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Simplicity of Partial Skew Group Rings of
Abelian Groups

Daniel Gongalves

Abstract. Let A be a ring with local units, E a set of local units for A, G an abelian group, and « a
partial action of G by ideals of A that contain local units. We show that A x, G is simple if and only if
A is G-simple and the center of the corner edo(A o G)edy is a field for all e € E. We apply the result
to characterize simplicity of partial skew group rings in two cases, namely for partial skew group rings
arising from partial actions by clopen subsets of a compact set and partial actions on the set level.

1 Introduction

Partial skew group rings are algebraic analogues of C*-partial crossed products and
also arise as natural generalizations of skew group rings to the partial action con-
text (see [5], where partial skew group rings are introduced and their associativity is
studied).

As is the case with its C* counterpart, it is important to realize algebras as partial
skew group rings (see, for example, [9], where Leavitt path algebras are realized as a
partial skew group ring and [3], where C*-algebras associated with integral domains
are realized as a partial crossed product). The idea behind realizing algebras as partial
skew group rings is that one can then benefit from the established general theory of
partial skew group rings. Nevertheless, general results about partial skew group rings
are still underdeveloped, compared to the abundance of results in the skew group
rings or C* partial crossed product context. For example, much of the ideal structure
of skew group rings has been described in [4,8,10,12], but, to the author’s knowledge,
[1] is the only reference in the literature regarding the ideal structure of partial skew
group rings. In this context, recently Oinert [11], characterized simplicity of skew
group rings of Abelian groups. In this paper we generalize the results in [11] in two
ways, namely, to rings with local units and to partial skew group rings.

Before we proceed we recall some key definitions. A partial action of a group G
on a set Q) is a pair « = ({D; }reg, {au}rec), where for each r € G, Dy is a subset
of Q and oy: D,-1 — A, is a bijection such that D, = (Q, a, is the identity in 2,
a;(D;—1 N Ds) = Dy N Dys and a;(a5(x)) = ays(x), for all x € Dg—1 N D,—1,-1. In the
case where (2 is an algebra or a ring, the subsets D; should also be ideals and the maps
oy should be isomorphisms. In the topological setting each D, should be an open set,
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each oy a homeomorphism and in the C*-algebra setting each D; should be a closed
ideal, and each o should be a *-isomorphism.

Associated with a partial action of a group G in a ring A we have the partial skew
group ring A %, G, which is defined as the set of all finite formal sums ), a;6;,
where, forallt € G, a, € D, and ¢, are symbols. Addition is defined in the usual way,
and multiplication is determined by

(a:6:)(bs6s) = (¢ (ar)by)dpss.

Fora = ), ;a40, € A, G, the support of a, which we denote by supp(a), is
the finite set { € G : a; # 0}, and the projection into the g coordinate map,
Py: Axo G — A,is given by Py(3 ", . a:d;) = ag.

2 Simplicity of Ax, G

As we mentioned in the introduction, we are particularly interested in rings with
local units, not necessarily unital. So from now on we assume that A is a ring with

local units; that is, A is a ring such that for every finite set {r;, 12, ...,7} C A we can
find e € A such that ¢ = eand er; = r; = rie foreveryi € {1,...,t}. Notice that if
E C Ais a set of local units for A, then Edg = {edy : e € E} is a set of local units for
A *, G.

The condition for simplicity of partial skew group rings relies on the definition of
G-invariant ideals. This was defined in [11] for skew group rings and in [7] for C*
partial crossed products. We now give the definition adapted to our context, followed
by the first lemma in the paper.

Definition 2.1 Let « = ({D;}ic, {}iec) be a partial action of a group G on
aring A. We say that an ideal I C A is G-invariant if a,(I N D_,) € I N Dy, for
all g € G. If {0} and A are the only G-invariant ideals of A, then we say that A is
G-simple.

Lemma 2.2 Let E be a set of local units for A and let « = ({D; }req, {ou }rec) be
a partial action of an abelian group G such that each ideal D, has local units. Suppose
that A is G-simple. Then for each nonzero r € A x, G, and for each local unit e € E,
there exists ' € R such that

(i) ' €RrR;

(i) Po(r') = ¢

(iii) #supp(r’) < #supp(r).

Proof First recall that since each ideal D; of A has local units, by [5, corollary 3.2],
A %, G is associative.

