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Abstract. A cubic fourfold is a smooth cubic hypersurface of dimension four; it isspecialif it con-
tains a surface not homologous to a complete intersection. Special cubic fourfolds form a countably
infinite union of irreducible familiesCd , each a divisor in the moduli spaceC of cubic fourfolds.
For an infinite number of these families, the Hodge structure on the nonspecial cohomology of the
cubic fourfold is essentially the Hodge structure on the primitive cohomology of a K3 surface. We
say that this K3 surface isassociatedto the special cubic fourfold. In these cases,Cd is related to the
moduli spaceNd of degreed K3 surfaces. In particular,C contains infinitely many moduli spaces
of polarized K3 surfaces as closed subvarieties. We can often construct a correspondence of rational
curves on the special cubic fourfold parametrized by the K3 surface which induces the isomorphism
of Hodge structures. For infinitely many values ofd, the Fano variety of lines on the generic cubic
fourfold of Cd is isomorphic to the Hilbert scheme of length-two subschemes of an associated K3
surface.

Mathematics Subject Classifications (1991):14C30, 14J28, 14J35.
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1. Introduction

Let X be a special cubic fourfold,h its hyperplane class, andT the class of an
algebraic surface not homologous to any multiple ofh2. The discriminantd is
defined as the discriminant of the saturated lattice spanned byh2 andT . Let Cd
denote the special cubic fourfolds of discriminantd (Section 3.2).

THEOREM 1.0.1 (Classification of Special Cubic Fourfolds) (Theorems 3.1.2,
3.2.3, and 4.3.1).Cd ⊂ C is an irreducibledivisor and is nonempty iffd > 6 and
d ≡ 0,2 (mod6).

In Section 4, we give concrete descriptions of special cubic fourfolds with small
discriminants and explain how certain Hodge structures at the boundary of the
period domain arise from singular cubic fourfolds.
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2 BRENDAN HASSETT

Thenonspecial cohomologyof a special cubic fourfold consists of the middle
cohomology orthogonal to the distinguished classesh2 andT . In many cases, it is
essentially the primitive cohomology of a K3 surface of degreed, which is said
to beassociatedto the special cubic fourfold. Furthermore, the varietiesCd are
often closely related to moduli spaces of polarized K3 surfaces. LetCmar

d denote
the marked special cubic fourfolds of discriminantd (Section 5.2). This is the
normalization ofCd if d ≡ 2 (mod 6) and is a double cover of the normalization
otherwise.

THEOREM 1.0.2 (Associated K3 Surfaces and Maps of Moduli Spaces).
(Theorems 5.1.3 and 5.2.4).Special cubic fourfolds of discriminantd have as-
sociated K3 surfaces iffd is not divisible by four, nine, or any odd primep ≡
−1 (mod3). In these cases, there is in open immersion ofCmar

d into the moduli
space of polarized K3 surfaces of degreed.

In particular, aninfinite number of moduli spaces of polarized K3 surfaces may be
realized as moduli spaces of special cubic fourfolds.

We can explain geometrically the existence of certain associated K3 surfaces.
The Fano varietyof X parametrizes the lines contained in it. For certain special
cubic fourfolds these Fano varieties are closely related to K3 surfaces.

THEOREM 1.0.3 (Geometry of Fano Varieties). (Theorem 6.1.4).Assume that
d = 2(n2+ n+ 1) wheren is an integer> 2, and letX be a generic special cubic
fourfold of discriminantd. Then the Fano variety ofX is isomorphic to the Hilbert
scheme of length-two subschemes of a K3 surface associated toX.

We should point out that the hypothesis ond is stronger than necessary, but sim-
plifies the proof considerably. Combining this with the results on maps of mod-
uli spaces, we obtain examples of distinct K3 surfaces with isomorphic Hilbert
schemes of length-two subschemes (Proposition 6.2.2)

One motivation for this work is the rationality problem for cubic fourfolds.
The Hodge structures on cubic fourfolds and their relevance to rationality ques-
tions have previously been studied by Zarhin [30]. Izadi [15] also studied Hodge
structures on cubic hypersurfaces with a view toward rationality questions. All the
examples of cubic fourfolds known to be rational ([10] [27] [5] [28]) are special
and have associated K3 surfaces. Indeed, a birational model of the K3 surface is
blown up in the birational map fromP4 to the cubic fourfold. Is this the case for all
rational cubic fourfolds? In a subsequent paper [14], we shall apply the methods
of this paper to give new examples of rational cubic fourfolds. We show there is
a countably infinite union of divisors inC8 parametrizing rational cubic fourfolds
(C8 corresponds to the cubic fourfolds containing a plane).

Throughout this paper we work overC. We use the term ‘generic’ to mean
‘in the complement of some Zariski closed proper subset.’ The term ‘lattice’ will
denote a free abelian group equipped with a nondegenerate symmetric bilinear
form.
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SPECIAL CUBIC FOURFOLDS 3

2. Hodge Theory of Cubic Fourfolds

2.1. COHOMOLOGY AND THE ABEL–JACOBI MAP

LetX be a smooth cubic fourfold. The Hodge diamond ofX has the form:

1
0 0

0 1 0
0 0 0 0

0 1 21 1 0

Let L denote the cohomology groupH 4(X,Z), L0 the primitive cohomology
H 4(X,Z)0, and〈, 〉 the symmetric nondegenerate intersection form onL. If h is
the hyperplane class thenh2 ∈ L andL0 = (h2)⊥.

