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Approximating the Schur multiplier of certain infinitely presented
groups via nilpotent quotients

René Hartung

ABSTRACT

We describe an algorithm for computing successive quotients of the Schur multiplier M (G) of a
group G given by an invariant finite L-presentation. As applications, we investigate the Schur
multipliers of various self-similar groups, including the Grigorchuk super-group, the generalized
Fabrykowski—Gupta groups, the Basilica group and the Brunner—Sidki—Vieira group.

1. Introduction

The Schur multiplier M(G) of a group G can be defined as the second homology group
Hy(G,Z). It was introduced by Schur and is relevant, for instance, in the theory of central
group extensions. In combinatorial group theory, the Schur multiplier found applications by
virtue of the Hopf formula: if F' is a free group and R is a normal subgroup of F such that
G = F/R, then the Schur multiplier of G is isomorphic to the factor group (RN F')/[R, F].
For further details on the Schur multiplier we refer to [24, Chapter 11].

The Hopf formula yields that every finitely presentable group has a finitely generated
Schur multiplier. This fact is used in [15] to prove that the Grigorchuk group is not finitely
presentable, as its Schur multiplier is infinitely generated 2-elementary abelian, which answers
the questions raised in [6, 25]. Besides the Grigorchuk group, there are various examples of
self-similar groups for which it is not known whether their Schur multiplier is finitely generated
or whether the groups are finitely presented.

The first aim of this paper is to introduce an algorithm for investigating the Schur multiplier
of a self-similar group, with a view towards demonstrating its finite generation. Let G be a
group with a presentation G = F/R. Then G/v.G = F/R~.F, where .G is the cth term of
the lower central series of G. We identify M(G) with (RN F')/[R, F] and M(G/~.G) with
(Ry.FNF")/[Ry.F, F] and define

pe: M(G) — M(G/.G), Q[RvF]'_’g[R’YcFaF]'

Then ¢, is a homomorphism of abelian groups. We describe an effective method to determine
the Dwyer quotients M.(G) = M(G)/ker @, for ¢ € N, provided that G is given by an invariant
finite L-presentation; see [1, 2] or Section 2 below. Every finitely presented group and many self-
similar groups can be described by a finite invariant L-presentation. An implementation of our
algorithm is available in the NQL package [19] of the computer algebra system GAP; see [12].

We have applied our algorithm to various examples of self-similar groups: the Grigorchuk
super-group & (see [3]), the Basilica group A (see [17, 18]), the Brunner-Sidki-Vieira group
BSV (see [9]) and some generalized Fabrykowski-Gupta groups I'y (see [11, 16]). We found
that the sequence (M;i(G), ..., M.(G), M.4+1(G),...) exhibits a periodicity in ¢ in all these
cases. Based on this observation, we propose the following conjecture.

CONJECTURE I.
— For ¢ >4, M.(®) is 2-elementary abelian of rank 2|log,(c)| + 2|log,(c¢/3)] + 5.
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— For ¢ > 6, M.(A) has the form Z? x A., where A, is an abelian 2-group of rank |log,(c/3)]
and exponent 22L(c=6)/2]+2
— For ¢>4, M.(BSV) has the form Z? x B., where B, is an abelian 2-group of rank
|log,(c/5)| + |logy(c/9)| + 3 and exponent 22L(e=4)/21+1,
— For a prime power d, the group M.(T'y) has exponent d for ¢ large enough; its rank is an
increasing function of ¢ which exhibits a periodic pattern.
In particular, all of these groups have an infinitely generated Schur multiplier and are therefore
not finitely presentable.

Further details on the periodicities and the computational evidence for them are given in
Section 6.