Letr = dec ag0g be a nonzero element in R. Let i € G be such that a; # 0 and
e, € Dy, be a unit for ay,. Notice that a; 6y, - a_p(ep)d_n = oy, (a,h(ah)a,h(eh)) =
aydp # 0, and so we can assume, without loss of generality, that Py(r) # 0 (exchang-
ing r for ra._j,(ey ), if necessary).

Now let

J:={Py(s) : s € RrR and supp(s) C supp(r)}.
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Notice that ] is a nonempty set that contains ap = Py(r) (since r € RrR), and so,
since A is G-simple, we finish the proof if we can show that J is a G-invariant ideal
of A. For this, leta € J N D_j. Then ady + Eg bgdg € RrR for some by € D, and

g € supp(r)\{0}. Let e be unit for ain D_j,. Then ah(e)éh(a50+zg bgdg)ed_p, € RrR
and
ah(e)éh(aéo +3 bgég) ed_yp
g
= ah(e)éhaéoeé_h + Z ah(e)éhbgégeé_h
g
= ay(e)onag(a—g(a)e)d_p + > aple)dn(og(a_g(bg)e)dg_p
g

= ap(e)dpad_y, + 3 an(a—p(an(e))ag(a—g(bg)e)) dpag—n
g

= ay(ea)dy + > ay (eag(a_g(bg)e)) g, since G is commutative
g
=ap(a)do + > ah(eag(a,g(bg)e)) g, with g € supp(r) \ {0},
g

which implies that a;(a) € JN Dy,. Therefore, Jis a G-invariant ideal, as desired. W

For skew group rings simplicity is related to the center of the ring. Since we are
dealing with rings with local units, we have to look into corners.

Definition 2.3 Let R = A X, G be an associative partial skew group ring and E
a set of local units for A. For each e € E, let C, be the center of edgRedy, that is,
C.:= {x € edyRedy : xy = yx Vy € edpRedy }.

Lemma 2.4 Suppose we have the same conditions as in Lemma 2.2, and let e € E.
Then every nonzero ideal of R = A %, G has nonempty intersection with

Cen{eqn+ Y by}
geG\{0}

Proof Let J be a nonzero ideal of R and choose r € J\ {0} such that # supp(r)
is minimal. By Lemma 2.2, we can find " € RrR C ] such that Py(r") = e and

#supp(r’) < #supp(r).
Let v’ = edyr” edy. Notice that ' € RrR, Py(r') = eand # supp(r') < #supp(r”) <

#supp(r).
Now, since Py(r"") = e, we have that

Py(r'edpagdgedy) = Pg(edor'’ edoasdgedy) = Py(edoagdeedy) = Pq(edoagdgedor” edy)
= Py(edoagdeedor’).
So, since
supp(r’edoagdgedy) and  supp(edoagdgedor’)

are subsets of {g-t : t € supp(r’)}, we have that # supp(r’edyagd,edy —edoazdgedor’) <
#supp(r’) < #supp(r), which implies that r’edya,dgedy = edoagdgedor’ forallg € G
and hence, by linearity, r' € C,. ]
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Theorem 2.5 Let E be a set of local units for A and let « = ({D, }req, {au }rec) be
a partial action of an abelian group G such that each ideal D, has local units (which, by
[5, corollary 3.2], implies that A ., G is associative). Then the following are equivalent:
(1) A%y Gissimple;

(ii) A is G-simple and C, is a field for all e € E.

Proof First suppose that R = A %, G is simple. The proof that A is G-simple is
essentially the same as the one in [11]; one just has to notice that if J is a nonzero
proper invariant ideal of A, then ({ JND; }+cq, { @ }1eG) is a partial action and J x, G
is a nonzero ideal of A %, G.

Next we show that C, is a field for all e € E. So let a € C, and consider the ideal
generated by a in A x,, G. By the simplicity of A x,, G, we have that (a) = A x, G.
Thus edy € (a) and so there exists r; and s; such that

edy = ; riasj =y edgriasjedy =y, edyr; edpaedy s;edy,

i,j

i v

and, since a € C,, we have that

edy = Y aedgriedoedysjedy = ay_ edoriedysjedy.
ij i,j

So a has an inverse and all we have left to do is show that a—! € C,. But notice that

a~! =ed (Z riedosj> edg € edyRed
i7j

and, since a € C,, we have that for all y € edyRed it holds that ay = ya = edpy =
a'ya = ya=' = a'yaa™' = ya=! = a~'y. We conclude that a~! € C, and
hence C, is field.

