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Abstract. For a smooth projective variety X of dimension n in a projective space PV defined over
an agebraically closed field &, the Gauss map isamorphism from X to the Grassmannian of n-plans
in PY sending z € X to the embedded tangent space T, X < P¥. The purpose of this paper is
to prove the generic injectivity of Gauss maps in positive characteristic for two cases; (1) weighted
completeintersections of dimensionn > 3 of generd type; (2) surfaces or 3-foldswith p-semistable
tangent bundles; based on a criterion of Kaji by looking at the stability of Frobenius pull-backs of
their tangent bundles. The first result implies that a conjecture of Kleiman-Pieneistruein case X is
of general type of dimensionn > 3. The second result isageneralization of theinjectivity for curves.
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1. Introduction

Let X be asmooth projective variety of dimension n over an algebraically closed
field & of characteristicp > 0. Let .: X — PV be an embedding whose image
is not linear. Set H = 1*Opn(1) and L = Q% ® H®"+Y, where Q% denotes
the sheaf of differential ¢g-forms. Recall that the Gauss map of « is a morphism
\D: X — Grass(PV,n) sending z € X to the n-dimensional embedded tangent
space T, X C PV,

A result of Zak [15, Ch. |, (2.8)] asserts the finiteness of the Gauss map (7,
equivaently the ampleness of L, in arbitrary characteristic, and the birationality
of .(1) in characteristic 0. In positive characteristic, the birationality and even the
generic injectivity of .(Y) are no longer true in general. But several results suggest
that the Gauss map would be generically injective for most cases; in other words,
the field extension K (X) over K (.Y (X)) would be purely inseparable ([6, 7, 8,
10, 12)).

The purpose of this paper is to prove the generic injectivity of Gauss mapsin
positive characteristic for two cases, by giving acriterion for theinjectivity interms
of the stability of tangent bundles and by looking at the stability.
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Our main results are the following:

THEOREM 1.1. Let X be a smooth weighted complete intersection defined over
k. Supposethat X isof dim X = n > 3 and of general type. Then the Gauss maps
() are generically injective for any embeddings:: X — PV.

THEOREM 1.2. Let X beasmooth projectivevariety of dimensionrn = 2 or 3over
kand.: X — PN anembedding. Set H = *Op(1) and L = Q% @ H®HD, Let
T bethe first piece of the Harder—Narasimhan filtration of the tangent bundle T'x
with respect to L (see Section 3). Assumethat (c1(77), L™ 1) < 0. Whenn = 3, we
assume in addition that 7~ is not of rank 2. Then the Gauss map (1) is generically
injective.

Here () denotes the intersection products of line bundles.

Theorem 1.1 implies that a conjecture of Kleiman—Piene [10], the generic
injectivity of the Gauss map of a smooth complete intersection X for the natural
embedding, istrue when X isof dimensionn > 3 and of general type. Our resultis
applicable not only to other projective variety than a‘usua’ complete intersection
but also to a complete intersection with any embedding in a projective space.
Theorem 1.2 is one of ageneralization of resultsfor curves[6, 7] and [10]; roughly
speaking, those assert that Gauss maps of smooth curvesof genusg > 2 are always
generically injective for any embeddings. In fact, Theorem 1.2 implies that the
Gauss map (V) of asmooth surface or 3-fold of general type with p-stable tangent
bundle with respect to L is generically injective.

To obtain these results, we essentially use Kaji’s criterion for the generic injec-
tivity of Gauss maps given in [8] (see (2.1)). By using Kaji’s criterion, first we
prove our key criterion via stability: Namely, if every eth Frobenius pull-back of
the tangent bundle has no subsheaf of non-negative ..-slope with respect to L, then
the Gauss map (V) is generically injective (Proposition 3.1). Next we look at the
stability of the Frobenius pull-backs of the tangent bundles and prove the main
theorems. In Section 4, we show that every Frobenius pull-back of the tangent
bundle of asmooth weighted completeintersection is y-stable if theintersectionis
of general type and of dimension > 3 (Proposition 4.2). In Section 5, we show that
if the tangent bundle of a smooth surface or 3-fold has no subsheaf of non-negative
u-slope, then the same is true for every eth Frobenius pull-back of the tangent
bundle, based on Shepherd-Barron’s argument [14, (9.1.3.3)]. Consequently, we
obtain the main theorems by the above criterion.

