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ON LOCAL EQUIVALENCE FOR VECTOR FIELD SYSTEMS

P.J. VASSILIOU

We give sufficient conditions for C°° vector field systems on Rn with genus g = 1
to be diffeomorphic to a contact structure. The diffeomorphism is explicitly con-
structed and used to give the most general integral submanifolds for the systems.
Finally the implications of these results for integrable hyperbolic partial differential
equations in the plane is discussed.

1. INTRODUCTION

The aim of this note is to give some new results on the explicit integration of certain
Pfaffian systems with genus g = 1. The approach adopted is as follows. Given a Pfaffian
system E on Rn, we ask the question: when is E equivalent to a contact structure
with respect to the diffeomorphisms of Rn and how can an explicit diffeomorphism be
constructed? The construction of such a diffeomorphism provides the explicit integral
submanifolds for E.

The subject of the integration of Pfaffian systems has a long history dating back
to 1815 when Pfaff first posed it [10]. Since that time important contributions have
been made by a number of authors including von Weber, Goursat, Frobenius, Natani,
Clebsch, Grassman, Darboux, and others in the 19th century; (see E. Goursat [5]). In
the early 20th century, Cartan's works [3] are well known; less well known is the paper
[17] of Vessiot, which contains a number of important results including applications to
automorphic systems (see also Pommaret [11] and Kumpera [9]). More recent works
are those of Gardner [4] and Bryant [2]. We also note recent applications of the theory
of Pfaffian systems to control theory by Hermann [7, 8].

The motivation for solving the problem here posed comes from the theory of inte-
grable wave equations. In his study of scalar nonlinear second order partial differential
equations in two independent variables, Vessiot [15] showed that whenever the second
order characteristics, M., possess two or more invariants and these invariants are taken
as independent coordinates, then M. is equivalent to a contact structure on a reduced
manifold. This fact allowed Vessiot to settle the integration problem for these equations
in an elegant way. These matters will be discussed briefly in Section 4.
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216 P.J. Vassiliou [2]

2. A. THE THEORY OF PFAFFIAN SYSTEMS

In this section I review briefly some of the known results on Pfaffian systems.
Let TRn and T*Rn denote the tangent and cotangent bundles on Rn respectively.
Let C°°(Rn) denote the ring of real valued, C°° functions on Rn. Let T(T*(Rn))
denote the C°°(Rn)-module of smooth sections of T*(R"). A Pfaffian system on Rn

is a C°°(Rn)-submodule of r(T*(Rn)). Let r(T(R")) denote the C7°°(Rn)-module of
smooth sections of T(Rn). A vector field system on R™ is a C°°(Rn)-submodule of
F(T(Rn)). A Pfaffian system E (vector field system E) is said to have dimension r at
point x G Rn if there exists a neighborhood U B x and r-linearly independent 1-forms
(vector fields) defined on U which generate E(EJ . I will assume throughout that
vector fields systems and Pfaffian systems have constant dimension as z ranges over
U. Such vector field systems will sometimes be referred to as distributions.

The first important object we may associate to E is a vector field system called
the characteristic system of E or the Cauchy system of E denoted char E:

char E :={X e T(TRn) : X\w = 0, X\dw G E, for all w 6 E} ,

where J denotes the interior product. The annihilates of char E is called the Car tan
system of E denoted C{E). That is

C{E) = (char E)x.

The dimension of the Cartan system of E is an invariant called the class of E.
The class of E is the minimum number of variables necessary in order to write down
local generators for the system (see Gardner [4] and Cartan [3]).

The next important construction is that of the derived map of E which is the
C°°(Rn>linear map

7rod=SE: E —> r(A2T'(Rn))/r(T*(Rn)) A E

obtained by exterior differentiation and then projection into the quotient structure.
Suppose 8E has constant rank on Rn. Define the first derived system E^ of E

by E*-1) = keiSg- Inductively, define the derived map 6E(i) of E

Sj^v, : £ ( 0 —> r ( A 2 r ( R n ) ) / r ( T * ( R n ) ) A E{i).

