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LOWER BOUNDS FOR FUNDAMENTAL UNITS

OF REAL QUADRATIC FIELDS

KOSHI TOMITA and KOUJI YAMAMURO

Abstract. Let d be a square-free positive integer and l(d) be the period length
of the simple continued fraction expansion of ωd, where ωd is integral basis
of

�
[
√

d]. Let εd = (td + ud

√

d)/2 (> 1) be the fundamental unit of the real
quadratic field � (

√

d). In this paper new lower bounds for εd, td, and ud are
described in terms of l(d). The lower bounds of εd are sharper than the known
bounds and those of td and ud have been yet unknown. In order to show the
strength of the method of the proof, some interesting examples of d are given
for which εd and Yokoi’s d-invariants are determined explicitly in relation to
continued fractions of the form [a0, 1, . . . , 1, al(d) ].

Introduction

For a positive square-free integer d, let D be the discriminant of the real

quadratic field Q(
√

d) and l(d) be the period length in the simple continued

fraction expansion of the algebraic integer ωd = (σd − 1 +
√

d)/σd, where

σd = 1 (resp. 2) for d 6≡ 1 (mod 4) (resp. d ≡ 1 (mod 4)). It is well-known

that the fundamental unit εd = (td + ud

√
d)/2 (> 1) of Q(

√
d) has lower

bounds that increase with l(d). For example, there are ((1 +
√

5)/2)l(d)

(see, for example [1, p. 240]) and
√

D (3/2)l(d)−2 (see [2, p. 98]). For d with

sufficiently large l(d), εd is much larger than these lower bounds. So we will

caluculate a sharper lower bound in terms of l(d) to study the sufficiently

large εd for d. Furthermore, we will calculate the lower bounds for td and

ud in terms of l(d) that have been yet unknown. In order to study Yokoi’s

d-invariants, which are concerned with the class number one problem for

real quadratic fields, we need to investigate td and ud. We have obtained

the following theorem.

Received October 24, 2000.
2000 Mathematics Subject Classification: Primary 11R11; Secondary 11R27.

https://doi.org/10.1017/S0027763000008230 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008230


166-02 : 2002/6/10(22:27)

30 K. TOMITA AND K. YAMAMURO

Theorem 1. Let d be a positive square-free integer with l(d) ≥ 2 and

D be the discriminant of Q(
√

d). Then we have

εd >







√
D√
5

(
1 +

√
5

2

)l(d)−1

if l(d) is even,

1√
5

(√
D −

√
5 − 1

2

)

·
(

1 +
√

5

2

)l(d)

if l(d) is odd.

Moreover, for td and ud in εd = (td + ud

√
d)/2 (> 1), we have

td >







√
D√
5

(
1 +

√
5

2

)l(d)−1

if l(d) is even,

1√
5

(
√

D −
√

5 + 1) ·
(

1 +
√

5

2

)l(d)

if l(d) is odd

and

ud >







2

σd

√
5

(
1 +

√
5

2

)l(d)−1

if l(d) is even,

2

σd

√
5

(
1 +

√
5

2

)l(d)−2

if l(d) is odd.

In this paper, the simple continued fraction with period l is generally

denoted by [a0, a1, . . . , al ], and [x] means the greatest integer less than

or equal to x. Let {Fi} be the Fibonacci numbers determined by F0 =

0, F1 = 1, Fi+1 = Fi + Fi−1 (i ≥ 1). The Fibonacci numbers play an

important role in showing Theorem 1, because we use the inequality εd ≥
([ωd]+ωd)Fl(d) +Fl(d)−1 (resp. ([ωd]−1+ωd)Fl(d) +Fl(d)−1) in the case that

d 6≡ 1 (mod 4) (resp. d ≡ 1 (mod 4)). We are interested in whether the

equality is possible. We got an affirmative answer and we have discovered

real quadratic fields with md 6= 0. Here md is one of Yokoi’s d-invariant,

and it is defined by md = [u2
d
/td]. Another is defined by nd = [td/u2

d
]. We

know that there exist only finitely many d satisfying both class number

one and nd 6= 0 (i.e. md = 0) (see [7, p. 188]). So it is very important to

investigate the case that md 6= 0 (i.e. nd = 0). Now these results are stated

as follows:
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Theorem 2. Let d be a positive square-free integer and l be a positive

integer satisfying l ≥ 2. Assume that

d = (2Fl + 1)2 + 8Fl−1 + 4.

Then d ≡ 1 (mod 4), ωd = [Fl + 1, 1, . . . , 1, 2Fl + 1], and l(d) = l hold.

Moreover, we have

εd =
1

2
(2Fl

2 + Fl + 2Fl−1 + Fl

√
d ) (= ([ωd] − 1 + ωd)Fl + Fl−1),

{

td = 2Fl
2 + Fl + 2Fl−1,

ud = Fl,

and

nd =







5 if l = 2,

3 if l = 3,

2 if l ≥ 5.

Theorem 3. Let d be a positive square-free integer and l be a positive

integer satisfying that l ≥ 2 and l ≡ 1, 2, or 4 (mod 6). Assume that

d = ((Fl + 1)/2)2 + Fl−1 + 1.