Our best tool for understanding the middle cohomology ofX is the Abel–Jacobi
mapping. LetF be the Fano variety of lines ofX, the subvariety of the Grassman-
nianG(1,5) parametrizing lines contained inX. This is a smooth fourfold ([1]
Section 1). LetZ ⊂ F × X be the ‘universal line’, with projectionsp andq. The
Abel–Jacobi mapis defined as the map

α = p∗q∗: H 4(X,Z)→ H 2(F,Z).

LetM = H 2(F,Z), M0 the primitive cohomology, andg the class of the hyper-
plane onF (induced from the Grassmannian). Recall thatα(h2) corresponds to
the lines meeting a codimension-two subspace ofP5, soα(h2) = g. Following [3]
and [5], we define theBeauville canonical form(, ) onM so thatg andM0 are
orthogonal,(g, g) = 6, and(x, y) = 1

6g
2xy for x, y ∈ M0. Extending by linearity

we obtain an integral form on all ofM.

PROPOSITION 2.1.1 (Beauville–Donagi [4] Proposition 6).The Abel–Jacobi
map induces an isomorphism betweenL0 andM0; moreover, forx, y ∈ L0 we
have(α(x), α(y)) = −〈x, y〉.
Indeed, we may interpretα is an isomorphism of Hodge structuresH 4(X,C)0→
H 2(F,C)0(−1). The−1 means that the weight is shifted by two; this reverses the
sign of the intersection form.

PROPOSITION 2.1.2. The middle integral cohomology lattice of a cubic fourfold
is L ∼= (+1)⊕21⊕ (−1)⊕2 i.e. the intersection form is diagonalizable overZ with
entries±1 along the diagonal. The primitive cohomology isL0 ∼= B ⊕H ⊕H ⊕
E8⊕ E8, where

B =
(

2 1
1 2

)
, H =

(
0 1
1 0

)
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4 BRENDAN HASSETT

is the hyperbolic plane, andE8 is the positive definite quadratic form associated
to the corresponding Dynkin diagram.

We first prove the statement on the full cohomology.L is unimodular by Poin-
caré duality and has signature(21,2) by the Riemann bilinear relations.L is odd
because

〈
h2, h2

〉 = h4 = 3. Using the theory of indefinite quadratic forms (e.g. [25]
chapter 5 Section 2.2) we conclude the result.

Now we turn to the primitive cohomologyL0. By Proposition 2.1.1 it suffices
to computeM0; we first computeM. In [5] Proposition 6, it is shown thatF is
a deformation of a varietyS[2], whereS is a degree-fourteen K3 surface andS[2]
denotes the Hilbert scheme of length-two zero-dimensional subschemes ofS (also
called theblown-up symmetric squareof S). By [3] Section 6 we have the canonical
orthogonal decompositionH 2(S[2],Z) = H 2(S,Z)⊕⊥Zδ,where(δ, δ) = −2 and
the restriction of(, ) toH 2(S,Z) is the intersection form. Geometrically, the divisor
2δ corresponds to the nonreduced length-two subschemes ofS. The cohomology
lattice of a K3 surface is well-known (cf. [16] Proposition 1.2)H 2(S,Z) ∼= 3 :=
H⊕3⊕ (−E8)

⊕2, soM ∼= H⊕3⊕ (−E8)
⊕2⊕ (−2). Furthermore, the polarization

g = 2f − 5δ, wheref ∈ H 2(S,Z) satisfies(f, f ) = 14 [5]. The automorphisms
ofH 2(S,Z) act transitively on the primitive vectors of a given nonzero length ([16]
Theorem 2.4). Ifv1 andw1 are elements of the first summandH with (v1, v1) =
(w1, w1) = 0 and (v1, w1) = 1, then we may takef = v1 + 7w1 and g =
2v1+ 14w1− 5δ. Usingv1+ 3w1− 2δ andδ − 5w1 as the first two elements of a
basis ofM0, we obtain the result. 2

Remark.Note that our computation shows thatL0 is even.

2.2. HODGE THEORY AND THE TORELLI MAP

We review Hodge theory in the context of cubic fourfolds; a general introduction to
Hodge theory is [12]. Recall that a complete marking of a polarized cubic fourfold
is an isomorphismφ: H 4(X,Z)→ L mapping the square of the hyperplane class
to h2 ∈ L. If we are given a complete marking, the complex structure onX

determines a distinguished subspaceF 3(X) = H 3,1(X,C) ⊂ L0
C satisfying the

following properties:

(1) F 3(X) is isotropic with respect to the intersection form〈, 〉;
(2) the Hermitian formH(u, v) = −〈u, v̄〉 onF 3(X) is positive.