1.1. NOTATION

Unless otherwise mentioned, we work over an algebraically closed field & of
characteristic p > 0 throughout. By a variety, we mean an irreducible and reduced
algebraic scheme over k. By the eth Frobenius morphism of a variety X defined
over k, we mean the induced morphism from the p¢th power map of the structure
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sheaf. For atorsion-free O x-module £ on avariety X over k, by £V we denotethe
dual Homoe, (€,Ox), and by ¢1(£) we mean det(€)VV.

2. Kaji'scriterion for generic injectivity of Gauss maps

PROPOSITION 2.1 (Kaji [8], [9]). Let X be a smooth projective variety of
dimX = nover kand.: X — PV an embedding whose image is not linear. Set
H = *O0p(1) and L = Q% ® H®™+1)_ Consider the following condition for X
and ., called Kgji’s condition (K):

HOY, f*(Tx @ HY) @ 0" f*H) =0

holds for any finite surjective morphism f : Y — X from a normal projective
variety Y with a decomposition f = go h, h : Y — Y’ a finite, separable
morphism to a normal projective variety Y’ and g : Y/ — X a finite, purely
inseparable morphism, and for any k-automorphismo : Y — Y of finite order
witho* f*L = f*L.

If Kaji’s condition (K) holds for X and ¢, then the Gauss map (Y is generically
injective.

Remark 2.2. Kgji'scriterion aboveisakey step in hisproof of the main theorem
in[8] and henceit isnot stated explicitly in [8]. The criterion in the form abovewill
be given in the forthcoming paper [9]. Historically, the prototype of the criterion
and its proof were already announced in Kgji's seminar talk at Waseda University
in July 1989.

3. Criterion for genericinjectivity of Gauss mapsvia stability

First we recall notation and results about stability (see, for example, [13]). In
general, let X be a normal projective variety of dimension n over k with an
ample line bundle L. For atorsion-free Ox-module £ of rank r, we set pif,(£) =
(c1(E), L™ Y) /r. We say that € is u-stable (resp. p-semistable) with respect to L
if for every Ox-submodule F(0 < rank F < ), we have ur(F) < (resp. <)
pr(€). For the Harder—Narasimhan filtration (or H.-N. filtration, for short) 0 =
EoC &L C--- C & =& of atorsion-free O x-module £ with respect to L (w.r.t. L)
(i.e, &;/&; 1 aretorsion-free pu-semistablewith pp, (E1/&0) > -+ > prn(&/E-1)),
we set

pr-max(E) = pr(€1/€0) and  pr min(€) = pr(&/E-1)

and by the type of £ we mean a sequence of numbers (rank(&1/&o),. ..,
rank(&;/&;-1)). Wesometimescall £, thefirst pieceof theH.-N. filtration of £. With
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thisnotation, for torsion-free O x -modules€ and £’ with pif,—min(€') > pr—max(€),
we have Homy (£/, &) = 0.

Let X be asmooth projective variety of dimX = n overkand.: X — PV an
embedding whose imageis not linear. Set H = 1*Op(1) and L = Q% @ H®("+1),
Note that L is ample by a corollary of Zak’s finiteness theorem of (%) [15, Ch. I,
(2.14)].

PROPOSITION 3.1. Let X, ¢, H and L be as above. If 7, max(F*Tx) < O for
every eth Frobenius morphism F¢: X — X (e > 0), then the Gauss map (Y is
generically injective.