2. Preliminaries

In this section, we recall the basic notion of invariant and finite L-presentations and the basic
theory of the Schur multiplier of a group. Let F' be a finitely generated free group over the
alphabet X'. Further, suppose that Q, R C F' are finite subsets of the free group F' and that
® C End(F) is a finite set of endomorphisms of F'. Then the quadruple (X | Q | ® | R) is a finite
L-presentation. It defines the finitely L-presented group

G=<X ou R“’>,

ped*

where ®* denotes the free monoid generated by ®, that is, the closure of ® U {id} under
composition. A finite L-presentation (X | Q| ® | R) is invariant if every endomorphism ¢ € ®
induces an endomorphism of G, that is, if the normal closure of QU(J, c4+R¥ in F is
p-invariant. For example, every finite L-presentation of the form (X |0 |® |R) is invariant.
Clearly, invariant finite L-presentations generalize finite presentations, since every finitely
presented group (X |R) is finitely L-presented by (X | 0| {id} | R). Further examples of
invariantly L-presented groups include self-similar groups such as the Grigorchuk group [14],
the Basilica group [17, 18] and the Brunner—Sidki—Vieira group [9].

In the remainder of this section, we recall the basic theory of the Schur multiplier of a group
G. Recall that, in general, the Schur multiplier of a finitely presented group is not computable;
see [13]. But if, for instance, G is finite, then M (G) can be deduced from a finite presentation
of G by means of the Hopf formula and the Reidemeister—Schreier algorithm. A more effective
algorithm for finite permutation groups is described in [20]. Recently, Eick and Nickel [10]
described an algorithm for computing the Schur multiplier of a polycyclic group given by a
polycyclic presentation.

Let F be a free group and let R be a normal subgroup of F' such that G = F'/R. Then the
Hopf formula gives

M(G)= (RN F')/[R, F). (1)

Suppose that N is a normal subgroup of G, and let S be a normal subgroup of F' such that
SR/R corresponds to N. Then Blackburn and Evens [7] determined the exact sequence

1— (RNI[S, F))/([R, FIN[S, F]) - M(G) — M(G/N) — (N NG")/IN,G] — 1.
Applying this sequence to the lower central series term N = ~.G yields the exact sequence
1= (RN Y1 F)/([R, F1NYe1 F) = M(G) %5 M(G/7G) = 7eG/ve1G — 1.

This gives a filtration M(G) > ker 1 > ker o > . . ., called the Dwyer filtration, of the Schur
multiplier of G. Note that if G has a maximal nilpotent quotient of class ¢, then

[ ker@c = (RN ye1 )[R, FI/[R, F).
ceNg
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However, even if the group G is residually nilpotent, the group F/[R, F] is not necessarily
residually nilpotent; see [8, 22]. Thus, the Dwyer kernel [,y ker ¢, is possibly non-trivial.

We note that the Schur multiplier M (G/~.G) can be computed by using the algorithm
in [10], while the isomorphism type of .G /7.+1G can be computed with the nilpotent quotient
algorithm in [2]. Therefore, the sequence M(G) — M(G/v.G) — 7.G/ve+1G — 1 allows us
to determine the size of M.(G) provided that M(G/7.G) is finite. On the other hand, the
algorithm described here determines the structure of M.(G) even when the Schur multiplier
M(G/~.G) is infinite.

3. Adjusting an invariant L-presentation

In order to prove the following theorem, we explicitly describe an algorithm for modifying an
invariant L-presentation. The resulting L-presentation enables us to read off a generating set for
the Schur multiplier in Section 4. Our algorithm generalizes the explicit computations in [15].

THEOREM 1. Let (X |Q|®|R) be an invariant finite L-presentation which defines
the group G =F/R. Then G admits an invariant finite L-presentation (X | Q' UB|®|R’)
such that Q',R' C F' and B C F satisfies |B| =|X| —b(G/G"), where H(G/G') denotes the
torsion-free rank of G/G’.

Proof. Since (X | Q|®|R) is an invariant L-presentation, every endomorphism ¢ € ®
induces an endomorphism of the group G. Thus we have R¥ C R for every ¢ € ®*. In particular,
every image of a relator in QU R is a consequence, that is, Q¥ C R and R¥ C R for every
pecdr.

Write n = rk(F'). Then the abelianization 7 : F' — Z™ maps each z € F to its corresponding
exponent vector a, € Z™. Clearly, ker 1 = F’ and, since F” is fully invariant, every ¢ € ® induces
an endomorphism of the free abelian group Z™. Therefore, the exponent vector of x¥ is the
image a, M, for some matrix M, € Z"*". Now, the normal subgroup RF’ maps onto

U={ag,arM,|qe Q,m€R, pec®)<Z". (2)

As every subgroup of Z™ is generated by at most n elements, the subgroup U is finitely
generated. In the following, we use the spinning algorithm from [2] along with Hermite normal
form computations to compute a basis for the subgroup U while modifying the L-presentation
simultaneously.