LetQ ⊂ P(L0
C) be the quadric hypersurface defined by (1), and letU ⊂ Q be

the topologically open subset where (2) also holds.U is a homogeneous space for
the real Lie group SO(L0

R) = SO(20,2). This group has two components; one of
them reverses the orientation on the negative definite part ofL0

R, which coincides

with (F 3⊕F 3)∩L0
R. Changing the orientation corresponds to exchangingF 3 and

F 3 (see Section 6 of the appendix to [24] for details). Hence the two connected
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SPECIAL CUBIC FOURFOLDS 5

components ofU parametrize the subspacesF 3 andF 3 = H 1,3(X) respectively;
we denote themD ′ and D ′. The componentD ′ is a twenty-dimensional open
complex manifold, called thelocal period domainfor cubic fourfolds.

Let0 denote the group of automorphisms ofL preserving the intersection form
and the distinguished classh2, and0+ ⊂ 0 the subgroup stabilizingD ′. This
is the index-two subgroup of0 which preserves the orientation on the negative
definite part ofL0

R. 0+ acts holomorphically onD ′ from the left; for a point in
D ′ corresponding to the marked cubic fourfold(X, φ) the action isγ (X, φ) =
(X, γ ◦ φ). The orbit spaceD = 0+\D ′ exists as an analytic space and is called
theglobal period domain.

Two cubic fourfolds are isomorphic iff they are projectively equivalent. Let
C denote the coarse moduli space for smooth cubic fourfolds, constructed as a
Geometric Invariant Theory quotient [18] chapter 4 Section 2. Each cubic fourfold
determines a point inD , and the corresponding mapτ : C −→ D is called the
period map. By general results of Hodge theory, this is a holomorphic map of
twenty-dimensional analytic spaces. For cubic fourfolds we can say much more.
First, we have the following result due to Voisin.

THEOREM 2.2.1 (Torelli Theorem for Cubic Fourfolds[29]).τ : C → D is an
open immersion of analytic spaces.

In particular, ifX1 andX2 are cubic fourfolds and there exists an isomorphism of
Hodge structuresψ : H 4(X1,C) → H 4(X2,C), thenX1 andX2 are isomorphic.
Second,τ is not just an analytic map.

PROPOSITION 2.2.2. D is a quasi-projective variety of dimension twenty and
τ : C → D is an algebraic map.

In Section 6 of the appendix to [24], it is shown that the manifoldD ′ is a bounded
symmetric domain of type IV. The group0+ is arithmetically defined and acts
holomorphically onD ′. In this situation we may introduce the Borel–Baily com-
pactification ([2] Section 10): there exists a compactification ofD ′, compatible
with the action of0+, so that the quotient is projective. Moreover,0+\D ′ is a Za-
riski open subvariety of this quotient. To complete the proof, we use the following
consequence of A. Borel’s extension theorem [6]

LetD′ be a bounded symmetric domain, andG an arithmetically defined torsion-
free group of automorphisms. LetD = G\D′ be the quasi-projective quotient
space, andZ an algebraic variety. Then any holomorphic mapZ → D is algeb-
raically defined.

While0+ has torsion, some normal subgroupH of finite index is torsion-free ([24]
IV Lemma 7.2). Let0+(N) denote the subgroup of0+ acting trivially onL/NL.
For some largeN , 0+/H acts faithfully onL/NL so0+(N) ⊂ H and is torsion-
free. LetC(N) denote the moduli space of cubic fourfolds with markedZ/NZ
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6 BRENDAN HASSETT

cohomology. This is a finite (and perhaps disconnected) cover ofC; we useC0(N)

to denote a connected component. LetD(N) = 0+(N)\D ′, which is also finite
overD . The period map lifts to a mapτN : C0(N) → D(N). By Borel’s theorem
τN is algebraic, and a descent argument impliesτ is also algebraic. 2

Remark. It follows thatC is a Zariski open subset ofD and its complement is
defined by algebraic equations.

3. Special Cubic Fourfolds

3.1. BASIC DEFINITIONS

DEFINITION 3.1.1. A cubic fourfoldX is special if it contains an algebraic
surfaceT not homologous to a complete intersection.

Let A(X) = H 2,2(X) ∩ H 4(X,Z), which is positive definite by the Riemann
bilinear relations. The Hodge conjecture is true for cubic fourfolds [31], soA(X)

is generated (overQ) by the classes of algebraic cycles;X is special if and only
if the rank ofA(X) is at least two. This is equivalent to saying that the rank of
L ∩ F 3(X)⊥ is at least two, or thatL0 ∩ F 3(X)⊥ 6= 0. A Hodge structurex ∈ D ′
is specialif L0 ∩ F 3(x)⊥ is nonzero.

