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1. Introduction.
The present paper is concerned with the " logarithmetic ", or

arithmetic of shapes of non-associative combinations as defined by
Etherington in ref. (1). The shape of a non-associative product is
defined as " the manner of association of its factors without regard to
their identity". Thus, for a binary non-communicative operation,
the products ((AB)C)D and {(BA)C)D and ((AA)A)A all have the
same shape, while D((AB)G) has a different shape. The sum of the
two shapes a and b is defined as the shape of the product of two
expressions, of shapes a and b respectively, in the original system of
non-associative combination. The product of two shapes a and b is
defined as the shape of any expression obtained by replacing every
factor in an expression of shape b by an expression of shape a. It is
readily shown that these definitions are unambiguous.

As an alternative to the synthetic, or genetic, approach to the
arithmetic of shapes, as given above, we may try to define the
arithmetic system of shapes by a set of axioms, and then verify that
any realisation of the set of axioms is isomorphic with the synthetic
system of shapes as defined above. This is done in §2 below. Realisa-
tions of the set of axioms specified there will be called "simple
forests ", in deference to the fact that " shapes " have also been called
" trees " from a different point of view (Cayley, ref. 2). The wider
concept of a general "forest" is considered in §3.

In §4 we deal with systems corresponding to commutative
operations. In §5 our considerations are extended to rc-ary operations.

The author is indebted to Dr. I. M. H. Etherington for various
valuable suggestions in connection with the present paper.

2. Axioms and Fundamental Properties of " Simple Forests ".
A single binary operation called addition is taken as primary

concept, c = a + 6. Any realisation of the set of axioms detailed
below will be called a " simple forest", F. An element aeF will be
called a component of an element ce F, if there exists an element
b e F, such that either a + b = c or 6 + a = c.
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112 A ROBINSON

The following axioms are supposed to be satisfied:

I. The operation of addition is unambiguous, and F is closed with
respect to it; i.e. given a e F and be F there is a unique c e F such
that c = a + b.

II. If a + b = c -f- d, then a = c and b = d.

III. There is not more than one element in F without component.

IV. In every non-empty subset F' of F, there is at least one element

without component in F'.
According to III and IV there is just one element without com-

ponents in F. It will be denoted by e.

THEOREM 1. (Principle of mathematical induction.) / / e belongs to
a subset F' of F, and if a eF',be F' implies (a + b) e F', then F' = F.

Proof: Assume, on the contrary, that F" = F — F' is non-empty.
Then F" contains an element / " without components in F", by IV.
However, / " must have components in F, otherwise / " = e, by III,
and that would be contrary to the assumption that eeF'. Hence

/ " = a + b, say, where both a and 6 belong to F'. But in that case,
/ " also belongs to F', by assumption. Hence F" is in fact empty and
the theorem is proved.

We now define multiplication by induction: a-e = a, and if a-b and
a-c are defined, then a-{b + c) is defined as a-b + a-c. It can be shown
that this definition is unique (unambiguous).

THEOREM 2. e-a = a for all a.

The proof is by induction. In fact e-e = e and e-a = a, e-b = b
implies e-(a + b) = e-a + e-b = (a -f- b). Hence, by Theorem 1, e-a = a
for all a.

THEOREM 3. (a-b)-c = a-(b-c).
Proof: Keeping o and b fixed, we are going to show that the set

F' of elements c for which (a-b)-c — a-(b-c) coincides with F.
I n fact (a-b)-e = a-b = a-(b-e)> so t h a t e e F'. Also if c2 e F', c2 e F',

c = c1 + c2, then

(a-b)-c = (o-6)-(c! + c2) = (a-b)-c-i + (a-b)-c2 = a-ib-cj + a-(b-c2)
— a-(b-cl + 6-c2) = a-(b-c).

Hence c e F' and F' coincides with F, by Theorem 1.
Degree, S(a), and altitude, a(a), are defined by induction as real

functions of all a e F, thus:

S(e) = l, S(a + b) = S(a) + 8(6)
a(e)=0, a(a + b) = 1 + Max (a(a),
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As an example of this procedure of induction we consider the
definition of degree in more detail. The first step is to define S(e) = 1.
The nth step is to consider all elements c = a +- 6, for which 8(c) has
not been defined in the first (n — 1) steps, but 8(a) and 8(6) have
both been defined in the first (n — 1) steps. We then define
S(a + 6) = 8(o) + 8(6).