Now suppose that A is G-simple and C, is a field for all e € E. Let ] be a nonzero
ideal of R = A %, G. By Lemma 2.4 there is a nonzero r € JN C, for every e € E.
Since C, is field, this implies that edy = r~!r € J for all e € E, and since Ed is a set
of local units for R, we conclude that ] = R. |

3 An Application to Set Dynamics

In [2] it was shown that there is a one-to-one correspondence between partial ac-
tions in a set X and partial actions in Fy(X), where Fy(X) is the algebra of all
functions from X to a field K with finite support (see [2]). More precisely, if
0 = ({X:}req, { Mt }re) is a partial action in X, then & = ({D; }+e, { }rec), where
Dy =F(X;) ={f € Fo(X): f(x) =0Vx ¢ X;},and oy (f) := f o h_,, is a partial
action of G in Fy(X).

Our goal in this section is to prove the following theorem.

Theorem 3.1 Let G be an abelian group and let 8 = ({X, },eq, {M }1cc) be a partial

action in a set X. Then Fo(X) x G is simple if and only if 0 is a minimal and free partial
action.
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Of course we will use Theorem 2.5 to prove the above result. So we have to check
that the hypotheses are verified. Notice that Fy(X) x G is associative (see [2]), and it
is clear that F,(X), as well as the ideals F(X;), have local units, so we can apply Theo-
rem 2.5. But Theorem 2.5 also requires that we choose a set of local units for F,(X).
So we let E := {x4 : Aisa finite subset of X}, where x4 denotes the characteristic
function of A, be a fixed set of local units for F,(X).

We now recall the relevant definitions mentioned in Theorem 3.1.

Definition 3.2 A partial action 0 = ({X;}+eq, {h: }rec) of a group G in X is min-
imal if the only G-invariant subsets of X are @ and X, and @ is free if for all x € X,
h,(x) = x implies that t = 0.

Remark 3.3 Minimality can also be characterized in other ways, more specifically,
6 is minimal if and only if forall x € X, V, = {h(x) : t € Gandx € X_,} = X,
what is equivalent to say that if U and V are subsets of X, then there exists t € G such
that h,(U)NV # @.

Part of Theorem 3.1 follows from the correspondence between G-invariant sets of
X and G-invariant sets of F,(X).

Proposition 3.4 Let 6 = ({X,}ieq, {M: }rec) be a partial action in a set X. Then,
V' C X is G-invariant if and only if Fy(V') is G-invariant.

Proof First suppose that V is G-invariant and let f € F,(V) N D_;. Then
a:(f)(x) # 0 implies that h_,(x) € V N X_;, and hence x € h(V N X_;) C V.
So ay(f) € Fp(V).

Now suppose that Fy (V) is G-invariant and assume that there existsax € VNX_,
such that i, (x) ¢ V. Notice that 0, € Fy(V) N Fy(X_;) and hence o, (d,) € Fo(V).
But a; (05) (h;(x)) = 6, 0 h_;(h;(x)) = 6,(x) = 1, a contradiction. So h;(x) € V, and
V is G-invariant. |

Corollary 3.5 A partial action 0 = ({X; }rcc, {h: }rec) in a set X is minimal if and
only if Fy(X) is G-simple.

Next we will show that, under the additional hypothesis that 8 is free, C, is a field
for each e € E.

Lemma 3.6 Let 0 be a free partial action of an abelian group G. Then for all e € E,
say e = xa, we have C, C eFp(X)e = Fp(A).

Proof Suppose that x = eéo(zg feb,)edy € C,, and there exists g # 0 such that
z = edy fydgedy # 0. We will derive a contradiction.
Notice that for all t € G and f; € D, since G is abelian and x € C,, we have that

z(edy fr0redy) = ) (x(350ft5t350)) 5g+t = Pgys ( (650ﬁ5t€50)x) 5g+t = (edy f;6:€0)z,
and hence z € C,. So,

ag(a_g(efy)efo)d, = zedo fodoedo = edy fodoedoz = (g ( foefg)e)dg,
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for all fy € Fy(X) and, since ay is an isomorphism, this implies that oc_,(ef,)efy =
a_g(foefg)eforall fy € Fy(X), which is equivalent to

(3.1) fela(he()) - xa(0) - fo(x) = fo(he(®)) - fela(hg(x)) - xa(x)

forall fy € F(X) and x € X_,.