THEOREM 3.1.2 (Structure of Special Cubic Fourfolds).LetK ⊂ L be a positive
definite rank-two saturated sublattice containingh2, [K] the0+ orbit of K, and
C[K] the cubic fourfoldsX such thatA(X) ⊃ K ′ for someK ′ ∈ [K]. Every special
cubic fourfold is contained in someC[K], which is an irreducible algebraic divisor
of C, and is nonempty for all but a finite number of[K].
Given such a latticeK, we setK0 = K∩L0. LetD ′K be thex ∈ D ′ such thatK0 ⊂
x⊥; this is a hyperplane section ofD ′ ⊂ P(L0

C). Each special Hodge structure is
contained in someD ′K . LetK⊥ denote the orthogonal complement toK in L. We
see thatD ′K is a topologically open subset of a quadric hypersurface inP(K⊥C ), has
dimension nineteen, and classifies Hodge structures structures on the latticeK⊥. As
in the previous section, we can prove thatD ′K is a bounded symmetric domain of
type IV. Let0+K = {γ ∈ 0+: γ (K) ⊂ K}. As before, the quotient0+K\D ′K is quasi-
projective. Furthermore, the induced holomorphic map0+K\D ′K → 0+\D ′ = D
is algebraically defined, so its image is an irreducible algebraic divisor.

We enumerate the divisors parametrizing special Hodge structures inD . Each
one corresponds to0+K\D ′K for someK ⊂ L as above, butK is not uniquely
determined.K1 andK2 give rise to the same divisor if and only ifK1 = γ (K2) for
someγ ∈ 0+, i.e.0+K1

and0+K2
are conjugate in0+. Let D[K] denote the corres-

ponding irreducible divisor inD . SinceC is Zariskiopen inD (Proposition 2.2.2),
C[K] = C ∩D[K] is an irreducible algebraic divisor inC, andD[K] ⊂ (D −C) for
finitely many[K]. 2
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SPECIAL CUBIC FOURFOLDS 7

DEFINITION 3.1.3. Let(K, 〈, 〉) be a positive definite rank-two lattice containing
a distinguished elementh2 with

〈
h2, h2

〉 = 3. A marked(resp. labelled) special
cubic fourfold is a cubic fourfoldX with the data of a primitive imbedding of
latticesK ↪→ A(X) preservingh2 (resp. the image of such an imbedding.) A
special cubic fourfold istypical if it has a unique labelling.

We writeD lab
[K] for 0+K\D ′K . The morphismD lab

[K] → D[K] is birational (indeedD lab
[K]

is the normalization ofD[K]), so a general point inD[K] has a unique labelling. The
fiber productD lab

[K] ×D C will be denotedC lab
[K].

3.2. DISCRIMINANTS AND SPECIAL CUBIC FOURFOLDS

DEFINITION 3.2.1. Thediscriminantof a labelled special cubic fourfold(X,K)
is the determinant of the intersection matrix ofK.

PROPOSITION 3.2.2.Let (X,K) be a labelled special cubic fourfold of discrim-
inant d and letv be a generator ofK0.

(1) d > 0 andd ≡ 0,−1 (mod3),

(2) d ′ := 〈v, v〉 =
{

3d if d ≡ −1 (mod3),
d
3 if d ≡ 0 (mod3),

(3)
〈
v,L0

〉 = { 3Z if d ≡ −1 (mod3),

Z if d ≡ 0 (mod3),

(4) d is even.

The first three statements are straightforward computations, so we omit their proofs.
The fourth follows from the remark after Proposition 2.1.2. 2
We refine the results of the previous section by classifying the orbits of the rank-
two sublattices under the action of0+. The following theorem is a consequence of
Theorem 3.1.2 and Proposition 3.2.4.

THEOREM 3.2.3 (Irreducibility Theorem).The special cubic fourfolds possess-
ing a labelling of discriminantd form an irreducible (possibly empty) algebraic
divisor Cd ⊂ C.

Elements ofCd are calledspecial cubic fourfolds of discriminantd; the corres-
ponding rank-two lattice is denotedKd . We writeDd for D[Kd ], D lab

d for D lab
[Kd ], Cd

for C[Kd ], andC lab
d for C lab

[Kd ].

PROPOSITION 3.2.4. LetK andK ′ be saturated rank-two nondegenerate sub-
lattices ofL containingh2. ThenK = γ (K ′) for someγ ∈ 0+ if and only ifK
andK ′ have the same discriminant.
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We claim it suffices to prove the result for0. We find someg ∈ 0−0+ stabilizing
sublattices with every possible discriminant. Takeg to be the identity except on
the second hyperbolic plane in the orthogonal decomposition forL0; on this com-
ponent setg equal to multiplication by−1. (We refer to the computation ofL0 in
Proposition 2.1.2)

Now we analyze the action of0 on our rank-two sublattices, or equivalently,
on saturated nondegenerate rank-one sublatticesK0 ⊂ L0. We apply the results of
Nikulin on discriminant groups and quadratic forms; see [22] or [9] for basic defin-
itions and proofs. The elements of0 fix h2, so they act trivially on the discriminant
groupsd(Zh2) andd(L0) [22] Section 1.5. Conversely, any automorphism ofL0

that acts trivially ond(L0) extends to an element of0 [22] 1.5.1.
Let K0 denote a lattice generated by an elementv with 〈v, v〉 = d ′, qK0 the

quadratic form ond(K0), andq the quadratic form ond(L0). The latticeL0 is
the unique even lattice of signature(20,2) with discriminant quadratic formq
[22] 1.14.3. Any saturated codimension-one sublatticeK⊥ ⊂ L0 is the orthogonal
complement inL of a rank-two sublatticeK, so there is an induced isomorphism
d(K⊥) ∼= d(K) [22] 1.6.1, andd(K⊥) is generated by at most two elements. This
implies the isomorphism class ofK⊥ is determined by its signature and discrim-
inant form, and any isomorphism ofd(K⊥) preserving the discriminant quadratic
form is induced by an automorphism ofK⊥ [22] 1.14.3.

