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LOWER BOUNDS FOR FUNDAMENTAL UNITS
OF REAL QUADRATIC FIELDS

KOSHI TOMITA anp KOUJI YAMAMURO

Abstract. Let d be a square-free positive integer and I(d) be the period length
of the simple continued fraction expansion of wg, where wy is integral basis
of Z[Vd]. Let 4 = (tq + ugv/d)/2 (> 1) be the fundamental unit of the real
quadratic field Q(\/E) In this paper new lower bounds for €4, tq, and uq are
described in terms of I(d). The lower bounds of 4 are sharper than the known
bounds and those of t4 and ug have been yet unknown. In order to show the
strength of the method of the proof, some interesting examples of d are given
for which ¢4 and Yokoi’s d-invariants are determined explicitly in relation to
continued fractions of the form [ao, 1,...,1,a;q)]-

Introduction

For a positive square-free integer d, let D be the discriminant of the real
quadratic field Q(v/d) and I(d) be the period length in the simple continued
fraction expansion of the algebraic integer wy = (oq — 1 + V/d)/o4, where
o4 =1 (resp. 2) for d #1 (mod 4) (resp. d =1 (mod 4)). It is well-known
that the fundamental unit ¢4 = (tq + ugv/d)/2 (> 1) of Q(v/d) has lower
bounds that increase with I(d). For example, there are ((1 4+ v/5)/2)!?)
(see, for example [1, p. 240]) and \/5(3/2)1(‘1)_2 (see [2, p. 98]). For d with
sufficiently large I(d), e4 is much larger than these lower bounds. So we will
caluculate a sharper lower bound in terms of I(d) to study the sufficiently
large g4 for d. Furthermore, we will calculate the lower bounds for t; and
ug in terms of I(d) that have been yet unknown. In order to study Yokoi’s
d-invariants, which are concerned with the class number one problem for
real quadratic fields, we need to investigate t; and ugy. We have obtained
the following theorem.
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THEOREM 1. Let d be a positive square-free integer with l[(d) > 2 and
D be the discriminant of Q(v/d). Then we have

Bty

% (\/—_ \/52— 1) . (1 +2‘/5>l(d) if 1(d) is odd.

Moreover, for tq and ug in eq = (tqg + ug\/d)/2 (> 1), we have

if 1(d) is even,
g4 >

I(d)—1
vD (L\/g) if 1(d) is even,

NP
1
=

I(d)
(VD-=v5+1). (1 +2\/5> if 1(d) is odd

and

L(l—i—\/g
oaV/b 2

I(d)—2
# (M> if 1(d) is odd.

1(d)—1
) if 1(d) is even,

2

In this paper, the simple continued fraction with period [ is generally
denoted by [ag,a1,---,0a;], and [z] means the greatest integer less than
or equal to z. Let {F;} be the Fibonacci numbers determined by Fy =
0, =1, F;;1 = F; + F;_1 (i > 1). The Fibonacci numbers play an
important role in showing Theorem 1, because we use the inequality €4 >
([wa] +wa) Fyay + Fya)-1 (resp. ([wa] —1+wa) Fya) + Fia)—1) in the case that
d # 1 (mod 4) (resp. d = 1 (mod 4)). We are interested in whether the
equality is possible. We got an affirmative answer and we have discovered
real quadratic fields with mg # 0. Here my is one of Yokoi’s d-invariant,
and it is defined by mg = [u?/t4). Another is defined by ng = [tq/u3]. We
know that there exist only finitely many d satisfying both class number
one and ng # 0 (i.e. mg = 0) (see [7, p. 188]). So it is very important to
investigate the case that mg # 0 (i.e. ng = 0). Now these results are stated
as follows:
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THEOREM 2. Let d be a positive square-free integer and | be a positive
integer satisfying | > 2. Assume that

d= (2F +1)* +8F_; + 4.

Then d=1 (mod 4), wg=[F;+1,1,...,1,2F; + 1], and I(d) = [ hold.
Moreover, we have

1
ea =5 (2F" + Fi +2F 1 + FVd) (= ([wa] = 1+ wa) Fi + Fi),

{td=2ﬂ2+ﬂ+2ﬂ_1,

uq = Fy,
and
5 if l=2,
ng=1+4 3 i l=3,
2 if l>5.

THEOREM 3. Let d be a positive square-free integer and l be a positive
integer satisfying that 1 > 2 and 1 = 1,2, or 4 (mod 6). Assume that

d=((F+1)/2)" + Fo1 + 1.

