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Simplicity of Partial Skew Group Rings of
Abelian Groups

Daniel Gonçalves

Abstract. Let A be a ring with local units, E a set of local units for A, G an abelian group, and α a
partial action of G by ideals of A that contain local units. We show that A ?α G is simple if and only if
A is G-simple and the center of the corner eδ0(A ?α G)eδ0 is a field for all e ∈ E. We apply the result
to characterize simplicity of partial skew group rings in two cases, namely for partial skew group rings
arising from partial actions by clopen subsets of a compact set and partial actions on the set level.

1 Introduction

Partial skew group rings are algebraic analogues of C*-partial crossed products and
also arise as natural generalizations of skew group rings to the partial action con-
text (see [5], where partial skew group rings are introduced and their associativity is
studied).

As is the case with its C* counterpart, it is important to realize algebras as partial
skew group rings (see, for example, [9], where Leavitt path algebras are realized as a
partial skew group ring and [3], where C*-algebras associated with integral domains
are realized as a partial crossed product). The idea behind realizing algebras as partial
skew group rings is that one can then benefit from the established general theory of
partial skew group rings. Nevertheless, general results about partial skew group rings
are still underdeveloped, compared to the abundance of results in the skew group
rings or C* partial crossed product context. For example, much of the ideal structure
of skew group rings has been described in [4,8,10,12], but, to the author’s knowledge,
[1] is the only reference in the literature regarding the ideal structure of partial skew
group rings. In this context, recently Öinert [11], characterized simplicity of skew
group rings of Abelian groups. In this paper we generalize the results in [11] in two
ways, namely, to rings with local units and to partial skew group rings.

Before we proceed we recall some key definitions. A partial action of a group G
on a set Ω is a pair α = ({Dt}t∈G, {αt}t∈G), where for each t ∈ G, Dt is a subset
of Ω and αt : Dt−1 → ∆t is a bijection such that De = Ω, αe is the identity in Ω,
αt (Dt−1 ∩ Ds) = Dt ∩ Dts and αt (αs(x)) = αts(x), for all x ∈ Ds−1 ∩ Ds−1t−1 . In the
case where Ω is an algebra or a ring, the subsets Dt should also be ideals and the maps
αt should be isomorphisms. In the topological setting each Dt should be an open set,
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each αt a homeomorphism and in the C*-algebra setting each Dt should be a closed
ideal, and each αt should be a *-isomorphism.

Associated with a partial action of a group G in a ring A we have the partial skew
group ring A ?α G, which is defined as the set of all finite formal sums

∑
t∈G atδt ,

where, for all t ∈ G, at ∈ Dt and δt are symbols. Addition is defined in the usual way,
and multiplication is determined by

(atδt )(bsδs) = αt (α−t (at )bs)δt+s.

For a =
∑

t∈G atδt ∈ A ?α G, the support of a, which we denote by supp(a), is
the finite set {t ∈ G : at 6= 0}, and the projection into the g coordinate map,
Pg : A ?α G→ A, is given by Pg(

∑
t∈G atδt ) = ag .

2 Simplicity of A ?α G

As we mentioned in the introduction, we are particularly interested in rings with
local units, not necessarily unital. So from now on we assume that A is a ring with
local units; that is, A is a ring such that for every finite set {r1, r2, . . . , rt} ⊆ A we can
find e ∈ A such that e2 = e and eri = ri = rie for every i ∈ {1, . . . , t}. Notice that if
E ⊆ A is a set of local units for A, then Eδ0 = {eδ0 : e ∈ E} is a set of local units for
A ?α G.

The condition for simplicity of partial skew group rings relies on the definition of
G-invariant ideals. This was defined in [11] for skew group rings and in [7] for C*
partial crossed products. We now give the definition adapted to our context, followed
by the first lemma in the paper.

Definition 2.1 Let α = ({Dt}t∈G, {αt}t∈G) be a partial action of a group G on
a ring A. We say that an ideal I ⊆ A is G-invariant if αg(I ∩ D−g) ⊆ I ∩ Dg , for
all g ∈ G. If {0} and A are the only G-invariant ideals of A, then we say that A is
G-simple.