Two primitive imbeddings ofi: K0→ L0 differing only by an element of0 are
said to becongruent. Applying the results of [22] Section 1.15 in our situation, we
find the primitive imbeddingsi: K0→ L0 correspond to the following data:

(1) a subgroupHq ⊂ d(L0),
(2) a subgroupHK0 ⊂ d(K0),
(3) an isomorphismφ : HK0 → Hq preserving the restrictions of the quadratic

forms to these subgroups, with graph0φ = {(h, φ(h)): h ∈ HK0} ⊂ d(K0)⊕
d(L0),

(4) an even latticeK⊥ with complementary signature and discriminant formqK⊥ ,
and an isomorphismφK⊥ : qK⊥ → −δ, whereδ = ((qK0 ⊕−q)|0⊥φ )/0φ (and
0⊥φ is the orthogonal complement to0φ with respect toqK0 ⊕ q).

Another imbeddingi′ with data(H ′q,H ′K0, φ
′, (K ′)⊥, φ(K ′)⊥) is congruent toi if

and only ifHK0 = H ′
K0 andφ = φ′.

Our proof now divides into two cases. In the first caseHq = {0}, or equiv-
alently,

〈
i(K0), L0)

〉 = Z (i.e. 3|d). By the characterization above, all primitive
imbeddings ofK0 are congruent. In the second caseHq = d(L0) ∼= Z/3Z, or
equivalently,

〈
i(K0), L0)

〉 = 3Z. In this case,d(K0) has a subgroupHK0 of order
three and 3|d ′. There are two possible isomorphisms betweend(L0) andHK0, thus
two congruence classes of imbeddings ofK0 intoL0. 2
Using [22] Section 1.15 and Proposition 3.2.2, we can compute the discriminant
quadratic forms of the latticesK⊥d :
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SPECIAL CUBIC FOURFOLDS 9

PROPOSITION 3.2.5.If d ≡ 0 (mod6) thend(K⊥d ) ∼= Z/d3Z⊕ Z/3Z, which is
cyclic unless9|d. We may choose this isomorphism so thatqK⊥d (0,1) = 2

3 (mod2Z)
andqK⊥d (1,0) = − 3

d
(mod2Z). If d ≡ 2 (mod6) thend(K⊥d ) ∼= Z/dZ. We may

choose a generatoru so thatqK⊥d (u) = 2d−1
3d (mod2Z).

4. Examples

4.1. SPECIAL CUBIC FOURFOLDS WITH SMALL DISCRIMINANTS

The examples here are discussed in more detail in [13]. IfT is a smooth surface
contained in a cubic fourfoldX then〈T , T 〉 = c2(NT/X) = 6h2

T +3hTKT +K2
T −

χT whereχT is the topological Euler characteristic andhT is the hyperplane class
restricted toT .

4.1.1. d = 8: Cubic fourfolds containing a plane(see [29])

X contains a planeP , so that〈P,P 〉 = 3 and our marking is

K8 =
h2 P

h2 3 1
P 1 3

.

The cubic fourfolds inC8 generally contain other surfaces, like quadric surfaces
and quartic del Pezzo surfaces.

4.1.2. d = 12:Cubic fourfolds containing a cubic scroll

X contains a rational normal cubic scrollT , so that〈T , T 〉 = 7 and our marking is

K12 =
h2 T

h2 3 3
T 3 7

.

4.1.3. d = 14:Cubic fourfolds containing a quartic scroll/Pfaffian cubic
fourfolds

X is a cubic fourfold containing a rational normal quartic scrollT , so that〈T , T 〉 =
10 and our marking is

K14 =
h2 T

h2 3 4
T 4 10

.

Special cubic fourfolds of discriminant 14 generally also contain quintic del Pezzo
surfaces and quintic rational scrolls. One can show that the quartic scrolls, quintic
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10 BRENDAN HASSETT

scrolls, and quintic del Pezzos onX form families of dimensions two, two, and
five respectively. Note that Morin [17] uses a spurious parameter count to deduce
that the quartic scrolls form aone dimensional family. From this, he concludes
incorrectly thateverycubic fourfold contains a quartic scroll.

Another description of an open subset ofC14 is the Pfaffian construction of
Beauville and Donagi [5]. The dimension counts above follow easily from their
results. They also show that the Pfaffian cubic fourfolds are rational. Finally, we
should point out that the cubic fourfolds containing two disjoint planes possess a
marking with discriminant 14, and thus are also contained inC14. (See [10] and
[27] for more discussion of these examples.)