Proof. By (2.1), we have only to show that the condition (K) holds. Assume
to the contrary that the vanishing in (K) does not holds for some f: Y — X and
o:Y — Y.Hence f*Ty hasasubmodule f* H®@o* f*H" with ((f*L)" 1, f*H®
o*f*H") = 0, and hence -1, _max(f*T'x) > 0. Since h is finite and separable,
by Gieseker [3, (1.1)], we have g1, —max(9*Tx) > 0. By noting that g is purely
inseparable, let 7: X — Y’ amorphism with g o 7 = F© for somee > 0. Since
Fe* [ = L®° and since r isflat in codimension 1, we have

P D g e (F*Tx) = pres—max(n*g* Tx)
> (degm)pg . max(g"Tx) > 0.

This contradicts to the assumption. O

From Proposition 3.1, we recover an improved version of Kgji [8] (see[9]). Recall
that a vector bundle F on a normal projective variety X of dimension n with an
ample and globally generated line bundle L is generically ample with respect to
Lem . L®Mn-1(m,; > 0) if its restriction F|C' is ample on C for a complete
intersection schemeC = Dy N --- N D,,_1 with D; € |L®™i| (see[9]).

COROLLARY 3.2 ([9]). Let X, , H and L beasin (3.1). If the tangent bundle
Ty isan O x -submodule of a vector bundle F whose dual F" isgenerically ample
with respect to L®™ ... L®™n-1 for somem; > 0, then the Gauss map (V) is
generically injective.

Proof. Let & be the first piece of the H.-N. filtration of F¢*F. If D; € |L®™i|
are generad, then FV|C isampleon C = D; N --- N D,,_1 by the open property
of ampleness ([4, Sect. 4, (4.4)]), and £|C is a subbundle of F¢*F|C. Since
Fe|C: C — Cisfinite, (F**F|C)Y isample, and hencedeg&|C < 0. Since F*
isflat, we have jup, max(F**Tx) < pr-max(F**F) = pn(€) < Oasrequired. O

4. Stability of F**T'x for weighted complete inter sections

In this section, we fix the following notation (see [11]). A weak projective space
PP is an open subscheme N,~1D ({T3;v { e3}) of a weighted projective space
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Proj k[To,. .., Ty+m], Where the grading of R := k[To,...,T+m] IS defined
by deg73 = ez > 0(0 < f < n+m) and dega = O(a € k). A weight-
ed complete intersection X of P is a complete subscheme of P isomorphic to
Proj(R/(F1,. .., Fy,)) for some homogeneous regular sequence F1, . .., F,, of R

with deg Fy, = d,. If eg = 1 for every 3, then X isacomplete intersection in the
usual sense.

LEMMA 4.1. Let X be a smooth weighted complete intersection of dimension n.
For every eth Frobeniusmorphism F¢: X — X (e > 0),

H' (X, (F*Q%) ® Ox(£)) =0 (4.1.0)

holdsfor £ < 0,0<t+g<n—l,andl<g<n—1
Proof. For an O x-module G on X andfor £ € Z,weset G(¢) = G @ Ox (¥).

First we claim that

HY(X,F* (L ® Ox)(£)) =0 (4.1.2)
for0O<t<n—11<qg<n—1and/ < 0. To prove this, we consider the
Frobenius pull-back of the restriction of the Euler sequenceon P(e) to X (see[11,
Remark 2.4]),

0— F*(Qf ® Ox) — & Ox(—p°e;) = Ox — 0.