Then the (i + l)-derived system £ ( ' + 1 ) of E is given by
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[3] Vector field systems 217

Letting gi = dim E^ we have go ^ gi

There must be an N so that gw = gs+i • N defined in this way is called the derived
length of E. So if N = 0, then E™ = E so SE = 0. This means d(E) C £Ar(T*Rn),
that is, E is Frobenius-integrable. Thus 6 is the zero map when E is integrable so we
have the intuitive idea that 8 somehow measures the amount of non-integrability of E.
The collection (E, Ew,..., EN) is called the derived flag of E. We have

"-U C--CE.

Define integers

Po — dim 2 3 ^ ; PAT_,- = dim (E^/E^*+1^) ,

We have that ^ * ̂  ~
N

dimE — y^pf.
»=0

If PJV+I denotes the codimension of E in C(E) then

iV+l

class JB = \ J p^
t=0

The Pfaffian system E is said to be of type ( Gardner [4] )

{PO,PI,",PN,PN+I)-

Finally, we mention another important invariant, namely the rank or Engle rank.
E has rank p if p is the smallest integer such that

a^da)" = 0,

for all a G E.

The following theorem is proved in Bryant, Chern and Griffiths [1].

THEOREM 2 . 1 . In a neighborhood of Rn suppose a is a 1-form of rank p. Then
there exists a coordinate system Wi,w2, .. wn, possibly in a smaller neighbourhood such
that the form a becomes

dw\ + tojdujj -f- W\dw$ + • • -\-w pdw ^^.

Interestingly, a proof of this classical theorem is given in [17] using vector fields.
The following is also classical and due to von Weber (see [5]).
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THEOREM 2 . 2 . Let E be a PfafRan system of type

(p0) 1,1,1,... 1,2)
and suppose / / ,..\ ,..\

d i m ( C ( £ ? W ) / ^ ) = 2 , 1 < « < JV — 1,

and .EC) is a p0-dimensional completely integrable system, then there exist iV+po + 2
independent functions

such that E is locally generated by

{Azx,dz2, .. dzP0, dy - yxdx,dyi - y2dx,... dyN_j - yNdx} .

For a proof of this theorem the reader is referred to [2]. Theorems 2.1 and 2.2 were
the only local structure theorems known (apart from the case of Frobenius integrable
systems) until Bryant gave a new structure theorem ([2], Theorem 2.1).

2. B. VECTOR FIELD SYSTEMS

It will be convenient for what is to follow in Sections 3 and 4 to give some results
and definitions for vector field systems. Just as we stated the notion of characteristic
vector fields for E we can do so for the dual E. The characteristic system for E,
denoted char E is the set of all 6 G E such that [S,E] C E.

THEOREM 2 . 3 . If E and E are duai then char E = char E.

PROOF: Contraction of forms and fields is denned as follows:

where X,Xiy .. A"p_j are vector fields and w is a p-form. We have the identity

d6(yuv2) = Vl(«2J0) - v2{Vl}e) - 9}{[vuv2}),

for 1-forms 6 and vector fields Vi,v2. So if 8 € char E and X £ E, we have

dO{6,X) = 6{X\B) - X{6\0) - 6\[6,X]

and for all 9 G E

d9(S,X)= (S\d9)(X) = 0\[S,X) = 0. (•)

So char E C char E. Assuming 9 G char E and using (•) then proves the theorem. D

https://doi.org/10.1017/S0004972700028380 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028380


[5] Vector field systems 219

Once again, as for PfafHan systems, we can define the concept of a derived system
for a vector field system. The ith derived system E^ of E is defined recursively

[ \ ] , = E.

There will always be an integer N such that

meaning that E^N^ is Frobenius integrable.

THEOREM 2 . 4 . For each i = 0,1,2,. ..N.

= n.

PROOF: It will be enough to prove that E^ and E^ are dual. Let x,y € E.
Define a set of 1-forms

5 = { « e r(T'R") | 0\x = 0\y = 0\[x,y] = 0}.