Let B be a basis of (a4 | g€ Q). Then every element u € B is a Z-linear combination of
elements in {aq | ¢ € Q}. Hence, for each u € B, there exists a word r, in the relators in Q such
that a,, = u. Define B = {r, | u € B}. Then for every q € Q, we have a, € (B) since B is a basis,
and hence there exists a word w, in the r, such that a,, = aq. Define Q' = {qwq_1 |q € Q}.
Then the exponent vector of each element in Q' vanishes, and hence Q' C F’. Moreover, the
invariant and finite L-presentation

(X QuUB|®|R)

still defines the group G, since we only applied Tietze transformations to the given
L-presentation.

It remains to force the elements of R into the derived subgroup F’. For this purpose, we
will use the spinning algorithm from [2], as follows. Initialize R’ ={. As long as R is non-
empty, take an element r € R and remove it from R. Then either a, € (B) or a, ¢ (B) holds. If
a, € (B), then there exists a word w,. in the 7, such that a,, = a, and hence rw, ! € F’. In this
case, we just add rw; ! to R’. Note that for every ¢ € ®*, the word (w; )¢ is a consequence
and hence we can replace the relator r# in the L-presentation by (rw,;)¥. The invariant and
finite L-presentation

(X|QUB|®|R UR)
still defines the group G.
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On the other hand, if a, ¢ (B) holds, we enlarge the current basis B and modify the
set B. Let B’ be a basis for (BU{a,}). Then every v € B’ is a Z-linear combination of
the elements in B U {a,}, and hence there exists a word 7, in BU {r} such that a7, =v.
Define B = {7, | v € B’}. Then, by construction, either |B| =|B|+ 1 or |B| = |B| holds. In the
latter case, there is an element u € B such that u € ((B\{u}) U {a,}) holds. Thus, there exists
a word w, in the elements of B such that a,, =wu and hence r,w;! € F’. In this case, we
add r,w, ! to @ and add the images {r¢ | ¢ € ®} to R. This yields an invariant and finite
L-presentation (X | Q' UB|®|R'UR), with Q', R’ C F’, which still defines the group G.

Because ascending chains of subgroups in Z" terminate, eventually every exponent vector
of an element in R will be contained in the subgroup (B), and hence the algorithm described
above must eventually terminate. Clearly, the basis B is then a basis for the subgroup U in (2).
As shown in [2], the abelian quotient G/G’ is isomorphic to the factor Z™/U. Its torsion-free
rank is n — |B| as claimed above. O

In the following example, we recall the explicit computations in [15] for the Grigorchuk
group &.
ExAMPLE 2. Consider the Grigorchuk group & with its invariant L-presentation
&= ({a,b,c,d} | {a? b?, 2, d?, bed} | {o} | {(ad)*, (adacac)?}),
where o is the free group endomorphism induced by the mapping

a+— c,
b—d,

c— b,

g

d— c.

The exponent vectors (2,0, 0,0), (0,1,1,1), (0,0,2,0) and (0, 0,0, 2) of the relations a?, bed,
c? and d?, respectively, are Z-linearly independent and form a basis for the subgroup U in (2);
therefore we can modify the above presentation so that the relations become

a?, 2, d2, bed, b2 (bed)"2c2d?, 0" ((ad)*a=*d™?), o"((adacac)ta 2 8d™%) (3)

for k € Ny. Since the L-presentation is invariant, the images o*(a=*d~*) and o*(a=2c8d%)
are consequences. Hence, the invariant finite L-presentation
(a,b, e, d} | {12(bed) 232} U {a?, 2, 2, bed} | {0} | R),

where R’ = {(ad)*a=*d~%, (adacac)*a=12c=8d~*}, defines the Grigorchuk group &, and, since
&/®’ =2 73, it has the form asserted in Theorem 1.