Lemma 2.2 Let E be a set of local units for A and let α = ({Dt}t∈G, {αt}t∈G) be
a partial action of an abelian group G such that each ideal Dt has local units. Suppose
that A is G-simple. Then for each nonzero r ∈ A ?α G, and for each local unit e ∈ E,
there exists r′ ∈ R such that

(i) r′ ∈ RrR;
(ii) P0(r′) = e;
(iii) # supp(r′) ≤ # supp(r).

Proof First recall that since each ideal Dt of A has local units, by [5, corollary 3.2],
A ?α G is associative.

Let r =
∑

g∈G agδg be a nonzero element in R. Let h ∈ G be such that ah 6= 0 and

eh ∈ Dh be a unit for ah. Notice that ahδh · α−h(eh)δ−h = αh

(
α−h(ah)α−h(eh)

)
δ0 =

ahδ0 6= 0, and so we can assume, without loss of generality, that P0(r) 6= 0 (exchang-
ing r for rα−h(eh)δ−h if necessary).

Now let
J := {P0(s) : s ∈ RrR and supp(s) ⊆ supp(r)}.
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Notice that J is a nonempty set that contains a0 = P0(r) (since r ∈ RrR), and so,
since A is G-simple, we finish the proof if we can show that J is a G-invariant ideal
of A. For this, let a ∈ J ∩ D−h. Then aδ0 +

∑
g bgδg ∈ RrR for some bg ∈ Dg and

g ∈ supp(r)\{0}. Let e be unit for a in D−h. Thenαh(e)δh(aδ0+
∑

g bgδg)eδ−h ∈ RrR
and

αh(e)δh

(
aδ0 +

∑
g

bgδg

)
eδ−h

= αh(e)δhaδ0eδ−h +
∑

g
αh(e)δhbgδgeδ−h

= αh(e)δhα0(α−0(a)e)δ−h +
∑

g
αh(e)δh(αg(α−g(bg)e)δg−h

= αh(e)δhaδ−h +
∑

g
αh

(
α−h(αh(e))αg(α−g(bg)e)

)
δh+g−h

= αh(ea)δ0 +
∑

g
αh

(
eαg(α−g(bg)e)

)
δg , since G is commutative

= αh(a)δ0 +
∑

g
αh

(
eαg(α−g(bg)e)

)
δg , with g ∈ supp(r) \ {0},

which implies that αh(a) ∈ J∩Dh. Therefore, J is a G-invariant ideal, as desired.

For skew group rings simplicity is related to the center of the ring. Since we are
dealing with rings with local units, we have to look into corners.

Definition 2.3 Let R = A oα G be an associative partial skew group ring and E
a set of local units for A. For each e ∈ E, let Ce be the center of eδ0Reδ0, that is,
Ce := {x ∈ eδ0Reδ0 : xy = yx ∀y ∈ eδ0Reδ0}.

Lemma 2.4 Suppose we have the same conditions as in Lemma 2.2, and let e ∈ E.
Then every nonzero ideal of R = A ?α G has nonempty intersection with

Ce ∩
{

eδ0 +
∑

g∈G\{0}
bgδg

}
.

Proof Let J be a nonzero ideal of R and choose r ∈ J \ {0} such that # supp(r)
is minimal. By Lemma 2.2, we can find r′′ ∈ RrR ⊆ J such that P0(r′′) = e and
# supp(r′′) ≤ # supp(r).

Let r′ = eδ0r′′eδ0. Notice that r′ ∈ RrR, P0(r′) = e and # supp(r′) ≤ # supp(r′′) ≤
# supp(r).

Now, since P0(r′′) = e, we have that

Pg(r′eδ0agδgeδ0) = Pg(eδ0r′′eδ0agδgeδ0) = Pg(eδ0agδgeδ0) = Pg(eδ0agδgeδ0r′′eδ0)

= Pg(eδ0agδgeδ0r′).