4.1.4. d = 20:Cubic fourfolds containing a Veronese

X contains a Veronese surfaceV , so that〈V, V 〉 = 12 and our marking is

K20 =
h2 V

h2 3 4
V 4 12

.

4.2. d = 6: CUBIC FOURFOLDS WITH DOUBLE POINTS

A double point isordinary if its projectivized tangent cone is smooth. Cubic hyper-
surfaces inP5 with an ordinary double point are stable in the sense of Geometric
Invariant Theory. This is proved using Mumford’s numerical criterion for stability
([18] Section 2.1) and the methods of ([18] Section 4.2). LetC̃ denote the quasi-
projective variety parametrizing cubic fourfolds with (at worst) a single ordinary
double point.

Let X0 be a cubic fourfold with a single ordinary double pointp. Projection
from p gives a birational mapπp: X0→ P4 which can be factored

X0 = BlS(P4)
q1 - X0

P4

q2

?

whereq1 is the blow-up of the double pointp and q2 is the blow-down of the
lines contained inX0 passing throughp. These lines are parametrized by a surface
S ⊂ P4, which is the complete intersection of a quadric and a cubic. The quadric is
nonsingular becausep is ordinary; the complete intersection is smooth becausep is
the only singularity ofX0. In particular,S is a sextic K3 surface. The inverse map
π−1
p is given by the linear system of cubic polynomials through this K3 surface.
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Conversely, given any sextic K3 surface contained in a smooth quadric, the image
of P4 under this linear system is a cubic fourfold with an ordinary double point.
Note that the sextic K3 surfaces contained in a singular quadric hypersurface are
precisely those containing a cubic plane curve.

This construction suggests that we associate a sextic K3 surface to any element
of C̃ − C.

PROPOSITION 4.2.1.The Torelli map extends to an open immersionτ̃ : C̃ → D .
The closed set̃C6 := C̃ − C is mapped intoD6.

In Section 5.2 we shall see thatD6 coincides with the period domain for sextic
K3 surfaces. A detailed proof of the proposition is given in Section 4 of [29],
so we merely explain some details needed for our calculations. (It also follows
from the delicate analysis of singular cubic fourfolds in Section 6.3.) LetX0 be
a cubic fourfold with an ordinary double point and letS be the associated K3
surface. Smoothings of ordinary double points of even codimension have mono-
dromy satisfyingT 2 = I , so any smoothing ofX0 yields a pure limiting mixed
Hodge structureH 4

lim. The corresponding point of the period domain is denoted
τ̃ (X0). The limiting Hodge structure may be computed with the Clemens–Schmid
exact sequence [7], which implies there is a natural imbedding of the primitive
cohomologyH 2(S,C)0(−1) into H 4

lim. The orthogonal complement to the image
consists of a rank-two lattice of integral(2,2) classes

K6 =
h2 T

h2 3 0
T 0 2

so τ̃ (X0) ∈ D6.

4.3. EXISTENCE OF SPECIALCUBIC FOURFOLDS

Dd ⊂ D is nonempty if and only ifd is positive and congruent to 0,2 (mod 6)
(Proposition 3.2.2), so we restrict to these values ofd.

THEOREM 4.3.1 (Existence of Special Cubic Fourfolds).Letd > 6 be an integer
with d ≡ 0,2 (mod6). Then the divisorCd is nonempty.

We saw in the last section why there are no smooth cubic fourfolds of discriminant
six: D6 corresponds to the limiting Hodge structures arising from cubic fourfolds
with double points. In the next section we shall explain why there are no cubic
fourfolds of discriminant two:D2 corresponds to the limiting Hodge structures
arising from another class of singular cubic fourfolds. Is the complementD − C
equal toD2 ∪D6?

To prove the theorem, we need the following lemmas.
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12 BRENDAN HASSETT

LEMMA 4.3.2. Let P be an indefinite even rank-two lattice representing six.
Assume thatP is not isomorphic to any of the following:(

6 1
1 0

) (
6 2
2 0

) (
6 0
0 −2

) (
6 3
3 0

)
.

Then there exists a smooth sextic K3 surfaceS lying on a smooth quadric with
Pic(S) ∼= P .

LEMMA 4.3.3. Let P be a rank-two indefinite even lattice,f ∈ P a primitive
element withd := f 2 > 0, and assume there is noE ∈ P with E2 = −2 and
fE = 0. Then there exists a K3 surfaceS with Pic(S) = P andf a polarization
on S. Moreover,f is very ample unless there exists an elliptic curveC on S with
C2 = 0 andfC = 1 or 2.