4. A generating set for the Schur multiplier

Let G be a finitely generated group. We will use the results of Theorem 1 and the Hopf formula
to give a generating set for the Schur multiplier of G in the case where G is invariantly finitely
L-presented. Suppose that F' is a finitely generated free group and that R is a normal subgroup
of F' such that G = F'/R. Then F/[R, F] is a central extension of R/[R, F] by the group G, and
the subgroup R/[R, F] contains (RN F’)/[R, F]. By the Hopf formula, the latter subgroup is
isomorphic to the Schur multiplier of G. Furthermore, the subgroup R/[R, F] decomposes as
follows.

PROPOSITION 1. Let G2 F/R with a finitely generated free group F. Then
R/[R, F] = 750G/ g N (G).
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Proof. The factor RF’/F’ is free abelian with torsion-free rank rk(F) — h(G/G’). Since
RF'/JF'">2R/(RNF') is free abelian, the subgroup (RN F')/[R,F] has a free abelian
complement of rank rk(F) — h(G/G’), and thus the central subgroup R/[R, F| decomposes
as claimed. U

As R/[R, F|] is central in F/[R, F], it is generated by the images of the normal generators
of R. Thus, in particular, if R is finitely generated as a normal subgroup (that is, if G is
finitely presentable), then R/[R, F| is a finitely generated abelian group and so is its subgroup
(RN F')/[R, Fl.

If G is finite, then R/[R, F] is an abelian subgroup with finite index in F/[R, F].
A finite presentation for F/[R, F|] can be obtained from a finite presentation of G. Then the
Reidemeister—Schreier algorithm yields a finite presentation for R/[R, F], from which
the isomorphism type of M (G) is obtained easily.

If G is polycyclic, then it is finitely presentable, and hence the group F/[R, F is an extension
of a finitely generated abelian group by a polycyclic group. In particular, F/[R, F] is polycyclic
in this case. A consistent polycyclic presentation for F/[R, F| can be computed with the
algorithm in [10]. This polycyclic presentation enables us to read off the isomorphism type
of R/[R, F] and, by Proposition 1, the isomorphism type of M(G). If G is finitely generated
and nilpotent of class ¢, then F/[R, F| is nilpotent of class at most ¢+ 1. If G is given by
a weighted nilpotent presentation, then the algorithm in [23] computes a weighted nilpotent
presentation for F/[R, F].

We now consider the case of an invariantly finitely L-presented group G. Even though its
Schur multiplier is not computable in general, the following theorem yields a generating set for
M(Q) as a subgroup of R/[R, F].

THEOREM 3. Let (X | Q' UB|®|R’) be an invariant finite L-presentation of G as provided
by Theorem 1. Further, let w: F — F/[R, F|, x — T denote the natural homomorphism. Then
M(G)=(q,m%|qe Q' ,reR ¢cd).

Proof. Clearly, R/[R, F] is generated by the images of @' UBUJ
in @ UR' are contained in F’/, we have

oco-(R')?. As the relators

{g,7%|qe Q@ ,reR pe®} C(RNF)/R, F]. (4)

We are left with the relators in B. Recall that |B| =rk(F)— h(G/G’). Hence, the images
{7 |r € B} generate a free abelian complement to the Schur multiplier (RN F’)/[R, F] in
R/[R, F]. Therefore, the images in (4) necessarily generate (RN F')/[R, F]. O

As the group G in Theorem 3 is invariantly L-presented, for every endomorphism ¢ € ® we
have R? C R and [R, F|? C [R, F]. Therefore, every ¢ € ® also induces an endomorphism of
F/[R, F] which fixes the subgroup R/[R, F|. Further, as F’ is fully invariant, every such ¢
induces an endomorphism @ of (RN F')/[R, F]. This yields

M(G)={(q,7%|qe @, reR ped*),

and hence the free monoid ®* induces a ®*-module structure on the Schur multiplier M(G) in
a natural way.

LEMMA 4. Let (X |Q|®|R) be an invariant finite L-presentation. Then the Schur
multiplier M (QG) is finitely generated as a ®*-module.