By taking the exterior product A? and thetwistby Ox (¢), foreachq(1 < ¢ < n—1),
we have an exact sequence

0— F (2 ® Ox)(0) = (A ;25" Ox (—eip®))(¢)
= FQL @ 0x)(0) = 0, (4.12)
We note that
H'(X, (N @;7" Ox (—eip®))(£)) = 0
forevery t(0 <t <n—1)andq(0 < ¢ < n—1) (see[1l, Proposition 3.3]). So
the claim (4.1.1) follows from (4.1.2) by induction on q.
Now we prove the vanishing (4.1.0) by induction on ¢. By pulling back the
conormal-to-cotangents sequence of X to P by F¢, we have an exact sequence

0 — @10y (—p°da) = F&( @ Ox) = F&Q% — 0. (4.1.3)

Wheng = 1, by using (4.1.3), the vanishing (4.1.0) followsfrom H' (X, O x ({—
pfdy)) =00<t<n—11< a< m)andfrom(4.1.1) forq = 1.
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When 1 < ¢ < n—1,theexact sequence(4.1.3) inducesafiltration of F¢*(Q1®
Ox),

O0=Fn1CFC---CFC---CHRCFo=F"(QLo0x)
such that
0= Fji1— Fj = (FQL7) @ (N @7, Ox(—p°dy)) -0 (4.1.4)

areexact for j (j = 0,...,q) (see, for example, [5, Ch. Il Ex. 5.16]). Before
proving the vanishing (4.1.0) for this ¢, we prove that

H'"(X,F;(£)) =0 (4.15)
forevery j(1<j <q)and¢(0 <t <n—q— 1+ j), by descendinginduction on
j. If 1 < ¢ < m, wehaveonly to start this induction from j = ¢ with

]:q(e) = GB OX(K_Pe(dal‘i‘"""dozq))a

1< <ag<m

and henceour claim (4.1.5) for j = g follows. If ¢ > m, we have only to start from
j = m with

F(l) = (FCQE™)E—p° Y da),

a=1

and hence our claim (4.1.5) for j = m follows from the inductive hypothesis
(4.1.0) onq. For genera 5 > 1, by using (4.1.4), our claim (4.1.5) followsfrom the
inductive hypothesis (4.1.5) on j and the inductive hypothesis (4.1.0) on ¢. Thus,
in particular, we have H'(X, F1(¢)) = Ofor 0 < t < n — q. Therefore, (4.1.0) for
q(1 < g < n—1) followsfrom the vanishing above and (4.1.1), by using the exact
sequence (4.1.4) for j = 0. O

PROPOSITION 4.2. Let X be a smooth weighted complete inter section of dimen-
sion n > 3. The eth Frobenius pull-backs F¢*Q% (e > 0) are p-stable (resp.
p-semistable) with respect to O x (1) (and hence with respect to every ample line
bundleon X) if X isof general type (resp. of Kodaira dimension 0).

Proof. Let 7 be asubmodule of F¢*Q3 of rank 7(1 < r < n — 1). So there
isaninjection (A"F)VY — F¢*Q. SincePic X = Ox (1) - Z by Grothendieck—
Lefschetztheoremfor dim X > 3[11, Theorem 3.7], wemay assumethat ¢;(F) =
(ATF)VV = Ox (¢) for some? € Z.Hence HO(X, (F** Q%) ® Ox(—£)) # 0. By
(4.1), we have ¢ < 0. Therefore

Boy ) (F) = (deg X/r)l < 0 < (resp. <) poy (1) (FQ%).
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Thus Fe* Q3. isu-stable (resp. p-semistable) w.rt. Ox (1). SincePic X = Ox(1) -
Z,the sameis true for the p-stability w.r.t. any ample line bundieon X. O

Proof of Theorem1.1. By (4.2), for every eth Frobenius morphism F¢: X — X
(e > 0), F*QY isp-stablewith respect to L, and hencethedual F¢*T' is u-stable
of ur,(F**Tx) < 0. Therefore the theorem follows from (3.1). O

Remark 4.3. In (4.2), the assumption n» = 3 is used only when we deduce
PicX = Ox(1) - Z. Thus the same results as in (4.2) and hence (1.1) hold for a
weighted complete intersection surface with Pic X = Ox (1) - Z.