So, since

supp(r′eδ0agδgeδ0) and supp(eδ0agδgeδ0r′)

are subsets of {g ·t : t ∈ supp(r′)}, we have that # supp(r′eδ0agδgeδ0−eδ0agδgeδ0r′) <
# supp(r′) ≤ # supp(r), which implies that r′eδ0agδgeδ0 = eδ0agδgeδ0r′ for all g ∈ G
and hence, by linearity, r′ ∈ Ce.
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Theorem 2.5 Let E be a set of local units for A and let α = ({Dt}t∈G, {αt}t∈G) be
a partial action of an abelian group G such that each ideal Dt has local units (which, by
[5, corollary 3.2], implies that A ?α G is associative). Then the following are equivalent:

(i) A ?α G is simple;
(ii) A is G-simple and Ce is a field for all e ∈ E.

Proof First suppose that R = A ?α G is simple. The proof that A is G-simple is
essentially the same as the one in [11]; one just has to notice that if J is a nonzero
proper invariant ideal of A, then ({ J∩Dt}t∈G, {αt}t∈G) is a partial action and JoαG
is a nonzero ideal of A oα G.

Next we show that Ce is a field for all e ∈ E. So let a ∈ Ce and consider the ideal
generated by a in A oα G. By the simplicity of A oα G, we have that 〈a〉 = A oα G.
Thus eδ0 ∈ 〈a〉 and so there exists ri and s j such that

eδ0 =
∑
i, j

rias j =
∑
i, j

eδ0rias jeδ0 =
∑
i, j

eδ0ri eδ0aeδ0︸ ︷︷ ︸
a

s jeδ0,

and, since a ∈ Ce, we have that

eδ0 =
∑
i, j

aeδ0rieδ0eδ0s jeδ0 = a
∑
i, j

eδ0rieδ0s jeδ0.

So a has an inverse and all we have left to do is show that a−1 ∈ Ce. But notice that

a−1 = eδ0

(∑
i, j

rieδ0s j

)
eδ0 ∈ eδ0Reδ0

and, since a ∈ Ce, we have that for all y ∈ eδ0Reδ0 it holds that ay = ya ⇒ eδ0 y =
a−1 ya ⇒ ya−1 = a−1 yaa−1 ⇒ ya−1 = a−1 y. We conclude that a−1 ∈ Ce and
hence Ce is field.

Now suppose that A is G-simple and Ce is a field for all e ∈ E. Let J be a nonzero
ideal of R = A oα G. By Lemma 2.4 there is a nonzero r ∈ J ∩ Ce for every e ∈ E.
Since Ce is field, this implies that eδ0 = r−1r ∈ J for all e ∈ E, and since Eδ0 is a set
of local units for R, we conclude that J = R.

3 An Application to Set Dynamics

In [2] it was shown that there is a one-to-one correspondence between partial ac-
tions in a set X and partial actions in F0(X), where F0(X) is the algebra of all
functions from X to a field K with finite support (see [2]). More precisely, if
θ = ({Xt}t∈G, {ht}t∈G) is a partial action in X, then α = ({Dt}t∈G, {αt}t∈G), where
Dt = F0(Xt ) = { f ∈ F0(X) : f (x) = 0 ∀ x /∈ Xt}, and αt ( f ) := f ◦ h−t , is a partial
action of G in F0(X).

Our goal in this section is to prove the following theorem.

Theorem 3.1 Let G be an abelian group and let θ = ({Xt}t∈G, {ht}t∈G) be a partial
action in a set X. Then F0(X) ?G is simple if and only if θ is a minimal and free partial
action.
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Of course we will use Theorem 2.5 to prove the above result. So we have to check
that the hypotheses are verified. Notice that F0(X) ? G is associative (see [2]), and it
is clear that F0(X), as well as the ideals F(Xt ), have local units, so we can apply Theo-
rem 2.5. But Theorem 2.5 also requires that we choose a set of local units for F0(X).
So we let E := {χA : A is a finite subset of X}, where χA denotes the characteristic
function of A, be a fixed set of local units for F0(X).

We now recall the relevant definitions mentioned in Theorem 3.1.

Definition 3.2 A partial action θ = ({Xt}t∈G, {ht}t∈G) of a group G in X is min-
imal if the only G-invariant subsets of X are ∅ and X, and θ is free if for all x ∈ X,
ht (x) = x implies that t = 0.