In particular, the Schur multiplier M (G) has the form A ® @ 4. B with finitely generated
abelian groups A and B; see [1].
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We proceed further with Example 2 by describing a generating set for the Schur multiplier
of the Grigorchuk group as provided by Theorem 3; cf. [15].

ExAMPLE 5. Consider the invariant finite L-presentation of the Grigorchuk group & as
determined in Example 2. Then the images of

V2 (bed)"2d?, o ((ad)*a=*d™"), 0¥ ((adacac)*a™"2c78d™*) for k € Ny (5)

in F/[R, F] generate the subgroup (RN F’)/[R, F|. The images in F/[R, F| of the relations
a?, ¢?, d? and bed generate a free abelian complement to the Schur multiplier (RN F')/[R, F)
in R/[R, F].

5. Approximating the Schur multiplier

Now we describe our algorithm for approximating the Schur multiplier of an invariantly finitely
L-presented group G. Let (X | Q| ®|R) be an invariant finite L-presentation defining the
group F/R such that G = F/R. Then G is finitely generated and hence its lower central series
quotient G/~.G is polycyclic. The nilpotent quotient algorithm in [2] computes a weighted
nilpotent presentation for G/7.G together with the natural homomorphism 7 : F — G/~.G.
In [23], Nickel described a covering algorithm which, given a weighted nilpotent presentation
for G/v.G and the homomorphism 7, computes a polycyclic presentation for F/[Ry.F, F]
together with the natural homomorphism 7 : F' — F/[R~.F, F]. The homomorphism 7 induces
the homomorphism ¢, : M(G) — M(G/~.G) as follows. By Theorem 1, the group G has an
invariant finite L-presentation of the form

(X|QUB|®|R) with O, R’ C F' and |B| = |X| — h(G/G").

Now, by Theorem 3, the images of Q" UU,cq-(R)? in F/[R, F] generate the subgroup
(RN F")/[R, F). Similarly, their images in the factor group F/[R~.F, F] generate the sub-
group (RN F')[Ry.F, F|/[Ry.F, F]. Since [RY.F, F| = [R, F|yc+1F, we have

(RN F')[RyF, Fl/[ReF, F] = (Ryet1 F OV F') /Ry F, F.
The latter subgroup is contained in (Rvy.F N F')/[R~.F, F], which is isomorphic to the Schur
multiplier M (G/~.G).

As the group G is invariantly L-presented, each ¢ € ® induces an endomorphism ¢ of
R~.F/[R~.F, F], which yields that the image of M(G) in M(G/~.G) has the form

(@, (r")?|qe @, re R, p € D*). (6)

This can be used to investigate the ®*-module structure of M(G) by considering the finitely
generated Dwyer quotients M.(G). In our algorithm, we use Hermite normal form computations
in a spinning algorithm to compute a finite generating set of the subgroup in (6). Our algorithm
is summarized as follows, where G = F/R.

DWYERQUOTIENT(G, ¢)
Compute an invariant finite L-presentation as in Theorem 1.

Compute a weighted nilpotent presentation for G/v.G
together with the natural homomorphism F — G/~.G.
Compute a polycyclic presentation for the group F/[Ry.F, F]
together with the natural homomorphism F — F/[R~.F, F].

Translate each ¢ € ® to an endomorphism of the group F/[R~.F, F]
and restrict this endomorphism to (Ryc41F N E')/[Ry.F, F].

Use the spinning algorithm to compute a finite generating set
for the image (Ry.41F N F')/[Ry.F, F).
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6. Applications

The algorithm described above is available in the NQL package [19] of the computer algebra
system GAP (see [12]). We parallelized the algorithm in [2] to enlarge the possible depths in
the lower central series reached in this section. We demonstrate the successful application of
our algorithm to the following invariantly finitely L-presented testbed groups studied in [1, 2]:
— the Grigorchuk group & (see [14]), with its invariant finite L-presentation from [21] (see
also [15] and Example 2);
— the twisted twin & of the Grigorchuk group (see [4]), with its invariant finite L-presentation
from [4];
~ the Grigorchuk super-group & (see [3]), with its invariant finite L-presentation from [1];
— the Basilica group A (see [17, 18]), with its invariant finite L-presentation from [5]; and
— the Brunner—Sidki—Vieira group BSV (see [9]), with its invariant finite L-presentation
from [1].
In § 6.3, we further apply our algorithm to several generalized Fabrykowski—-Gupta groups,
an infinite family of finitely L-presented groups I', introduced in [16]. Invariant finite
L-presentations for these groups were computed in [2].