Then d 6≡ 1 (mod 4), ωd = [(Fl + 1)/2,1, . . . , 1, Fl + 1], and l(d) = l hold.

Moreover, we have

εd =
1

2
(Fl

2 + Fl + 2Fl−1 + 2Fl

√
d ) (= ([ωd] + ωd)Fl + Fl−1),

{

td = Fl
2 + Fl + 2Fl−1,

ud = 2Fl,

and

md =







1 if l = 2,

2 if l = 4,

3 if l ≥ 7.

Remark 1. Our aim is to show that, for any l, there exists d satisfying
l(d) = l and ωd = [a0, 1, . . . , 1, al(d) ]. The case that l = 6n+1 was treated in
[4], but our proof is simpler than theirs. Their aim is to consider Eisenstein’s
problem.
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Preliminary

In order to prove our theorems, we need several lemmas.

Lemma 1. For a square-free positive integer d, we suppose ωd =
[a0, a1, . . . , al ]. Moreover let qi be the integers determined by q0 = 0, q1 = 1,
qi+1 = aiqi + qi−1 (i ≥ 1). Then the fundamental unit εd = (td + ud

√
d)/2

(> 1) of Q(
√

d) is given by the following formula:
If d 6≡ 1 (mod 4), then

εd = (a0 +
√

d )ql(d) + ql(d)−1,

{

td = 2(a0ql(d) + ql(d)−1),

ud = 2ql(d).

If d ≡ 1 (mod 4), then

εd =

(
2a0 − 1 +

√
d

2

)

ql(d) + ql(d)−1,

{

td = (2a0 − 1)ql(d) + 2ql(d)−1,

ud = ql(d).

Proof is omitted (see proof of Lemma 1 in [3]).

Lemma 2. For a positive square-free integer d, denote by D the dis-

criminant of Q(
√

d). Then we have

εd > (
√

D − 1)Fl(d) + Fl(d)−1.

Moreover, for td and ud in εd = (td + ud

√
d)/2 (> 1), we have

td > (
√

D − 2)Fl(d) + 2Fl(d)−1 and ud ≥
(

2

σd

)

Fl(d).

Proof. In the case that d 6≡ 1 (mod 4), since a0 >
√

d − 1 and qi ≥ Fi

for any integer i (≥ 1), from Lemma 1 we get

εd ≥ (a0 +
√

d)Fl(d) + Fl(d)−1

> (2
√

d − 1)Fl(d) + Fl(d)−1

= (
√

D − 1)Fl(d) + Fl(d)−1.

For td and ud, in the case that d 6≡ 1 (mod 4), we have

td > 2{(
√

d − 1)Fl(d) + Fl(d)−1} = (
√

D − 2)Fl(d) + 2Fl(d)−1

and
ud ≥ 2Fl(d).

In the case that d ≡ 1 (mod 4), we get the results in the same way.
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We get the following lemma by straightforward calculations.

Lemma 3. For i ≥ 1,

Fi >







1√
5

(
1 +

√
5

2

)i−1

if i is even,

1√
5

(
1 +

√
5

2

)i

if i is odd.

Proof of Theorem 1

Proof of Theorem 1. We put α = (1 +
√

5)/2. First we shall show the
lower bound of εd. From Lemma 2, we know εd > (

√
D − 1)Fl(d) + Fl(d)−1.

In the case that l(d) (≥ 3) is odd, we have, from Lemma 3,

(
√

D − 1)Fl(d) + Fl(d)−1 > (
√

D − 1)
αl(d)

√
5

+
1√
5
αl(d)−2

=
αl(d)

√
5

{√
D −

√
5 − 1

2

}

.

This proves the odd case.

In the case that l(d) (≥ 2) is even, we have

(
√

D − 1)Fl(d) + Fl(d)−1 > (
√

D − 1)
αl(d)−1

√
5

+
αl(d)−1

√
5

=

√
D√
5

αl(d)−1.

Next we shall show the lower bounds of td and ud. From Lemma 2, we
know

td > (
√

D − 2)Fl(d) + 2Fl(d)−1.

In the case that l(d) (≥ 3) is odd, we have

(
√

D − 2)Fl(d) + 2Fl(d)−1 > (
√

D − 2)
αl(d)

√
5

+ 2
αl(d)−2

√
5

=
αl(d)

√
5

(
√

D −
√

5 + 1).
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In the case that l(d) (≥ 2) is even, we have

(
√

D − 2)Fl(d) + 2Fl(d)−1 > (
√

D − 2)
αl(d)−1

√
5

+ 2
αl(d)−1

√
5

=

√
D√
5

αl(d)−1.

From Lemma 2 and Lemma 3, we can get the lower bound of ud in a similar
way as in the proof of td. Theorem has been completely proved.

From Theorem 1, we get the following corollary for the period l(d) and

Yokoi’s d-invariant md:

Corollary. If there exist a positive integer M and a positive square-

free integer d such that d > 13 and

l(d) ≥ log(M + 1) + log (
√

5d ) − log 2

log

(
1 +

√
5

2

) + 1,

then md > M .