Two simple forests F, F' will be called isomorphic if there is a
one-to-one correspondence <—> between their elements, a, 6, . . . and
a', 6', . . . respectively such that if a <—> a', b <—> 6', then (a + 6) <—>
(a' + 6'). The correspondence will be called an isomorphism.

THEOREM 4. Given an isomorphism <—> between two simple forest.*
F and F', we have e <=—> e', and if a <—> a', b <—> 6', then a-b<—>a'-b'.

To prove the first part of the theorem, assume contrary to
assertion that e<—>c', c^=e', c' — a' + b'. Let a and 6 in F cor-
respond to a' and 6' respectively, then c = a + 6 corresponds to
c' = a' + 6'. This implies e = c = a + 6, contrary to the fact that
e has no components.

To prove the second part, we keep a, a fixed, a <—> a', and prove
that the set of. elements 6 (corresponding to 6' in F') for which
a-b <—> a'-b' coincides with F. „ ,

The proof is by induction. In fact, if 6 = e, then 6' = e', by the
first part of this theorem, and so a-b = a corresponds to a'-b' = a'.
Also if 6 = 6, + 62, V = b\ + 6'2, 6t <—> 6',, 62 <—> 6'2> a-6j <—> a'-b\,
a-6a <—> a'"6'2, then (a-6, + a-62)<—> (a'-b\ + a'-6'2) by the definition
of an isomorphism. Hence ab<—> a'b', and so, by Theorem 1, the set
of elements 6, for which 6 <—> b' implies a-b <—> a'-b', coincides with F.

THEOREM 5. Any two simple forests (realisations of Axioms I-IV)
are isomorphic.

This theorem is a special case of Theorem 7 which is proved in
detail in §3 below. It can readily be shown that the arithmetic of
binary non-commutative shapes as defined in ref. (1) (see §1 above)
satisfies Axioms I-IV. It follows that this set of axioms does in fact
supply a satisfactory axiomatic foundation for the arithmetic of these
shapes (in the same way as the axioms for an infinite field with
minimum condition supply a satisfactory foundation for the arith-
metic of rational numbers).

THEOREM 6. There is one and only one isomorphism between any
two simple forests.

The proof is left to the reader.
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3. Forests.

We now drop Axiom III and consider systems which satisfy only
Axioms I, II and IV. Any such system will be called a " forest."
An element of a forest will be said to be irreducible if it has no com-
ponents. According to IV, a non-empty forest contains at least one
irreducible element. The (cardinal) number of irreducible elements
in a given forest will be called the order of the forest. It may be
finite or infinite. A simple forest is a forest of order 1. The set of
irreducible elements of a forest will be called the base of the forest.

THEOREM 7. Two forests of equal order are isomorphic.

Proof: Let elt e2, . . . , and e'lt e'2, . . . be the bases of the two
forests, F and F', respectively. By assumption, there is a one-to-one
correspondence, say ex <—> e\, e2 <—> e'2,. .. between the elements of
the two bases. We now define a many-to-one correspondence between
the elements of F and some of the elements of F', and then show (i)
that the correspondence is in fact one-to-one, (ii) that it comprises all
the elements of F', and (iii) that a <—> a', b.<—> b' implies (a + 6)
.<—> (a' + b'). The function / which yields this correspondence
will be defined as folltfws. As a first step, we define /(ej) = e\,
/(e2) =e'2, . . . as given by the correspondence between the bases of F
and F'. As the nth step, we define f{a+ b) =f(a)+f(b), iif(a + b)
has not been defined at one of the first (n — 1) steps, but /(a) and f(b)
have been so defined!

The function f(a) is defined for all aeF; assume on the contrary
that the set Flt of elements of F for which f(a) is not defined, is non-
empty. This implies, by Axiom IV, that Fx contains an element c
without components in Ft. c cannot be irreducible in F, for in that
case c would belong to the base so that f(c) would have been defined
at the first step. Hence c has two components, c =a + b say, so that
neither a nor b is in Fr. That is to say that f(a) and f(b) have both
been defined, at the njh and n2

ih steps respectively, and we may
assume without any essential limitation of the generality of our
argument that wx ^ n2. But then, according to the construction of
/ , /(c) has actually been defined by f(a) + f(b) at the (Wj + 1)'A step,
contrary to assumption.