Now, z # 0 implies that ef, # 0, and so ]%\A # 0. Furthermore, ef;d,edy =
ag(a_g(ef,)e)dy # 0, and so a_g(ef,)e # 0. Therefore there exists x € X_g such
that foa(hg(x)).xa(x) # 0. Let fo = X{x}. Then the left side of equation (3.1) is
nonzero, and since the action is free, the right side is zero, a contradiction. |

Proposition 3.7 If0 = ({X;}ieq, {h:}iec) is a free minimal partial action of an
abelian group in a set X, then for all e € E, C, is a field. More precisely, ife = xa € E,
then C, C {f € Fo(X) : supp(f) = A} U {0}.

Proof Let f € C, C JFy(A) be a nonzero function. Then, for all ¢ € G and
f¢ € Dy, we have that f(edy fo0ged0) = (edofedsed0) f, s0 agla_o(f.fo)Xa)dy =
ag(a—_g(xa-fo) f)dg, forallg € Gand f, € Dy and hence

(3.2)

FO) f()xalh—g(x)) = xa(0) fe(x) f(h—g(x)) Vg€ G, fy € Dyand x € X,

Now suppose that supp(f) C A and let y € supp(f). Since # is minimal, there exists
t € Gsuchthat h_,(y) € A\ supp(f). So equation (3.2), with g = tand f, = J,,
becomes

f)8,(0xa(h—1(x) = xa()3,(x) f(h_(x)) Vx € X,,

and hence, for x = y, we have that f(y) = 0, a contradiction. We conclude that
supp(f) = A, and so there exists f ! such that ff~! = f~!f = e. The proof that
f~! € C, is analogous to what was done in the proof of Theorem 2.5. ]

The following proposition proves the last part of Theorem 3.1.
Proposition 3.8 If Fy(X) * G is simple, then 0 = ({X, },eq, {I }rec) is free.

Proof Suppose that § is not free. Then there exists x € X and g € G, g # 0, such
that x € X_, and hy(x) = x. Consider the ideal I generated by 6y — xxd, (notice
that x, € Fo(Xy), since x = ho(x) € Xg).

We will show that the sum of coefficients of elements in I is zero. For this, notice
that a_,(xx) = Xx> and so

as0s(xx00 — Xxdg)btdt = as05Xxbr0y — asdsag(a—g(Xx)bt)éwg
= 505 Xxb0r — asésag(Xxbt)5t+g-

Now, a(X«b;) # 0 if and only if there exists y € X such that

Xa(h—g(¥))be(h—g(y)) # 0
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and this is true if and only if b;(h_4(y)) # 0 and h_,(y) = x; thatis, y = hg(x) = x,
in which case o (xb;)(x) = b;(x). So ag(xxb:) = Xxxbr, and hence

asds(Xx(SO - Xx(sg)btét = as55Xxbt5t - as(;sXxbt(SHg
= as(afs(as)Xxbt)(sHs - as(afs(as)Xxbt)5t+g+s~

We conclude that the sum of coefficients of elements in I is zero. But then x,0 ¢ I,
and hence F,(X) x G is not simple. [ |

We end this section with an example of a minimal free partial action of the group
of the integer numbers, denoted by 7, in the set of natural numbers, denoted by N.

Example 3.9 LetXo=N,hy=1d,X_; =N, X; =N—{1},and h: X_; — X; be
defined by h(n) = n + 1. For all other t € Zlet X_, be the domain of 4" and h, = K'.
Then {(X;, h;)} is a free minimal partial action, and hence the associated partial skew
group ring Fy(X) x 7 is simple.

4 An Application to Topological Dynamics

We now turn our attention to the context of topological partial actions. In this setting
the correspondence between partial actions in a locally compact Hausdorff space X
and partial actions in the C*-algebra of continuous functions vanishing at infinity,
Co(X), is well known (see [7] for example) and follows the ideas we presented in the
previous section, namely, if 6 = ({X;}ieq, {h }icc) is a partial action in X, then
a = ({Di}rec, {ar }rec), where D, = Co(X;) and oy (f) := foh_,, is a partial action
of G in Cy(X). Simplicity of the associated C*-partial crossed product is studied in
[7], where it is shown that if the action is topologically free and minimal then the
associated partial crossed product is simple. Minimality of a topological action is
exactly what one expects; that is, there are no proper open invariant subsets, which is
equivalent to saying that the orbits are dense. We recall the definition of topological
freeness below.