It follows that 5 C E and that dO(x,y) = 0. Clearly if E is Frobenius integrable then
3= E. Otherwise we have the maximal subset of E such that dO £ T(T*Rn)AE; that
is 0 6 ker£js = E^ . This proves that E^ is the annihilator of E^ and the assertion
for i = l . To prove the result for * > 1, repeat the argument choosing x,y 6 £j(t~1)

to show that (E^ ) = E^. We need only do this a finite number of times and the

theorem is proved. U

REMARK. We now have, because of Theorems 2.3 and 2.4,

p0 = n -

pN-.i = dim (J5( i+1V£(i )), 0 < » < N - 1,

d i m ( j < ; ( i ) / d i a r E^A = d i m (c ( E ^ A / E ^ A , O^i^N-l.

3. VECTOR FIELD SYSTEMS, CONTACT STRUCTURES

AND INTEGRAL SUBMANIFOLDS

In this section we obtain some results which concern generalisations of the von
Weber systems (Theorem 2.2) in terms of the structure of the associated vector field
system. Specifically we consider vector field systems E locally generated in R(*+1)«+1

by

ix A A ±\
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and such that the dual Pfaffian system has type

(0,q,q, ,9 + 1),

dim (C (tf<l>) /£<*>) = 9 + 1, 1 < i < AT - 1
while

and derived length N = k.

We will obtain sufficient conditions in terms of the structure of E in order that
E be difFeomorphic to the Jfc*k-order contact structure fi^R.R')-1 on Jk(R,R«), the
kth order jet bundle of maps R —• R'. Importantly, we will show how the explicit
difFeomorphism may be constructed. Notice that when q = 1, we obtain the von Weber
system which is known to be equivalent to the ktk order contact structure O*(R,R) on
J*(R,R).

On J*(R,R*), the fc*A-order contact structure is locally generated by

d a a a a d
-Z
OZ2,k-l

a d a a d \
^r1' &I? 5̂ 1 ' 5 ^ /

d

We seek a difFeomorphism r/> : R(*+1)«+1 —> J*(R,R«) such that

(3.1) ^.JB = n*(l

where E is of the stated type. Equation (3.1) means that there exists g 6 GL(q + 1, R)
such that

9/96
(3.2) *.

\diazj

Suppose such a rj> exists. Then

f J l

9

\d/dzqk)

9

(3.3)
dx d
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If g has the form

9 =
equations (3.2), making use of (3.3) become

{ Xx = 7n,

(3.4)

; I Xzjk = 7i,y+ii 1 ^ i < <?•
In general the system is overdetermined, the difference between the number of equations
and unknowns being

kq*-q-l.

Hence in general no diffeomorphism rji exists. Furthermore, as the equations stand it is
not clear how they can be solved in terms of the stated structure conditions. In fact, we
restrict ourselves to Pfaffian systems of the stated type only to ensure that the necessary
conditions for equivalence are satisfied. In particular, see Hermann ([8], p.138-141) for
a discussion of this point. However, since it is enough to seek a particular solution of
equations (3.4) we restrict ourselves to diffeomorphisms such that g lies in a subgroup
of GL(q + 1, R), namely the subgroup generated by the matrices g G GL(q 4-1, R) of
the form

'7u 7i2.
0 722 ••• 72 ,,+i

g = 0 7s2.

\ 0
The equations (3.4) then become

Xx = 7n711{
= 0

(3-5) q, 1 q, 0 Jfc - 1

Xzjk=7i,j+i,
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which would seem to make matters worse since the system (3.5) is even more over

determined than (3.4). In fact the latter system is manageable.

From the first of equations (3.5)A and (3.5)B we have

Since we will be content with a particular solution we will impose throughout the
condition

and hence x must satisfy

(3.7) —• = (

We now impose the further condition that the vector field system

be completely integrable and that therefore there are no integrability conditions to add

to (3.7). We also assume that a solution x of (3.7) can be found satisfying Xx ^ 0.