The function / takes values in F'. We are going to show that
every element of F' is taken at least once. Assume on the contrary
that some of the elements of F' never occur as values of the function
f, and let F\ be the set of these elements. Then there is at least one
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element of F\, say c', without components in F\, but as before, it
cannot be irreducible in F'. Hence c' = a' + b' where a is taken at
least once by /, for an argument a, say, a' = f(a), and b' is taken
at least once by /, for an argument b, say, b' =f(b). But in this
case, c' must be the value of /, for c = a + 6, c' =/(c), contrary to
assumption.

Next, we show that / does not take any element of F' more than
once. Let F'x be the set of elements of F' which are taken more
than once. If F\ is not empty, then by Axiom IV it contains at
least one element c' say, without components in F\. Assume first
that c' is irreducible. In this case c' is in fact taken once by /, at the
first step, but it cannot possibly be taken as a value of / at the nth

step, n > 1, since at these steps / takes only values with components
in F'. On the other hand if c' is not irreducible, then it can be
written c' == a' + 6', where a' and b' are employed just once as values
of/, a' = f(a), b' =/(&) say. Hence c' =/(c), c = a -f b. Assume that
at the same time c' =f(c1), ct = al + bx. Then a' =/(«i), b' =f(b1), by
the construction "of /, and so a — au b = blt since a and 6 are employ-
ed only once. Hence cx = c, so that c' is in fact taken only once,
contrary to assumption.

Finally, we have to show that the one-to-one correspondence
which, as we have seen, is set up by / between F and F', does in fact
establish an isomorphism. That is to say, we have to show that
a' =/(a), b' =f(b) implies c' = /(c), c' = a' + &', c = a + b, and this
follows immediately from the manner of construction of /.

The proof of Theorem 7 is now complete.
Given a forest F, any subset F' of F which is closed with respect

to addition (i.e. aeF', b e F' implies (a + b) e F') is itself a forest.
The meet (set-product) of any number of forests which are subsystems
of a given forest is itself a forest.

Given a forest F and a set S of elements in F, the smallest forest
F' ^ F which contains S will be said to be generated by S. F' is the
meet of all forests in F which contain S. It can be shown that the
base of F' is a subset of S. Also if F' is a forest in F, and F' contains
the base of F, then F' = F.

Given a forest F, a set S of elements of F will be said to be
independent, if no element s e S is contained in the forest generated by
the remainder of the elements of 8. In that case, S coincides with .
the base of the forest generated by it.

Thus,- taking into account Theorem 7, in order to gain an
impression of the possible types of forests which' are subsystems
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of a given forest F, we only want to know the magnitude (cardinal
number) of the various independent sets in F.

It is demonstrated below that a simple forest F contains an
infinite independent subset S. Also it is easily shown that a forest
is denumerable (of cardinal number x0). It follows that F contains
simple forests of all finite orders and of order N0.
THEOREM 8. A simple forest F contains at least one infinite in-
dependent subset S.

Proof: Put et = (e + e) + e and e' = e + (e + e). Then e' generates a
simple forest of order 1, which is therefore a simple forest, Flt say. By
Theorem 6 there is just one isomorphism between F and Flt F<—>Fly

say. If we take -Fj as a subsystem of F, Ft corresponds to a sub-
system of Flt F2, say, itself a simple forest. Again, if we take Ft as
a subsystem of F, F2 corresponds to a subsystem of Flt F3, say, itself
a simple forest. In this way we obtain a chain of simple forests,

F>F1>Ft> F3>
t t t t
\[r ty \|r 4-

Also, under the stated isomorphism, e1 as an element of F
corresponds to an element of Flt e2, say; e2 as an element of F
corresponds to an element of F2, es, say; and so on. In this way we
obtain a set S of elements elt e2, e3, e4, . . . We are going to show that
en =j= em for n > m.

In fact, by construction, em is not in Fm, while en e FK for all
K <n, and so en e Fm. Hence en =^em, so that S is infinite.

Let 8K, K = 1, 2, 3, . . ., be the subset of S obtained by omitting
eK from S. In order to prove that S is an independent set, we have
to show that eK is not contained in the forest generated by SK.