Definition 4.1 A topological partial action § = ({X; },eq, {M }+cc) is fopologically
freeif for all r # 0 the set F; = {x € X_; : h;(x) = x} has empty interior.

Using Theorem 2.5 we will prove the following theorem.

Theorem 4.2 Let 0 = ({X:}tcq, {ht }rec) be a partial action of an abelian group in
a compact space X such that each X; is a clopen set. Then the partial skew group ring
C(X) + G is simple if and only if 0 is topologically free and minimal.

Remark 4.3 Partial actions on the Cantor set by clopen subsets are exactly the ones
for which the enveloping space is Hausdorff; see [6].

The proof of the above theorem will follow the same ideas presented in the pre-
vious section. Actually, the proofs just need to be adapted to the case at hand. We

https://doi.org/10.4153/CMB-2014-011-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2014-011-1

518 D. Gongalves

show the relevant details below, but before we proceed, notice that we can apply The-
orem 2.5 to prove the result above, since by [5] the partial skew group ring is associa-
tive, and since the partial action acts on clopen sets, each D, has a unit. Furthermore,
the ring C(X) is unital and hence the set of local units required in Theorem 2.5 may
be taken as the unit in €(X), which we denote by 1.

Proposition 4.4 A partial action 0 = ({X; }reg, {h: }rec) in a compact space X is
minimal if and only if C(X) is G-simple.

Proof The proof can be found in [7]. [ |

Lemma 4.5 Let 6 be a topologically free partial action of an abelian group G. Then
C, C C(X).

Proof Suppose that x = ), f,0; € C; and there exists g # 0 such that f, # 0.
Notice that the first part of the proof of Lemma 3.6 was done in general, so that in
the case at hand equation (3.1) reduces to

(4.1) Je(hg(x)) fo(x) = fe(hg(x)) fo(hg(x))

forall f; € €(X)andx € X_,.

Now, since f; # 0, we have that a_¢(f,) # 0, and so there exists x € X_, such
that f,(hy(x)) # 0. Since f, is continuous, there exists an open neighborhood V' of x
such that f,(hs(y)) # 0 for all y € V. Consider the open neighborhood V' N X_, of
x. Since  is topologically free there exists y € V N X_; such that h,(y) # y. Then,
by Urysohn’s lemma, there exists fy € €(X) such that f(y) = 1 and f(h(y)) = 0.
But then, for this fy and y equation (4.1) leads to a contradiction. ]

Proposition 4.6 If0 = ({X;}icc, {h}iec) is a topologically free minimal partial
action of an abelian group in a compact space X, then Cy is a field. More precisely,
Cy = C- 1; that is, C, is the algebra of constant functions.

Proof Let f € C; C Cy(X) be a nonzero function. Notice that the first part of
Proposition 3.7 was done in general, and so it is valid for the case at hand, for which
equation (3.2) becomes

f0) fo(x) = fo(x)f(h_g(x)) Vg €G, fy €Dy, and x € X,.

Now for each g € G let f; be the unit for Dy, that is, f, = xx,. Then the above
equation implies that f(x) = f(h_,(x)) for all x € X, and g € G, and since 0 is
minimal and f is continuous, we obtain that f is constant as desired. ]

The following will finish the proof of Theorem 4.2.

Proposition 4.7 IfC(X) x G is simple, then 0 = ({X;}+ec, {ht }rec) is topologically
free.

Proof Suppose that 6 is not topologically free. Then there exists g # 0 in G such
that the interior of Fy is not empty. Let x be an element in the interior of F,. By
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Urysohn’s lemma there exists a continuous function f such that f(x) = 1 and the
support of f is contained in the interior of F,.

Notice that f = xp, - f, and hence ay(f) = f = a_,(f). Now consider the
ideal generated by fdy — fd,. Proceeding the same way as in Proposition 3.8, that is,
expanding terms of the form a,6,( fy — f6,)b;6;, we have that the sum of coefficients
of elements in I is zero. But then fd, ¢ I, and hence Fy(X) % G is not simple. [ |
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