Recall that3 denotes the lattice isomorphic to the middle cohomology of a K3
surface. Using the results of Section 2 of [16], there exists an imbeddingP ↪→ 3.
So for some elements of the period domainP equals the lattice of(1,1)-classes.
The surjectivity of the period map for K3 surfaces implies the existence of a K3
surfaceS with Picard groupP so thatf contained in the Kähler cone ofS (see
pp. 127 of [4]). This impliesf is a polarization ofS. To complete the proof, we
apply Saint Donat’s results for linear systems on K3 surfaces [23]. Specifically,
we use Theorems 3.1, 5.2, and 6.1, along with the analysis of fixed components in
Section 2.7. 2
To prove Lemma 4.3.2, we note that the image under|f | is not contained in a

singular quadric becauseP �
(

6 3
3 0

)
(i.e.S does not contain a plane cubic).2

Now we prove the theorem. LetS be one of the K3 surfaces constructed in
Lemma 4.3.2 andX0 the corresponding singular cubic fourfold. Letv ∈ P be prim-
itive with respect to the sextic polarization. Recall thatH 2(S,C)0(−1) is naturally
imbedded into the limiting Hodge structureH 4

lim arising fromX0. The image ofv is
an integral class of type(2,2) inH 4

lim, denotedv′. RelabelH 4
lim by lettingKd denote

the saturation of the latticeZh2+ Zv′. By Proposition 3.2.2,d = −1
2disc(P ). For

eachd ≡ 0,2 (mod6), d > 6, there exist latticesP satisfying the hypotheses of
Lemma 4.3.2 with discriminant−2d. If d = 6n (resp.d = 6n+ 2) we may take

P =
(

6 0
0 −2n

) (
resp.

(
6 2
2 −2n

))
.

Setx0 = τ̃ (X0) so thatx0 ∈ D6 ∩Dd. We construct a smoothingφ: X→ 1′
whereXt is smooth fort 6= 0, andτ(Xt ) ∈ Dd . Let γ : 1→ D be a holomorphic
map such thatγ (0) = x0 andγ (u) ∈ Dd −D6 for u 6= 0. The existence of such a
curve follows from the construction ofD as the quotient0+\D ′. Becausẽτ is an
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open immersion, we may shrink1 so thatγ lifts throughτ̃ , giving a mapµ: 1→
C̃. Consequently, there exists a ramified base changeb: 1′ → 1 and a family
X→ 1′ so thatXt = µ(b(t)). By construction we haveXt ∈ C ∩ τ−1(Dd) = Cd
for t 6= 0, soCd 6= ∅. 2
4.4. d = 2: THE DETERMINANTAL CUBIC FOURFOLD

Thedeterminantal cubic fourfoldX0 is defined by the homogeneous equation:

R :=
∣∣∣∣∣∣
a b c

b d e

c e f

∣∣∣∣∣∣ = 0.

It is singular where the 2× 2 minors of the determinant are simultaneously zero,
i.e. along a Veronese surfaceV . We shall consider deformationsX → 1 of X0

with equationsR + tG, whereG is the equation of a smooth cubic fourfold, and
the curveC ⊂ V defined by the equationG|V = 0 is also smooth. LetS be the
double cover ofV branched overC, a degree-two K3 surface.

THEOREM 4.4.1. The limiting mixed Hodge structure arising fromX → 1

is pure and special of discriminant two. The orthogonal complement toK2 is
isomorphic to the primitive Hodge structureH 2(S,C)0(−1).

This result will not be used elsewhere in this paper. Its proof is essentially a calcula-
tion on the semistable reduction forX using the Clemens–Schmid exact sequence
[7] (see [13] for details). Geometrically,X0 is contained in the indeterminacy locus
of the Torelli map, but after blowing up the map is well-defined at the generic point
of the exceptional divisor. Moreover, this exceptional divisor maps birationally to
D2 ⊂ D .

5. Associated K3 Surfaces

5.1. NONSPECIAL COHOMOLOGY

DEFINITION 5.1.1. Thenonspecial cohomology latticeof a labelled special cubic
fourfold (X,Kd) is defined as the orthogonal complementK⊥d . The nonspecial
cohomology, denotedWX,Kd , is the polarized Hodge structure induced onK⊥d by
the Hodge structure onH 4(X,C)0.

PROPOSITION 5.1.2.Let (X,K14) be a generic Pfaffian cubic fourfold. Then
there exists a degree-fourteen K3 surfaceS and an isomorphism of Hodge struc-
turesWX,K14 = H 2(S,C)0(−1).

This is a consequence of [5] Proposition 6 (cf. Section 2.1) and Proposition 6.1.1.
However, it is best explained by observing that the birational mapP4→ X blows
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14 BRENDAN HASSETT

up a surface birational toS, which therefore parametrizes a correspondence of
rational curves onX.

Motivated by this example, we determine the special cubic fourfolds whose
nonspecial cohomology is isomorphic to the primitive cohomology of a polarized
K3 surface.

THEOREM 5.1.3 (Existence of Associated K3 Surfaces).Let (X,Kd) be a la-
belled special cubic fourfold of discriminantd, with nonspecial cohomo-
logy WX,Kd . There exists a polarized K3 surface(S, f ) such thatWX,Kd

∼=
H 2(S,C)0(−1) if and only if the following conditions are satisfied:

(1) 46 | d and96 | d,
(2) p6 | d if p is an odd prime,p ≡ −1(mod 3).