6.1. Aspects of the implementation of our algorithm in GAP

Table 1 shows some performance data relating to the implementation of our algorithm in the
NQL package of the computer algebra system GAP. All timings displayed below were obtained
on an Intel Pentium Core 2 Quad processor with clock speed 2.83 GHz using a single core. For
each application of our algorithm, we imposed a time limit of two hours; the computations were
then stopped, and the total time taken to compute a weighted nilpotent presentation for the
quotient G/~.G as well as the total time to compute the Dwyer quotient M.(G) were recorded.
Every application of the algorithm completed within 1 GB of memory.

We note that the results reported in the remainder of this section were obtained from using
a parallel version of the algorithm for computing G/v.4+1G.

6.2. Dwyer quotients of the testbed groups

The Dwyer quotient M.(G) = M(G)/ker ¢, is a finitely generated abelian group; hence it can
be described by its abelian invariants or, if the group is p-elementary abelian, by its p-rank.
Here the list (cq, ..., ¢,) stands for the group Z., ®...® Z.,. We shall use the abbreviation
a) to mean that the term a occurs in ¢ consecutive places in a list. In the following, we
summarize our computational results for the testbed groups.

The Grigorchuk group & was shown in [14] to be an explicit counter-example to the general
Burnside problem: it is a finitely generated infinite 2-torsion group. Furthermore, the
Grigorchuk group is one of the first examples of a group with an intermediate word-growth.

TABLE 1. Performance data on our algorithm’s implementation in GAP.

Time (h:min) for Time (h:min) for

G c G/’Yc+lG Mc+1(G) G c G/’yc+1G Mc+1(G)

6 90 1:47 0:07 Ty 71 1:50 0:07

€~3 54 1:44 0:09 I's 55 1:40 0:04

(G} 44 1:32 0:13 I'7 46 1:40 0:03

A 42 1:31 0:16 T's 56 1:54 0:06
BSV 35 1:10 0:21 Ty 61 1:44 0:06

I's 75 1:46 0:04 INT] 35 1:54 0:02
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In [21], Lysénok determined a first L-presentation for the group ®&; see Example 2. Even
though it had already been proposed in [14] that the Grigorchuk group & is not finitely
presentable, a proof was not established until Grigorchuk explicitly computed in [15] the Schur
multiplier of &: it turned out to be infinitely generated 2-elementary abelian. We have computed
the Dwyer quotients M.(®) for 1 < ¢ < 301. These quotients are 2-elementary abelian with
2-ranks

1,2, 38 561 7012] g[24] 17[48] 13[96] 15[110]
This suggests the following conjecture.

CONJECTURE A. The Grigorchuk group & satisfies

M, () = Zy or (Z3)* if c=1 or 2, respectively,
AO)=V (222t ifee(3-2m,...,3.27F1 _ 1) with m € No.

Further experiments suggest that the Schur multiplier of the Grigorchuk group & has a
{o}*-module structure, as given by Lemma 4, of the form Z, @ (Zz[0])? where o fixes the first
component.

The twisted twin & of the Grigorchuk group was introduced in [4]. It is invariantly finitely
L-presented by

({a, b, ¢, d} [{a®, 0%, ¢* d?} [ {5} | {ld*, d], [d, c"b], [d, (c¢"D)], [d, (c"b)°], [c"D, cb]}),
where & is the free group endomorphism induced by the mapping

a+— c,
b—d,
c+— b?,
d—c.

We have computed the Dwyer quotients M.(®) for 1< c<144. These quotients are
2-elementary abelian with 2-ranks

2,5,7,82 1121 1204 1541 1681, 19081 200161 23[16] 24[32] 27032] og[17],
This suggests the following conjecture.
CONJECTURE B. The twisted twin & of the Grigorchuk group satisfies

(Z2)?%, (Z2)® or (Z3)" if c=1,2 or 3, respectively,
Mo(8) = (Zy ) (m+1)+4 if ce {2m+2, ..., 2mF2 4 2m+l 1} with m € Ny,
(Zy)4(m+1)+7 if ce {2m*2 4 omHl . 9m+3 1} with m € N.

