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THE ARENS IRREGULARITY OF AN EXTREMAL ALGEBRA

by M. J. CRABB and C. M. MCGREGOR

(Received 25th August 1992)

A class of extremal Banach algebras has Arens irregular multiplication.

1991 Mathematics subject classification (1985 Revision): 46J35.

For any compact convex set K c C there is a unital Banach algebra Ea(K) generated
by an element h in which every polynomial in h attains its maximum norm over all
Banach algebras subject to its numerical range V(h) being contained in K, [1, 2]. In [3]
we showed that Ea(K) does not have Arens regular multiplication when K is a line
segment. Here we extend this to any other case, where a different argument is required.

Proposition. / / K has non-empty interior, then Ea(K) is Arens irregular.

Proof. We use Pym's criterion [4] that it is enough to find bounded sequences an, bn

in Ea(K) and a bounded linear functional cf> such that the two repeated limits of (f>(ambn)
exist and differ.

First assume that K = D(0,T), where t=4/e. As in [2], any entire function / such that
/(z)e~t|z | is bounded on C gives a 4> in Ea(K)' by (j>(ezh) = f(z) (zeC). Define an entire
function / by

and put

(£)
Then
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= An(z)Bn(z)Cn(z), say. (1)

Put Dn = {zeC: 2"^|z |g2"+ 1}. Then An(z)-*l as n->oo uniformly on £>„, since

2" 2P

Further, Cn(z) -* 1 uniformly on Dn, since

00

y
n + 2

Since also |Bn(z)|^4(z6Dn), we have |//gn|<5 on Dn for all large enough n. Together
with the fact that gn(r)e~tr^l(r>0), this gives that /(z)e"t |z | is bounded on C. Thus /
defines <f> in Ea(K)' as described.

With some fixed aeR, put rn = 2a~1e + ix(neN). Then rneDn for all large n, Bn(rn)-> 1,
and (1) gives that ( - \)n f{rn)/gn{rn)^ 1.

Also, log[gn(rn)e-tr"] = 2'I+1log(e + 21-"a)-4rn/e=2nH"1log(l+21-' Ia/c)-4a/e-0 as
n-*ao. Hence gn(rn)e~"" -* 1, and

(-lr/We-^-lasn-oo. (2)

Now for neN put <xn = 22ne, Pn = 2Zn-le, and an = ea"lh-t), bn = e"^h-z). Then an,
bneEa{K) with ||a.|| = ||fr.|| = 1, and ^ A ) = / ( ^ + W e-(*-+W. Since am + /?n =
22n 1e + am can be taken as r2n in (2), we have limn_0O^»(amfen)= 1. With n fixed, am +/?„
can be taken as r2m+i, and (2) gives limm_00<£(am2>n)= — 1. Thus the repeated limits of
<l>(ambn) differ, and Ea(K) is Arens irregular.

Given any compact convex K<=C, by replacing K by <xK + f} for suitable a, /?eC we
can assume that 5(0, T) S K and Re K ^ T. Then we can construct <f>, an, bn in exactly the
same way to complete the proof; for since ||ez*|| = max{|e**|:AeK} we still have
| | | | | | | |
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