Then d #1 (mod 4), wg = [(F; +1)/2,1,... ,1,F; + 1], and I(d) =1 hold.

Moreover, we have

1
ea = 5 (F* + Fi+ 2F 1 + 20Vd) (= ([wa] + wa) Fi + Fia),
{ ty=F> + F) + 2F_1,

ug = 2Fy,
and
1 if 1 =2,
mg=1<4 2 if l=4,
3 if Il>T1.

Remark 1. Our aim is to show that, for any [, there exists d satisfying
I(d) = land wg = [ao, 1,...,1,a;4)]. The case that [ = 6n+1 was treated in
[4], but our proof is simpler than theirs. Their aim is to consider Eisenstein’s
problem.
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Preliminary

In order to prove our theorems, we need several lemmas.

LEMMA 1. For a square-free positive integer d, we suppose wgq =
[ag, a1, -, a;]. Moreover let q; be the integers determined by qo =0, ¢ =1,
gi+1 = a;q; + qi—1 (i > 1). Then the fundamental unit eq = (tq + ud\/a)/Q
(> 1) of Q(+/d) is given by the following formula:

If d#£1 (mod 4), then

ta = 2(aoqay + qi(@)-1);
€d = (ap + \/E)QJ(d) + Qud)-1> { @ @
Ud = 2qy(q)-

If d=1 (mod 4), then
2a0 — 1+ Vd ta = (2a0 — )quay + 2qi(d)—1,
=" U + Qi(d)—1>
Ud = qi(d)-
Proof is omitted (see proof of Lemma 1 in [3]).

LEMMA 2. For a positive square-free integer d, denote by D the dis-
criminant of Q(v/d). Then we have

ea > (VD — 1)Fyg) + Fyay-1-
Moreover, for tq and ug in eq = (tg + ug/d)/2 (> 1), we have

2
ta > (VD — 2)Fyq) + 2Fyq)—1  and ug > <U_d>Fl(d)-

Proof. In the case that d # 1 (mod 4), since ag > v/d — 1 and ¢; > F;
for any integer ¢ (> 1), from Lemma 1 we get

ea > (ao + Vd) Fya) + Fya)—1
> (2Vd — 1)Fyg) + Fya)—1
= (VD = 1)Fya) + Fyay-1-
For t; and ug, in the case that d Z 1 (mod 4), we have
tg > 2{(Vd—1)Fya) + Fya)-1} = (VD — 2)Fya) + 2Fya—1

and
uq = 2Fy(q).

In the case that d =1 (mod 4), we get the results in the same way. 0
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We get the following lemma by straightforward calculations.

LEMMA 3. Fori>1,

1 <1+\/3>“ i
— i 1 1S even
5 2 ’
F > Vs ,
1 /1 :

Proof of Theorem 1

Proof of Theorem 1. We put a = (1 4+ /5)/2. First we shall show the
lower bound of 4. From Lemma 2, we know 4 > (\/5 - 1)Fl(d) + Fyg)-1-
In the case that [(d) (> 3) is odd, we have, from Lemma 3,

I(d) 1
VD — D) Fya + Fiagy-1 > (VD — 1)2— + —al®-2
( VFi(a) + Fia)—1 > ( )\/3 7
:@{\/D_\/g_l}
V5 2 )

This proves the odd case.
In the case that I(d) (> 2) is even, we have

Al@d-1 -1

VD —1)Fyg + Fyg—1 > (VD -1 +
( VEiay + Fiay—1 > ( ) 7 NG
_ VD i1,
V5
Next we shall show the lower bounds of ¢; and ug4. From Lemma 2, we

know

ta > (VD — 2)Fyq) + 2Fj(a)—1
In the case that [(d) (> 3) is odd, we have

(\/5 — 2)Fl(d) +2F g1 > (\/5 — 2)04 +2
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In the case that [(d) (> 2) is even, we have

(-1 )1
VD —2)Fyp 4+ 2F g1 > (VD —2)2 12
( ) Eiay i(d)—1 > ( ) 7 NG

VDo
V5

From Lemma 2 and Lemma 3, we can get the lower bound of uy in a similar
way as in the proof of t4. Theorem has been completely proved. 0

From Theorem 1, we get the following corollary for the period I(d) and
Yokoi’s d-invariant my:

COROLLARY. If there exist a positive integer M and a positive square-
free integer d such that d > 13 and

1(d) > log(M + 1) + log (v/5d ) — log 2

- log <1 +2\/5)

+1,

then mg > M.