Proof. From the assumption, we have

√
D√
5

(
1 +

√
5

2

)l(d)−1

≥ (M + 1)d.

Since it holds that

1√
5

(√
D −

√
5 − 1

2

)

·
(

1 +
√

5

2

)i

>

√
D√
5

(
1 +

√
5

2

)i−1

for any positive integer i, we get, from Theorem 1,

εd > (M + 1)d.

Moreover, md = [εd/d] if d > 13 from Theorem 1.1 in [8], therefore we have

md >
εd

d
− 1 > M.
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Remark 2. We describe the comparison between the lower bound in
Theorem 1 and the two well-known lower bounds given in the introduction
of this paper. From the proof of Corollary, our lower bound for d with odd
l(d) is greater than (

√
D/

√
5) · ((1 +

√
5)/2)l(d)−1. Moreover, if D > 13,

then we have the following:

√
D√
5

(
1 +

√
5

2

)l(d)−1

−
(

1 +
√

5

2

)l(d)

> 0.22

(

1 +
√

5

2

)l(d)−1

.

Furthermore, if l(d) ≥ 7, then

√
D√
5

(
1 +

√
5

2

)l(d)−1

−
√

D

(
3

2

)l(d)−2

> 0.038
√

D

(
1 +

√
5

2

)l(d)−2

.

Hence, our lower bounds are sharper than theirs.

Proof of Theorems 2 and 3

Proof of Theorems 2 and 3. First we shall prove the first half of Theo-
rem 3. Suppose that l ≡ 1, 2, or 4 (mod 6). Since it holds that

Fl+6 ≡ Fl (mod 4) (l ≥ 0),

we have d 6≡ 1 (mod 4). We put

ωR = (Fl + 1)/2 + [(Fl + 1)/2,1, . . . , 1
︸ ︷︷ ︸

l−1

, Fl + 1].

Then we have

ωR = Fl + 1 +
1

1 + · · ·+
1

1 +

1

ωR

.

By a straightforward induction argument, we obtain that

ωR = Fl + 1 +
Fl−1ωR + Fl−2

FlωR + Fl−1
.

Here, using Fl = Fl−1 + Fl−2 (l ≥ 2), we have

ω2
R − (Fl + 1)ωR − (Fl−1 + 1) = 0.

Since ωR > 0, it holds that

ωR =
Fl + 1

2
+

√
d.
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Hence, we obtain that ωd = [(Fl + 1)/2,1, . . . , 1, Fl + 1] and l(d) = l, and
we can determine εd, td and ud from Lemma 1. In the case of Theorem 2,
we put

ωR = Fl + [Fl + 1, 1, . . . , 1
︸ ︷︷ ︸

l−1

, 2Fl + 1].

Since we have ωR = Fl + ωd in the same way, we can determine εd, td and
ud.

Next we shall show the remaining part of Theorem 3. Since 1/Fl is
monotone decreasing in l, it holds that

3.4 < 4

(

1 +
3

Fl

)
−1

≤ 4

(

1 +
1

Fl

+
2Fl−1

Fl
2

)
−1

< 4

for l ≥ 7. Hence, we have md = 3 for l ≥ 7 from definition of md. And we
can get md in the case that l = 2 or 4 from straightforward calculations.

Lastly we shall show the remaining part of Theorem 2. We have nd = 2
for l ≥ 5 from the definition of nd, because

2 ≤ nd ≤ 2 +
1

Fl

+
2Fl−1

F 2
l

< 2 +
3

Fl

< 3

for l ≥ 5. And we can get nd in the case that l = 2 or 3 from straightforward
calculations. Theorems have been proved.

Table: Square-free positive integers d with 2 < l(d) ≤ 15
represented by the Fibonacci numbers:

d l(d)
(mod 6)

l(d) hd Fl(d) ωd

3 2 2 1 1 [1, 1, 2]

21 2 2 1 1 [2, 1, 3]

37 3 3 1 2 [3, 1, 1, 5]

7 4 4 1 3 [2, 1, 1, 1, 4]

69 4 4 1 3 [4, 1, 1, 1, 7]

149 5 5 1 5 [6, 1, 1, 1, 1, 11]

58 1 7 2 13 [7, 1, 1, 1, 1, 1, 1, 14]

797 1 7 1 13 [14, 1, 1, 1, 1, 1, 1, 27]

4933 3 9 3 34 [35, 1, 1, 1, 1, 1, 1, 1, 1, 69]

32485 5 11 8 89 [90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 179]

84237 0 12 6 144 [145, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 289]
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Table: Square-free positive integers d with 2 < l(d) ≤ 15
represented by the Fibonacci numbers:

d l(d)
(mod 6)

l(d) hd Fl(d) ωd

13834 1 13 22 233 [117, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 234]

219245 1 13 12 233 [234, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 467]

1493861 3 15 20 610 [611, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1221]

Finally, we have the above table for d concerning Theorem 2 and The-

orem 3. Here hd is the class number of Q(
√

d).
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