Further experiments suggest that the Schur multiplier of & has a {5 }*-module structure, as
given by Lemma 4, of the form (Z3[a])*; for a proof see [4].

The Grigorchuk super-group & was introduced in [3]. It contains the Grigorchuk group
® as an infinite-index subgroup and is another example of a group with an intermediate
word-growth. In [1], it was shown that ® admits the invariant finite L-presentation

({a,b,& d} |0] {5} | {a [b, &, [ &, [¢, d°], [d, d°], [&%, (&%), [&°0, (d°%)%], [d“P, (d%)*]})
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where & is the free group endomorphism induced by the mapping
a— aba,
b— d,

c—b,

Qv

d s ¢.

The Schur multiplier of the group  is still unknown. We have computed the Dwyer quotients

M.(8) for 1 < ¢ < 232. These quotients are 2-elementary abelian with 2-ranks
3,6,7,92 1101 1304 15041 17081 19[8] 210161 93[16] 951321 97[32] 9g[64] 31[41],

This suggests the following conjecture.

CONJECTURE C. The Grigorchuk super-group & satisfies
3 (Z2)3, (Z2)8 or (Z3)" if c=1,2 or 3, respectively,
M, (®) = (Zo)tm+5 ifce{2-2m, ...,3-2" —1} with m €N,
(Z)m+7 if ce{3-2m ..., 227+ _ 1} with m € N.

Further experiments suggest that the Schur multiplier of the Grigorchuk super-group has a
{G}*-module structure, as given by Lemma 4, of the form (Z)3 @ (Z3[5])* where & cyclically
permutes the first component.

The Basilica group A was introduced in [17, 18] as a torsion-free group defined by
a three-state automaton. Bartholdi and Virdg [5] computed the following invariant finite
L-presentation:

A= ({a,b} 0] {o}|{la,a’]})

where o is the free group endomorphism induced by the mapping

a— b2,
o:
b a.
We have computed the Dwyer quotients M.(A) for 1 < ¢ < 103. These quotients are described
by the following conjecture.

CONJECTURE D. The Basilica group A satisfies
M(A) 27 @ Ay(c) for each ¢ > 2,
€N
where the groups Ay(c) are given by

B 0 ifce{l,...,5},
Ar(e) = {ngm if c€ {2m +6,2m + 7}

and, for ¢ > 2,
0 ifce{l,...,3-241 1},
Ao(c) = Zgzmsr ifc€{(3+m) 271 ... (3+m) 27 + 2671 — 1} with m € Ny,
Zozmys ifc€{(3+m) 241 42071 (44 m)- 201 — 1} with m € Ny.

Hence, the Basilica group A is not finitely presentable.

The Brunner—Sidki—Vieira group BSV was introduced in [9] as a just-non-solvable, torsion-
free group acting on the binary tree. The authors also gave the following invariant finite
L-presentation:

BSV = ({a, b} | 0] {e} | {[b, 5], [b, "' ]})
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where ¢ is the free group endomorphism induced by the mapping

ar— a?,
€:
b a?b~ta?.
We have computed the Dwyer quotients M. (BSV) for 1 < ¢ < 53. These quotients are described
by the following conjecture.

CONJECTURE E. The Brunner—Sidki—Vieira group BSV satisfies
M.(BSV) =7 & A(c) & @) Bi(c) ® @ Celc) for each ¢ >2,
€EN LN
where the groups A(c), Be(c) and Cy(c) are given by