Consider next the equations

v d z » n i ^ • s
JLZJO = ~fuZji, = U,l ^ j ^ q.

That is, equations (3.5)A and B with i = 0. We have that

and by the assumption that 7 n ^ 0 we have that the condition dzji/d^ = 0 is
satisfied for all values of j and \i if and only if [d/d£p, X] Zjo = 0. Hence the functions
ZJO must satisfy the completely integrable system

If we now define zyj by Zji = XZJQ/XX, with x and ZJQ defined by equations (3.7)
and (3.8) then the partial differential equations for the equivalence map are solved up
to i — 0 and we have also guaranteed that dzj\ /d^ = 0.
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We next proceed to consider the equations (3.5)A and (3.5)B in the case i = 1.
That is

•zrp- =0.

Once again because of our choice of x and Zjo , we have

- Y. dzi
~dt~

and because 7n ^ 0 then dzj2/d£ll = 0 if and only if [d/d^, X]ZJI = 0 and hence
the Zji must satisfy the completely integrable equations

Now the first equation in (3.9) has already been satisfied because of our choice of x and
ZJO so we look at the second equation. Because of XZJO = fuZji, the second equation
in (3.9) becomes

( 3 1 0 )

Now
r a l / i \ - i r a l - i f « _ i _
k r - . - y I ) = 7 3 757-,* 7ii = -2 757-.* Xx-
[o^j. J V711/ (711) L9?M J (711) L 5 ^ J

But since [d/{d^),X] x = 0, we have

Finally, since [d/(d^),X] Zjo - 0, we have that

Hence by the previous considerations and the formula (3.11) it follows that if x and
Zjo are chosen to be invariants of the subdistribution
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of E^ such that Xx ^ 0 then the equations (3.5)A,B will be solved for all y. and j
and for t = 0 and 1 and we will also have satisfied

Let us proceed to (3.5)A,B with t = 2. That is,

Continue with the choices of X,ZJO,ZJI and ZJI as above. As before we must have that

(3.12)

to guarantee that dzj^/d^ = 0. Now by virtue of our choice of X,ZJO and Zj\ and
by a calculation similar to that which led to formula (3.11), we find that (3.12) will be
satisfied if now x and ZJO are chosen to be invariants of the subdistribution

of -&(*) with Xx ^ 0 and that also all the equations will be solved for t = 0,1, and 2.
We may continue this process until t = k — 2 and find that all equations will be

satisfied provided x and Zjo are chosen to be invariants of the subdistribution

wAwA- [[£44-[ H £44--]
of E^k *) with Xx ^ 0. This also guarantees that

and we define Zjk = (Xzjlk-i)/(Xx).
Finally, we come to the equations (3.5)C. These equations are just definitions of

the remaining entries of the group element g and we have therefore, by this process,
completely solved the partial differential equations defining the equivalence map. We
have therefore proved the following.
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[11] Vector field systems 225

THEOREM 3 . 1 . Let E:{X, d/dti, d/dfr • • • d/d(q} be a C°°-vector Geld system
on R(*+1)«+1, of type

(0,q,q,q,..-q,q + l).

and derived length k and such that

Suppose the subdistribution ir0 : {d/d^ld/d^X]} C £ ( 1 ) is completely integrable
and the distribution II C ijt*-1) generated by

possesses q + 1 functionally independent invariants x and {ZJO}J=I ajid define the set
of functions Zj\, Zji,..., Zjk, 1 ^ j' < q, by the equations

_ JO _ JI _ Xzjtk-\
Zjl~ Xx ' Zj2~ Xx '•••• Zjk~ Xx •

Then, whenever the set of functions {z,z;o> Zj*} so defined are functionally
independent, they define a local diffeomorphism

such that ^E = nk(

The means of construction of the integral submanifolds for the Pfaffian systems of
the type considered in this paper is now clear. By application of Cartan's theory or
otherwise it is not difficult to show that the genus of E is one. An integral submanifold
is therefore a map