5. Stability of F¢*T'x for surfacesand 3-folds

First wesdlightly generalizealemmaof Shepherd—Barron. To thispurpose, werecall
aresult from foliation theory in positive characteristic due to Ekedahl ([1], seealso
[14, (9.1.2.1)]). A smooth 1-foliation F on a smooth variety X is a subbundle of
T'x closed under the bracket and pth power operation of derivations. Then there
exist a smooth variety, denoted by X /F, and a k-morphism 7: X — X/F with
the following properties: X /F is homeomorphic to X viar; Ox/r consists of
those elements of Oy killed by the derivations of F; and = is purely inseparable
of degn = p™@* ¥ factoring through the k-Frobenius morphism F : X — X (-1
asFx = Aoxforsome\: X/F — X1, Here X(¢) denotes the base change of

X by the p°th power map of k. Conversely, afactorization X % Y 2 X1 with
a smooth variety Y and afinite surjective 7 : X — Y is recovered by a smooth
1-foliation F := Ker(dn) in thisway.

LEMMA 5.1 (Shepherd-Barron, cf. [14, (9.1.3.3)]). Let X be a normal projective
variety of dim X = n, and L an ample line bundle on X . Let £ be a torsion-free
Ox-module that is p-semistable with respect to L but the Frobenius pull-back
& = F*&isnot. Let A be a piece of the Harder—Narasimhan filtration of £, and
set B = £/.A. Then there exists a nonzero map Ty — (A" ® B)VY, and hence
,ULfmin(TX) < HLfmax((-Av ® B)V\/).

Proof. Let £(-1) be the pull-back of £ to X (=Y, and hence F*& = F5EY).
We consider the following commutative diagram:

P(B) < HD(E)—F.P(SM)
m O ™

X XD,
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Here, 7, and o are natural projectionsand ' is the base change morphism of Fx
by 7. Let U C X be the largest open subset of points x where O, x is regular,
and &, and B, are free. Set P = » H(U(Y), P = 7 1(U), and P! = o (V).

Since F factorsthrough F, (& by Ekedahl [1], # := T3, = Ker(dF) isasmooth

1-foliation with P/# = P. Since 7 is the base change of = by Fy, a natural map
H — 7Ty isisomorphism. Let 7: H' = 7—[|lﬁ’ — NH;, + be the composition of
theinclusion and anatural map 75 ® O, — N ~ to thenormal bundle of P’ to P.
Then we claim that 7 is nonzero. Indeed |f not ‘H' is a smooth 1-foliation of
P'. Set P’ = P'/#’. Then the induced inclusion P’ — P is a bundle homomor-
phism over U=, since P’ — P is a bundle homomorphism and P=P/H.Soa
torsion-free quotient @ y-module B’ of £(—Y such that B/|U(=Y corresponds to
P’ destroys the stability of &, since 1, (B) < pr,(€) and since p(cy(B'), L™ 1) =
(c1(B), L"~1). Thus T is nonzero. By pushing 7 out by o, we have a nonzero map
Tx — (AY @ B)VY. By stability, wehave i, _min(Tx) < pr—max((AY @ B)VY). O

COROLLARY 5.2. Let X, &, £, and L beasin (5.1). Let0 =& C & C -+ C
& =E( > 2) bethe Harder—Narasmhan flltratlon & with respect to L. Assume
that rank £ < 3. Set p(1,1) = 3,p(2,1) = 3, p(1,2) = 3, and p(1,1,1) = 1.
Thenwehave

p(&1) < ppr(€) — plrank £1/&, . .., rank &/&_1) - po,—min(Tx)-

_ Proof. Setg; = &Ei/Ei_1. Since & or £/E; isof rank 1 and hence §; = G, or
E /& = Git, for each i, we have

pr-ma(& ®E/ENY) = up((GY ® Giy1)"Y) = pr(Giv1) — nr(Gi)-

Applying (5.1) to £ and &;, we have 1., (Gi) — 11(Git1) < —pir—min(Tx). By the
definition of iy, we have ", rank G; - pr(G;) = rank € - uL(E). Thus we get the
required inequalities. O

Proof of Theorem1.2. By (3.1), wehaveonly toshow that s, max (F<*Tx) < O
for every e > 0. By stability, we have only to check that for every e > 0, F**T'x
has a (possibly trivial) filtration each of whose graded piece is a torsion-free -
semistable O x -module of negative u-slope.