Remark 3.3 Minimality can also be characterized in other ways, more specifically,
θ is minimal if and only if for all x ∈ X, Vx = {ht (x) : t ∈ G and x ∈ X−t} = X,
what is equivalent to say that if U and V are subsets of X, then there exists t ∈ G such
that ht (U ) ∩V 6= ∅.

Part of Theorem 3.1 follows from the correspondence between G-invariant sets of
X and G-invariant sets of F0(X).

Proposition 3.4 Let θ = ({Xt}t∈G, {ht}t∈G) be a partial action in a set X. Then,
V ⊂ X is G-invariant if and only if F0(V ) is G-invariant.

Proof First suppose that V is G-invariant and let f ∈ F0(V ) ∩ D−t . Then
αt ( f )(x) 6= 0 implies that h−t (x) ∈ V ∩ X−t , and hence x ∈ ht (V ∩ X−t ) ⊆ V .
So αt ( f ) ∈ F0(V ).

Now suppose that F0(V ) is G-invariant and assume that there exists a x ∈ V ∩X−t

such that ht (x) /∈ V . Notice that δx ∈ F0(V ) ∩ F0(X−t ) and hence αt (δx) ∈ F0(V ).
But αt (δx)(ht (x)) = δx ◦ h−t (ht (x)) = δx(x) = 1, a contradiction. So ht (x) ∈ V , and
V is G-invariant.

Corollary 3.5 A partial action θ = ({Xt}t∈G, {ht}t∈G) in a set X is minimal if and
only if F0(X) is G-simple.

Next we will show that, under the additional hypothesis that θ is free, Ce is a field
for each e ∈ E.

Lemma 3.6 Let θ be a free partial action of an abelian group G. Then for all e ∈ E,
say e = χA, we have Ce ⊂ eF0(X)e = F0(A).

Proof Suppose that x = eδ0(
∑

g fgδg)eδ0 ∈ Ce, and there exists g 6= 0 such that
z := eδ0 fgδgeδ0 6= 0. We will derive a contradiction.

Notice that for all t ∈ G and ft ∈ Dt , since G is abelian and x ∈ Ce, we have that

z(eδ0 ftδt eδ0) = Pg+t

(
x(eδ0 ftδt eδ0)

)
δg+t = Pg+t

(
(eδ0 ftδt eδ0)x

)
δg+t = (eδ0 ftδt eδ0)z,

and hence z ∈ Ce. So,

αg(α−g(e fg)e f0)δg = zeδ0 f0δ0eδ0 = eδ0 f0δ0eδ0z = αg(α−g( f0e fg)e)δg ,
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for all f0 ∈ F0(X) and, since αg is an isomorphism, this implies that α−g(e fg)e f0 =
α−g( f0e fg)e for all f0 ∈ F0(X), which is equivalent to

(3.1) fg |A
(

hg(x)
)
· χA(x) · f0(x) = f0

(
hg(x)

)
· fg |A

(
hg(x)

)
· χA(x)

for all f0 ∈ F0(X) and x ∈ X−g .
Now, z 6= 0 implies that e fg 6= 0, and so fg |A 6= 0. Furthermore, e fgδgeδ0 =

αg(α−g(e fg)e)δg 6= 0, and so α−g(e fg)e 6= 0. Therefore there exists x ∈ X−g such
that fg |A(hg(x)).χA(x) 6= 0. Let f0 = χ{x}. Then the left side of equation (3.1) is
nonzero, and since the action is free, the right side is zero, a contradiction.

Proposition 3.7 If θ = ({Xt}t∈G, {ht}t∈G) is a free minimal partial action of an
abelian group in a set X, then for all e ∈ E, Ce is a field. More precisely, if e = χA ∈ E,
then Ce ⊆ { f ∈ F0(X) : supp( f ) = A} ∪ {0}.