Proof. From the assumption, we have

@(1+\/3
NAUE

1(d)—1
) > (M +1)d.

Since it holds that

A7) () R0

for any positive integer ¢, we get, from Theorem 1,

g4 > (M + 1)d.
Moreover, mg = [g4/d] if d > 13 from Theorem 1.1 in [8], therefore we have

md>%d—1>M.
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Remark 2. We describe the comparison between the lower bound in
Theorem 1 and the two well-known lower bounds given in the introduction
of this paper. From the proof of Corollary, our lower bound for d with odd
I(d) is greater than (v D/V5) - (1 + v/5)/2)4D=1. Moreover, if D > 13,
then we have the following:

\/—\/?<1+2\/5>1(d)1_ <1+2\/3>l(d) - 02 <1+2\/5>l(d)—1.

Furthermore, if I(d) > 7, then

VD1 (3) L s (LE)

Hence, our lower bounds are sharper than theirs.

Proof of Theorems 2 and 3
Proof of Theorems 2 and 3. First we shall prove the first half of Theo-
rem 3. Suppose that [ = 1,2, or 4 (mod 6). Since it holds that
Fi¢=F (mod4) (I1>0),
we have d 21 (mod 4). We put
——
-1

Then we have 1 ] ]
or=HAlt T T on
By a straightforward induction argument, we obtain that
wp=F+1+ —F}l L(“;R:Fflf.
Here, using F; = Fj_1 + F;_5 (I > 2), we have
wh — (Fy 4+ 1w — (F_1 +1) = 0.
Since wgr > 0, it holds that

F+1
WR = l;_ +Vd.
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Hence, we obtain that wy = [(F; +1)/2,1,...,1,F; + 1] and I(d) = [, and
we can determine €4, ty and ug from Lemma 1. In the case of Theorem 2,
we put

wrp=F+[F+1,1,...,1,2F +1].
——
-1
Since we have wgr = F] + wy in the same way, we can determine ¢4, ty and
Ud-
Next we shall show the remaining part of Theorem 3. Since 1/F; is
monotone decreasing in [, it holds that

3\ 7! 1 2F 4\ !
3d4<4(1+2) <4({1+=+ <4
< Fl> - < F Fﬁ)

for [ > 7. Hence, we have mg = 3 for [ > 7 from definition of m,. And we
can get my in the case that [ = 2 or 4 from straightforward calculations.
Lastly we shall show the remaining part of Theorem 2. We have ng = 2
for [ > 5 from the definition of ny4, because
1 2F_ 3

2<ng <2+ = Leoa+ 2 <3
ndg —|—Fl+ F2 +Fl

for I > 5. And we can get ng in the case that [ = 2 or 3 from straightforward
calculations. Theorems have been proved. 0

Table: Square-free positive integers d with 2 < I(d) < 15
represented by the Fibonacci numbers:

d (nf,ﬁ(?ﬁ) I(d) | ha | Fia) | wa
3] 2 o 1] 1|[LL2
21| 2 2| 1 1| 213
37| 3 3| 1 2| 3,T,1.5
7] 4 1] 1| 3|RTTLLA
69 | 4 4| 1 3| 4T TLT
o | 5 | 5| 1| 5| 6TTLLT
58 1 7| 2| B|rTLLLLLY
1| 1| 7| 1| 13| pATTTTLLZY
4933 | 3 9| 3| 34|[35LL1L1LLLL6Y
32485 | 5 | 11| 8| 89| [90,T,L,L,L,1,1,1,1,1,1,179)
84237 | 0 | 12| 6| 144 | [145T,1,L,L,1,1,1,1,1, 1, 1,289
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Table: Square-free positive integers d with 2 < I(d) < 15
represented by the Fibonacci numbers:

d | D Vi) | ha | Fuay | wa

13834 | 1 | 13|22 233 | 1I7,LLLLLLL 11,111,234
219245 | 1 | 13|12| 233 | 234, T,1,1,1,1,1,1,1,1,1,1,1, 467
1493861 | 3 | 15| 20| 610 | [611,T,,,1,1,1,1,L,1,1,1,1,1,1,122]]

Finally, we have the above table for d concerning Theorem 2 and The-
orem 3. Here hy is the class number of Q(v/d).
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