§:J-^R", ICR,
such that

$*E = 0.
Assuming the map ip has been found as per Theorem 3.1 we have

Hence if j*f : x —» J*(R,R«) is the Jb-jet extension of any Ck map, / : R —> R«,
then

Wi+-lYE= (iVrnt(R)R') = o.
Hence

(3.13) $=rl>-1ojkf : R — > R N

is the sought after integral submanifold for E in terms of the (now known) diffeomor-
phism ip.
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REMARK. In view of the works [7, 8] it may be worth mentioning the connection
between the result of this paper and control theory. Note that in this section we have
been studying Pfafnan systems of the form

where the x< may be regarded as state variables and the Uj as control variables. The
algorithm here developed expresses each of the variables Xi(t),Uj(t) in terms of arbitrary

functions and their derivatives thereby "parametrising" the state and control space. This
may be compared with the so called "Problem of Monge" (see [5], p.310, [7], p.353).

EXAMPLE. We give a simple example to illustrate the results. On R7 we have the
vector field system

d 9 \ 9

E has type (0,2,2,3) and satisfies dim (E^/chai E^A = 3 , t = 1,2, and hence

satisfies the necessary conditions for equivalence to the contact structure fi2(R,R2) .

Therefore calculating the subdistribution II in Theorem 3.1, that is,

we easily find its three invariants in the form

x = t,

210 =x\/x2,

«20 = Xj/X4.

From the equations of Theorem 3.1, we obtain the remaining variables

2n = —In Xi, z2i = —In Xs,
x2 x4

1 / i _ _ \2 * > 1 3 / i M _ \2 1 £ 3

Z\2 = —^in X\f T 51 — , 2̂2 ^ —\y& x3) •+• 52 —
X2 X2 X4 X4

and the map i/> is explicitly found. It is easy to check that ip is a local diffeomorphism

and that iJ>+E = fl2 (R, R2) . Calculating ifr'1, we find the integral submanifold for E

is given explicitly by equation (3.13):

exP(f / i / / 2 )
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where fi(t),f2(t) are arbitrary C2 functions R —> R. It is straight-forward to check

that $*E = 0.

4. RELATIONSHIP T O INTEGRABLE WAVE EQUATIONS AND THE W O R K OF VESSIOT.

As mentioned in the introduction, Vessiot [16] used the equivalence of vector field
systems to contact structures to obtain explicit general solutions for integrable nonlinear
wave equations; that is, equations of the form

when there exist at least two independent first-integrals on each characteristic. In fact,
Vessiot used the algorithm worked out in this paper in the case k = 3 and 4 = 1 but,
it seems, did not write out a proof. The details of this construction are as follows. We
will consider the Liouville equation as an example but the reader will find many more
in Vessiot's paper [15].

Take the Liouville equation in the form

(4-2) a - ^ S - = e"-

There are two sets of characteristics for (4.2) on the submanifold e C J2(R2 ,R) defined

by

*„ - e* = 0.

These are given by the one-dimensional solutions of the vector field systems

- , f 9 d d . d . a a \
^ OXi OZ OZ\ OZi OZ22 OZ\\ J

1,9x2 dz dz\ oz2 ozii dz22 J

where Xi,X2,z,Zi,Z2,z1i,z12,Z22 are local coordinates on J2(R2 ,R) such that (j'2«) «n

= (92u)/(9zi dxi), et cetera. The distributions iil2
L and 2^\ are dual to the charac-

teristic 1-forms listed for example by Goursat [6] in his discussion of Darboux' method

for the general solution of the Liouville equation. One easily finds the invariants in the

form
~2 f *"! =X2, - 2 f I ! = * ! ,

1 L ' \ *2 = Z22 - (z2)
2/2, 2 L'\n2=z11~(z1)

2/2.