Proof Let f ∈ Ce ⊆ F0(A) be a nonzero function. Then, for all g ∈ G and
fg ∈ Dg , we have that f (eδ0 fgδgeδ0) = (eδ0 fgδgeδ0) f , so αg(α−g( f . fg)χA)δg =
αg(α−g(χA. fg) f )δg , for all g ∈ G and fg ∈ Dg and hence
(3.2)

f (x) fg(x)χA(h−g(x)) = χA(x) fg(x) f (h−g(x)) ∀g ∈ G, fg ∈ Dg and x ∈ Xg .

Now suppose that supp( f ) ( A and let y ∈ supp( f ). Since θ is minimal, there exists
t ∈ G such that h−t (y) ∈ A \ supp( f ). So equation (3.2), with g = t and fg = δy ,
becomes

f (x)δy(x)χA

(
h−t (x)

)
= χA(x)δy(x) f (h−t (x)) ∀x ∈ Xt ,

and hence, for x = y, we have that f (y) = 0, a contradiction. We conclude that
supp( f ) = A, and so there exists f−1 such that f f−1 = f−1 f = e. The proof that
f−1 ∈ Ce is analogous to what was done in the proof of Theorem 2.5.

The following proposition proves the last part of Theorem 3.1.

Proposition 3.8 If F0(X) ? G is simple, then θ = ({Xt}t∈G, {ht}t∈G) is free.

Proof Suppose that θ is not free. Then there exists x ∈ X and g ∈ G, g 6= 0, such
that x ∈ X−g and hg(x) = x. Consider the ideal I generated by χxδ0 − χxδg (notice
that χx ∈ F0(Xg), since x = hg(x) ∈ Xg).

We will show that the sum of coefficients of elements in I is zero. For this, notice
that α−g(χx) = χx, and so

asδs(χxδ0 − χxδg)btδt = asδsχxbtδt − asδsαg(α−g(χx)bt )δt+g

= asδsχxbtδt − asδsαg(χxbt )δt+g .

Now, αg(χxbt ) 6= 0 if and only if there exists y ∈ X such that

χx(h−g(y))bt (h−g(y)) 6= 0
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and this is true if and only if bt (h−g(y)) 6= 0 and h−g(y) = x; that is, y = hg(x) = x,
in which case αg(χxbt )(x) = bt (x). So αg(χxbt ) = χxbt , and hence

asδs(χxδ0 − χxδg)btδt = asδsχxbtδt − asδsχxbtδt+g

= αs(α−s(as)χxbt )δt+s − αs(α−s(as)χxbt )δt+g+s.

We conclude that the sum of coefficients of elements in I is zero. But then χxδ0 /∈ I,
and hence F0(X) ? G is not simple.

We end this section with an example of a minimal free partial action of the group
of the integer numbers, denoted by Z, in the set of natural numbers, denoted by N.

Example 3.9 Let X0 = N, h0 = id, X−1 = N, X1 = N− {1}, and h : X−1 → X1 be
defined by h(n) = n + 1. For all other t ∈ Z let X−t be the domain of ht and ht = ht .
Then {(Xt , ht )} is a free minimal partial action, and hence the associated partial skew
group ring F0(X) ? Z is simple.

4 An Application to Topological Dynamics

We now turn our attention to the context of topological partial actions. In this setting
the correspondence between partial actions in a locally compact Hausdorff space X
and partial actions in the C*-algebra of continuous functions vanishing at infinity,
C0(X), is well known (see [7] for example) and follows the ideas we presented in the
previous section, namely, if θ = ({Xt}t∈G, {ht}t∈G) is a partial action in X, then
α = ({Dt}t∈G, {αt}t∈G), where Dt = C0(Xt ) and αt ( f ) := f ◦h−t , is a partial action
of G in C0(X). Simplicity of the associated C*-partial crossed product is studied in
[7], where it is shown that if the action is topologically free and minimal then the
associated partial crossed product is simple. Minimality of a topological action is
exactly what one expects; that is, there are no proper open invariant subsets, which is
equivalent to saying that the orbits are dense. We recall the definition of topological
freeness below.

Definition 4.1 A topological partial action θ = ({Xt}t∈G, {ht}t∈G) is topologically
free if for all t 6= 0 the set Ft = {x ∈ X−t : ht (x) = x} has empty interior.

