conversely, suppose that p ¢ T(8Y). First let us assume that X is o-
compact, and write X = U,ey K(#) as in 2.2. Write ¥ = Upexy C(n), where
each C(n) is a copy of the Cantor set. There exists a discrete subspace D of ¥
such that p € clgyD. Put D(n) = DN C(n). It follows from 2.1 and 2.4
that for each #» € N, there exists a discrete subset E(z) of K(n) such that
fID®)] C cgwE ). Using 2.2 (iii) and 2.2 (iv), we see that

Unew [E(n) M intxK (n)]

is a discrete subspace /' of X. Now 2.2 (iv), 2.3, and the Baire category
theorem imply that G = U,ey [K () M K(n 4+ 1)] is a closed nowhere dense
subset of X. It follows from 2.2 (iv) that U,exy E(m) € F U G. Hence

F[D] © Unen clemE ) S clx[Unexy Em)] S G U clxF.
Thus
JFE(p) € fflcleyD] = clgx f [D] C clgxG U clgxF S BX — T (BX).

This, combined with our previous result, shows that f8[T (8Y)] = T (8X).
If X is not o-compact, then it is the free union of 6X locally compact,
o-compact subspaces. It follows from the preceding paragraph that if D is a
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discrete subspace of Y, then f[D] is contained in a free union of discrete
subspaces of X, together with a free union of closed nowhere dense subspaces
of X. This free union of discrete (closed nowhere dense) subspaces of X will
be discrete (closed nowhere dense), and our result follows.

2.6. THEOREM. Let X and Y be two locally compact, non-compact metric spaces
without isolated points. If 6X = 8V then T (BX) and T (BY) are homeomorphic.

Proof. It clearly will suffice to show that, for any locally compact non-
compact metric space X without isolated points, T(8X) and T(8Y) are
homeomorphic, where YV is the free union of 6X copies of the Cantor set.
Consider the map ff : BY — BX constructed in 2.4. Since, by 2.5, fA[T(8Y)] =
T(BX), all we need to show is that the restriction of f# to T (8Y) is one-to-one
and closed. If 4 is closed in BY, by 2.5, fS[A N T(BY)] = f5[4] N T(BX),
which is closed in T (8X) as f# is a closed map. Hence f#| sy, is closed. To show
that f# is one-to-one on T(8Y), suppose that p € BX and that ¢ and s are
distinct points of BY such that fé(s) = ff(qg) = p. As Y is a free union of
compact spaces with bases of open-and-closed sets, it follows from 16.17 of [4]
that BY has a basis of open-and-closed sets. Hence we can find an open-and-
closed subset A of BY such that ¢ € 4 and s € BY — 4. PutB=4 N Y.
Then ¢ € clgyB and s € clgy (¥ — B). Hence

p € folclgyB] M fPlcley (Y — B)] = clox f [B] M clgx f [V — B]
clax[f [B]NfLY — B]J;

the last equality follows since f is a closed map and X is metric. Again let
us momentarily assume that X is o-compact, and employ the notation used
in the proof of 2.5. By 2.4, 2.1, and 1.4, f takes complementary open-and-closed
subsets of C(n) onto complementary regular closed sets of K (#). This implies
that for each n € N,f[BMN Cn)] N f[C(n) — B] is a closed nowhere dense
subset of K(n). It follows from 2.2 that f [B] N f[Y — B] is contained in

Unew (K(m) NK@n + DU [fBN Cm)]NfICn) — B,

which by 2.3 and the Baire category theorem is a closed nowhere dense subset
of X. Thus p ¢ T(8X), and consequently f#|p@sy) is a one-to-one, closed,
continuous map from T(8Y) onto T(8X). Hence T(8Y) and T(BX) are
homeomorphic.

If X is not s-compact, we can in the usual way write X as a free union of
locally compact, o-compact spaces and employ the results of the preceding
paragraph to obtain the desired result.

I

2.7. COROLLARY. Assume the continuum hypothesis. If X and Y are two
locally compact, non-compact metric spaces without isolated points, and if
86X = 87, then R(BX — X) and R(BY — Y) are homeomorphic.

Proof. According to Robinson’s results quoted at the end of 1, and using
2.6, we see that X — X and BY — Y contain homeomorphic dense subsets.
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The corollary now follows from the fact that if .S is a dense subspace of the
(completely regular Hausdorff) space 7', then the map 4 -4 NS is a
Boolean algebra isomorphism from R (Z") onto R(S).

The next corollary appears as Theorem 4.3 of [13].

2.8. COROLLARY. Assume the continuum hypothesis. If X 1s a locally compact,
separable, non-compact metric space without isolated points, then T (BX) s
homeomorphic to a dense subset of BN — N (N 1s the countable discrete space).

Proof. By 2.6, T(8X) and T(8Y) are homeomorphic, where Y is the free
union of N, copies of the Cantor set. By 1.5, T(8Y) is dense in BY — 7.
But, by 14.27 of [4], BY — Y is a compact F-space, and, by 3.1 of [2], the
zero-sets of BY — YV are regular closed. Evidently Y — V is totally dis-
connected (see [4, 16.11 and 16.17]) and has 2% open-and-closed subsets.
According to a theorem due to Rudin [11] and Parovifenko [8], on the
assumption of the continuum hypothesis this implies that Y — ¥ is homeo-
morphic to SN — N.

We conclude with a question. Is it possible to characterize T (3X) (where X
is as in 2.8) “‘internally’’ as a subset of BN — N, i.e., in terms of the topology
of BN — N and without reference to other spaces?
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