Now if we adapt a new coordinate system incorporating the above invariants, say

https://doi.org/10.1017/S0004972700028380 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028380


228 P.J. Vassiliou [14]

Mi = *i Ms = 222 - (

M2 = * J M4 = «n - ( « i ) 2 / 2

Co = 2 Cl = 21 C2 = «2

then for example y* ( l ^ l ) is locally generated by

on the reduced manifold which is locally R5 . Applying Theorem 3.1 to y» (ifl\ J shows

that it is diffeomorphic to the third order contact structure fis(R,R) . This reduction
however does not by itself give the general solution of (4.2). The reduction is only a
partial integration. The extra information one requires is the existence of a nonlinear
map linking the integral submanifolds of ifij, and 2^i • In his remarkable study [16],
Vessiot discovered such a nonlinear map for each scalar integrable equation (4.1) and
thereby completely cleared up the integration problem for these equations. Finally, it
is worth mentioning that recently Vessiot's results were extended to coupled systems
of wave equations [14]. Interestingly, in this case the characteristics are not in general
diffeomorphic to contact structures (see also [13]).

REFERENCES

[1] R.L. Bryant, S.S. Chern, P.A. Griffiths, 'Exterior Differential Systems', in Proceedings of
the 1980 Beijing Symposium (Science Press, 1982).

[2] R.L. Bryant, Ph.D. Thesis, Univeraity of North Carolina, Chapel Hill (1979).
[3] E. Car tan, Lea Syatemea DifferentieU Exteriewa et lew Applicationa Geometrique (Her-

mann, Paris, 1945).
[4] R.B. Gardner, 'Invariants of Pfaffian systems', Trana. Amer. Math. Soc. 126 (1965),

514-533.
[5] E. Goursat, Lecons sur le probleme de Pfaff (Hermann, Paris, 1922).
[6] E. Goursat, Lecons sur I'intigration des Equations aux dirivis partielles du second ordre

d deux variable independantes, Vol II (Hermann, Paris, 1898).
[7] R. Hermann, 'The theory of equivalence of Pfaffian systems and input systems under

feedback', Math. Systems Theory 15 (1982), 343-356.

[8] R. Hermann, 'Invariants for feedback equivalence and Cauchy characteristic multifolia-
tions of nonlinear control systems', Ada. Appl. Math. 11 (1988), 125-153.

[0] A.K. Kumpera, 'Invariants differentiels d'un pseudogroupe de Lie I & II', J. Differential
Geom. 10 (1975), 347-416.

[10] G.F. Pfaff, 'Abh. der K.P.', Akademie der Wissenschaften zu Berlin, (1814-1815), pp.
76-136.

https://doi.org/10.1017/S0004972700028380 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028380


[15] Vector field systems 229

[11] J.F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups (Gordon
and Breach, 1978).

[12] P. Vassiliou, 'An exactly integrable hyperbolic partial differential equation and the nilpo
tent Lie group Gs.is ' (to appear).

[13] P. Vassiliou, 'On the solution of partial differential equations by the method of Darboux'
(to appear).

[14] P. Vassiliou, 'Coupled systems of nonlinear wave equations and finite dimensional Lie
algebras I & IT, Ada Appl. Math. 8 (1987), 107-147, 149-163.

[15] E. Vessiot, 'Sur les equations aux deiive's partielles du second ordre, F(x, y, z,p, q, r, s, t) — 0

integrable par la me'thode de Darboux', J. Math. Pure et appl. 18 (1939), 1-61.

[16] E. Vessiot, 'Sur les Equations aux derived partielles du second ordre, F(x, y, z, p, q, r, s, t) = 0

integrable par la m£thode de Darboux', J. Math. Pure et appl. 21 (1942), 1-65.

[17] E. Vessiot, 'Sur l'integration des faisceaux de transformations infinitesimales dans le cas
ou, le degree du faisceau et ant n, celui du faisceau d£riv£ est n + 1', Annales de I'Ecole
Normale Superieure (3) 45 (1928), 189-253.

Institute for Mathematics and its Applications permanent address:
University of Minnesota Faculty of Information Sciences and Engineering
Minneapolis MN 55455 University of Canberra
United States of America Belconnen ACT 2616

Australia

https://doi.org/10.1017/S0004972700028380 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028380