Using Theorem 2.5 we will prove the following theorem.

Theorem 4.2 Let θ = ({Xt}t∈G, {ht}t∈G) be a partial action of an abelian group in
a compact space X such that each Xt is a clopen set. Then the partial skew group ring
C(X) ? G is simple if and only if θ is topologically free and minimal.

Remark 4.3 Partial actions on the Cantor set by clopen subsets are exactly the ones
for which the enveloping space is Hausdorff; see [6].

The proof of the above theorem will follow the same ideas presented in the pre-
vious section. Actually, the proofs just need to be adapted to the case at hand. We
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show the relevant details below, but before we proceed, notice that we can apply The-
orem 2.5 to prove the result above, since by [5] the partial skew group ring is associa-
tive, and since the partial action acts on clopen sets, each Dt has a unit. Furthermore,
the ring C(X) is unital and hence the set of local units required in Theorem 2.5 may
be taken as the unit in C(X), which we denote by 1.

Proposition 4.4 A partial action θ = ({Xt}t∈G, {ht}t∈G) in a compact space X is
minimal if and only if C(X) is G-simple.

Proof The proof can be found in [7].

Lemma 4.5 Let θ be a topologically free partial action of an abelian group G. Then
C1 ⊂ C(X).

Proof Suppose that x =
∑

t ftδt ∈ C1 and there exists g 6= 0 such that fg 6= 0.
Notice that the first part of the proof of Lemma 3.6 was done in general, so that in
the case at hand equation (3.1) reduces to

(4.1) fg(hg(x)) f0(x) = fg(hg(x)) f0(hg(x))

for all f0 ∈ C(X) and x ∈ X−g .
Now, since fg 6= 0, we have that α−g( fg) 6= 0, and so there exists x ∈ X−g such

that fg(hg(x)) 6= 0. Since fg is continuous, there exists an open neighborhood V of x
such that fg(hg(y)) 6= 0 for all y ∈ V . Consider the open neighborhood V ∩ X−g of
x. Since θ is topologically free there exists y ∈ V ∩ X−g such that hg(y) 6= y. Then,
by Urysohn’s lemma, there exists f0 ∈ C(X) such that f (y) = 1 and f (hg(y)) = 0.
But then, for this f0 and y equation (4.1) leads to a contradiction.

Proposition 4.6 If θ = ({Xt}t∈G, {ht}t∈G) is a topologically free minimal partial
action of an abelian group in a compact space X, then C1 is a field. More precisely,
C1 = C · 1; that is, C1 is the algebra of constant functions.

Proof Let f ∈ C1 ⊆ C0(X) be a nonzero function. Notice that the first part of
Proposition 3.7 was done in general, and so it is valid for the case at hand, for which
equation (3.2) becomes

f (x) fg(x) = fg(x) f (h−g(x)) ∀g ∈ G, fg ∈ Dg , and x ∈ Xg .

Now for each g ∈ G let fg be the unit for Dg , that is, fg = χXg . Then the above
equation implies that f (x) = f (h−g(x)) for all x ∈ Xg and g ∈ G, and since θ is
minimal and f is continuous, we obtain that f is constant as desired.

The following will finish the proof of Theorem 4.2.

Proposition 4.7 If C(X) o G is simple, then θ = ({Xt}t∈G, {ht}t∈G) is topologically
free.

Proof Suppose that θ is not topologically free. Then there exists g 6= 0 in G such
that the interior of Fg is not empty. Let x be an element in the interior of Fg . By
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Urysohn’s lemma there exists a continuous function f such that f (x) = 1 and the
support of f is contained in the interior of Fg .

Notice that f = χFg · f , and hence αg( f ) = f = α−g( f ). Now consider the
ideal generated by f δ0 − f δg . Proceeding the same way as in Proposition 3.8, that is,
expanding terms of the form asδs( f δ0− f δg)btδt , we have that the sum of coefficients
of elements in I is zero. But then f δ0 /∈ I, and hence F0(X) ? G is not simple.

Acknowledgment I would like to thank Viviane Beuter for the useful discussions
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