First we consider the case when Ty is u-semistable. Hence pur —min(Tx) =
pr(Tx). When F*Tx is aso u-semistable for e > 0, then there is nothing to
prove. Otherwise, let ep(< e) be the least non-negative integer such that F€0*T'x
is u-semistable but Feot* Ty isnot. Let0=To C T3 C --- C T; = Feot¥ Ty be
the H.-N. filtrationand set e; = ¢ — (eg + 1).
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When Feot* Ty isof type (1, 1) (resp. (1, 1, 1)), by (5.2) for £ = Fe*Tx and
our assumption, we have

pr(T2/T) < pr(T) < pur(F*Tx) — 3ur(Tx)
= (p = Hur(Tx) <0
(resp. . (T3/T2) < pr(T2/Ti) < pr(T1) < (pOtt — Dpun(Tx) < 0.)

Thusfor e; := e — (eg + 1), F**(7;+1/7T;) aretorsion-free sheaves of rank 1 of
negative u-slopes, as required.

When Feot* Ty isof type (2, 1) (resp. (1, 2)), by (5.2) and our assumption, we
have

pr(T2/T) < po(Tr) < @ = $uL(Tx) <0

(resp. o, (T2/T1) < pr(T1) < (P — ) (Tx) < 0.)

Sete; = e—(ep+1)andG = T1 (resp. G = T2/Th). If Fe**G isu-semistable, then
there is nothing to prove. If F°2*G is not u-semistable, let e; be the least integer
with e — (eg + 1) > e > 0 such that F2*G is p-semistable but F¢2+1*G is not.
For the H.-N. filtration 0 C Sy C S, = Fe2t1*G of Fe2t1*G, we have

11.(S2/S1) < pr(S1) < pur(F2*G) — 3pur(Tx)
< Ap?t(peott - 3) — 3tue(Tx) <0

(resp. <A™ = §) = 3hue(Tx) < 0)

by (5.2) and our assumption. Thus for ez = e — (ep + €2 + 2), we have
pr(F(852/81)) < pp(F*81) < 0 and pp(F*(72/T1)) < O (resp.
pr(Fe*T1) < 0), asrequired.

Second we consider the case when T'x is not u-semistable with H.-N. filtration
0=7TpC7T1C--- C T = Tx.Byassumption, thetype of T'x is (1, 1), (1, 1, 1),
or (1, 2).

When T is of type (1, 1) (resp. (1, 1, 1)), by assumption, we have 0 >
i (Fe(TL/T0) > --- > pr (F (7i/Ti-1)), as required.

When T'x is of type (1, 2) with H.-N. filtration 0 C 7; C 7> = T'x, we have
0> pr(T1) > pr(Tx) > u(Tx/T1) = pr—min(Tx). By the similar argument as
in the case of Feo+1*Tx of type (1, 2), we have pir, max(F¢*Tx) < Ofore > 0.0

Remark 5.3. (1) When X is a smooth 3-fold such that the first piece 7 of the
H.-N. filtration of T'x is of rank 2, by the same argument as above, it turns out that
the Gauss map (V) is generically injective if (2(p + 1)/3)ur(T) < pr(Tx) <
nr(T) < 0.
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(2) In the proof of (1.2) above, by using only the ampleness of L but without
using theform of L = Q% @ H*"*+1, we show that for a smooth projective surface
or 3-fold, if pr,—max(Tx) < O, then py_max(F<*T'x) < O for every eth Frobenius
morphism F¢, with the exceptional casefor n = 3.

(3) A result of Ekedahl [2, Theorem 2.4] tells us the structure of surfaces of
non-u-stable tangent bundlesin case iz, _max(Tx) > (94, L)/ (p — 1).
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