Let S(eK) be the degree of eK regarded as an element of F,
K = 1, 2, 3, . . . It is easy to deduce from the definition of the degree
given in §2 above, that 8{eK) = 3", K = 1, 2, 3, . . . Again the degree
of any element of a forest cannot possibly be smaller than the smallest
of the degrees of the elements of a set generating the forest. It
follows that e1 cannot be contained in the forest generated by 8t.
Similarly, if an element o is contained in the forest generated by
SK + i, K^I, but not in the forest generated by the set (elt . . . , eK),
then its degree is necessarilv ^ 3" +2. It is therefore sufficient
to show that eK + 1 is not contained in the forest generated by
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Let e'K be the irreducible element in FK, so that e\ = e'. Then it
will be observed that 8(6',) = S(e,), and eK + 1 = (e'« + e'«) + e'K. Hence
if eK + 1 is contained in the forest generated by (e^ . . . , eK) K = 2, 3, 4,
. . . , so are (e'K + e',) and e't. Also, as before, since S(e'«) = 8(e»), it
follows that if e'K belongs to the forest generated by (e,, . . . , eK),
it also belongs to the forest generated by (elt ... . , e«_i). Now
e'. = e'« _ i + (e'» _ x + e', _ i), for all « ^ 2. Hence, if eK belongs to the
forest generated by (clf . . ., eK _ , ) , so do e'K _ 3 and (e'K _ x + e'K _ x), and
therefore so does eK = (e'» _! + e', _ x) + e', _ j .

We have shown that if eK + x belongs to the forest generated by
(ex eK), K = 2, 3, . . . , then eK belongs to the forest generated
by (ej e«_!). Hence if there is an element eK, K 5; 2, which
belongs to the forest generated by $„, then e2 belongs to the forest
generated by ex. -And exactly as before this implies that e\ belongs
to the forest generated by elt which is impossible since 8(e',) =8(ei).
It follows that S is an independent set, as asserted.

THEOREM 9. (Principle of mathematical induction for general
forests.) / / the base of a forest F belongs to a subset F' of F, and if
aeF', beF' implies (a + b) e F', then F' = F.

The proof of this theorem is similar to that of Theorem 1.
There is no " n a t u r a l " definition of multiplication in terms of

addition for forests in general, as there is for simple forests.

4. Commutative Forests.
If the original operation, from which the " logarithmetic " is

derived after the manner of ref. 1, is commutative, then addition
in the logarithmetic is commutative. In the axiomatic approach
this requires the following modifications:

Axiom II is replaced by Axiom II ' :—

If a + b = c + d, then a = c, b = d, or a = d, b = c.

A new axiom is added

V: a + b = 6 + a
Axioms I, III , and IV remain unaltered.
Then all the theorems and definitions of §2 remain valid.
A system satisfying the modified set of axioms will be called a

simple commutative forest, and a system satisfying all the axioms of
the set except (possibly) III will be called a commutative forest. The
definitions and theorems of §3 are again valid for commutative forests,
although the proof of Theorem 8 requires some modification.
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5. N-ary Forests.

In an associative system, the product of three terms, A, B, C,
can be denned in terms of a binary operation, by A {B C) or by
(A B) C, and these two expressions are equal. On the other hand,
in a non-associative system, A {B C) =j= (A B) C, but in addition ABC
may be specified as a ternary operation again leading to a different
result. From these and similar considerations we see that it may be
necessary to investigate logarithmetics in which the " sum " is denned
as an nary operation, n>2 (" n-ary forests "), or alternatively, logarith-
metics in which " sums" are defined for all *-ary operations,
2 5S K ^ n, for specified n > 2 ("mixed n-ary forests"). Again, the
specified operations may be either commutative or non-commutative.
It will be sufficient here to formulate the axioms for one of these
cases, say that of the simple mixed n-ary forest.

A system F is called a simple mixed n-ary forest if it satisfies the
following axioms:

I. For every ate F, a2e F, . . . , aKeF, 2 5g K jg n, there is
defined a unique sum c e F, c = a^ + a2 + . . . + aK. ' *
Each one of the elements alt o2, . . . , aK is called a
component of c.

II. If a1 + a2 + . . . + aK=6j+62+ . . . + bm, then K = m and
° i = &i> «2 = b2, . . ., a, = bK.

III. There is not more than one element in F without
component.

IV. In every non-empty subset F' of F there is at least one
element without component in F'.

With suitable modifications, the theory of simple mixed n-ary
forests, and of mixed n-ary forests, can be developed in parallel with
§§2 and 3 above.
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