Ay ={ 0 ifce{1,...,3},
T\ Zozmir  if c € {2m + 4, 2m + 5} with m € Ny

and, for £ €N,
0 ifce{l,...,5-271 — 1},
Bulc) = Tigam+1  if c€ {25F2m 452071 . 262 4 6- 2671 — 1} with m € Ny,
Lgams> if c€ {22m 4+ 6-271 .. 2672m 4+ 10 - 271 — 1} with m € Ny,
Zgamsa if c€ {2F2m 410271 .. 27 2m + 13- 21 — 1} with m € Ny,
0 ifce{l,...,9-2071 —1},
Zoamsr if c€ {2092m 4+ 9. 2071 0 262m 4122671 — 1} with m € Ny,
Co(c) = { Zgamso if c€ {272m + 122071 .. 202 4 14 - 271 — 1} with m € Ny,
Tigamss if c € {2F2m + 14201 . 282m 416 - 21 — 1} with m € Ny,
Zgamsa if c€ {2F2m + 162071 ... 20F2m 4+ 17271 — 1} with m € Ny,

Hence, the Brunner—Sidki—Vieira group BSV is not finitely presentable.

6.3. Dwyer quotients of some Fabrykowski-Gupta groups

The Fabrykowski-Gupta group I's was introduced in [11] as an example of a group
with an intermediate word-growth. For every positive integer d, Grigorchuk [16] described
a generalization I'y of the Fabrykowski-Gupta group I's. A rather long invariant finite
L-presentation was computed in [2]. Further, it was shown that if d is not a prime power,
the group I'y has a maximal nilpotent quotient. This quotient is isomorphic to the maximal
nilpotent quotient of the wreath product Z4 ! Z4. We therefore consider only those groups I'y
which admit a ‘rich’ lower central series, that is, for which the index d is a prime power.

Let d € {3,5, 7,11} be a prime. Then the Dwyer quotients M.(I'y) are d-elementary abelian
with d-ranks as given in the following table.

d rk(Mc<Fd))

3 021, 1081 201 3091 401 5[26] @l4] 777] Q13 gl12]
5 ol 1041 2f21 3[201 4[10] 5[100] 2]

7 oltl, 1121 ol6l 3021 4014] 5l42] gl14] 7[34]

11 ol 1021 ol 3[21 4001 52 gl22] 70221 g[22] g[27]

As noted by Bartholdi and Siegenthaler, there is a pattern in the ranks of the Dwyer quotients
M.(Ty). For example, it may be that

0 if c=0,
M, (T5) = Z2™ ifce{2+3(5™—1),...,14+3(5™ —1) +4 -5} with m € Ny,
Z2"? ifee{2+3(5™m—1)+4-5™,..., 1+ (5™ — 1)} with m € Ny,

which suggests the following conjecture.
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CONJECTURE F. Let d be a prime. Then the Schur multiplier of I'y, modulo the Dwyer
kernel, is infinitely generated d-elementary abelian.

Finally, we summarize our results for M.(T'y) with d € {4, 8,9}. The abelian invariants of
the Dwyer quotients M.(I';) are as follows.

d Mc(Fd)

() (2)1 (2, 2)[ (2,4)[4 (2,2, 2, 4)0]
(2,2,2,2,4)4(2,2,2,4,4)16 (2,2,2,2, 4, 4)1 (2,2,2,2,2, 4, 4)13
(2,2,2,2,2,2,4,4)16 (2,22 2 2 4,4, 4)64 (2,2,2,2,2, 2 4, 4,4)P

(2,2,2,2,2,2,2,4,4,4) 11 (2,222,222, 2 4,4, 4)2

(M (8)12 (4, 8) (2,4, 8)1 (2,8,8)[1 (2,2,8,8)
(2,2,2,8,8)2 (2,2,4,8,8)2 (2,4,4,8,8)2 (2,4,8,8,8)
8 (2,8,8,8,8)% (2,2,8,8,8,8)1 (2,4,8,8,8,8)200 (2,2 4,8,8,8,8)532
(2,2,8,8,8,8,8)7 (2,2,2,8,8,8,8 8)16 (2,222 8 8 8 8 8)l6
(2,2,2,4,8,8,8,8,8)16 (2,24 4,8 8 8, 8, 8)8

Again, these computational results suggest that the groups I'y are not finitely presentable.
Further, the exponent of M.(I'y) is most likely the index d itself.

Acknowledgements. 1 would like to thank Bettina Fick, Laurent Bartholdi and Olivier
Siegenthaler for many helpful discussions. I am grateful to the referee for valuable comments
and suggestions.
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