We say that the pair(S, f ) is associatedto (X,Kd).

We first show the theorem boils down to a computation of lattices (Proposition
5.1.4). Recall that apseudo-polarizationis a divisorf contained in the closure
of the Kähler cone with(f, f ) > 0; the primitive cohomology of a pseudo-
polarized K3 surface(S, f ) is the orthogonal complement tof in H 2(S,Z). Let
30
d be a lattice isomorphic to the primitive middle cohomology of a degreed

K3 surface. The isomorphism asserted in the theorem implies an isomorphism of
latticesK⊥d ∼= −30

d . On the other hand, given a labelled special cubic fourfold
(X,Kd) and an isomorphism of latticesK⊥d ∼= −30

d , WX,Kd (+1) has the form
of the primitive cohomology of a pseudo-polarized K3 surface. Indeed, since the
Torelli map for K3 surfaces is surjective [4] [26], there exists a pseudo-polarized
K3 surface(S, f ) such thatH 2(S,C)0(−1) ∼= WX,Kd . Moreover,X is smooth so
H 4(X,Z)0 ∩H 2,2(X) does not contain any classes with self-intersection+2 ([29]
Section 4 Proposition 1). Therefore there are no(−2)-curves onS orthogonal tof ,
andf is actually a polarization.

PROPOSITION 5.1.4.Retain the notation above.K⊥d ∼= −30
d if and only if the

conditions of Theorem5.1.3 are satisfied.

The automorphisms of3 = H 2(S,Z) act transitively on the primitive vectors with
(v, v) = d 6= 0 ([16] Theorem 2.4), so30

d
∼= (−d)⊕H⊕2⊕ (−E8)

⊕2, let y denote
the distinguished element with(y, y) = −d. The discriminant groupd(30

d) and
quadratic formq30

d
are equal toZ(y/d)/Zy, with q30

d
(y/d) = −1/d (mod 2Z).We

determine whend(K⊥d ) andd(−30
d) are isomorphic as groups with aQ/2Z-valued

quadratic form. We first consider the cased ≡ 2 (mod 6). Here both discriminant
groups are isomorphic toZ/dZ, so we just need to check when the quadratic
forms are conjugate by an automorphism ofZ/dZ. Let u andw be generators
of d(K⊥d ) andd(−30

d) such thatqK⊥d (u) = 2d − 1/3d (mod 2Z) andq−30
d
(w) =

1/d (mod 2Z) (see Proposition 3.2.5). The quadratic forms are conjugate if and
only if the integer(2d−1)/3 is a square modulo 2d, or equivalently,−3 is a square
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modulo 2d. By quadratic reciprocity this is the case if and only ifd is not divisible
by four and any odd primep|d satisfiesp 6≡ −1 (mod 3). A similar argument
holds in the cased ≡ 0 (mod 6).

We have seen that the conditions ond are necessary forK⊥d to be isomorphic
to−30

d . On the other hand,K⊥d is theuniqueeven lattice of signature(19,2) with
discriminant form(d(K⊥d ), qK⊥d ) [22] 1.14.3. Hence if the discriminant forms of

K⊥d and−30
d agree thenK⊥d ∼= −30

d . 2

5.2. ISOMORPHISMS OF PERIOD DOMAINS

We retain the notation of Sections 2.1 and 5.1. Let6 denote the automorphisms of
3, and6d the automorphisms fixing some primitivev ∈ 3 with (v, v) = d, which
yield automorphisms of30

d = v⊥. As in Section 2.2, letN ′d be thelocal period
domain for degreed K3 surfaces, an open 19-dimensional complex manifold.
Let 6+d ⊂ 6d denote the subgroup stabilizingN ′d . As before,N ′d is a bounded
symmetric domain of type IV,6+d is an arithmetic group acting holomorphically
on N ′d , and the quotientNd := 6+d /N ′d is therefore a quasi-projective variety, the
global period domainfor degreed K3 surfaces.

We introduce a bit more notation for special cubic fourfolds as well. LetG+d ⊂
0+d be the subgroup acting trivially onKd and letDmar

d denote the marked special
Hodge structures of discriminantd, modulo the action ofG+d . The fiber product
Dmar
d ×D C is writtenCmar

d , themarked special cubic fourfolds of discriminantd.
We have natural forgetting mapsDmar

d → D lab
d andCmar

d → C lab
d .

PROPOSITION 5.2.1.G+d = 0+d if d ≡ 2 (mod 6) andG+d ⊂ 0+d is an index-two
subgroup ifd ≡ 0 (mod 6). The natural mapDmar

d → D lab
d is an isomorphism

if d ≡ 2 (mod 6) and a double cover ifd ≡ 0 (mod 6). Furthermore,Dmar
d =

G+d \D ′d and thus is connected for alld 6= 6.

We begin with the first statement. The latticeKd has no automorphisms preserving
h2 if d ≡ 2 (mod 6), soG+d = 0+d . If d ≡ 0 (mod 6) thenKd has an involution,
which acts onK0

d as multiplication by−1. We claim it extends to an elementγ ∈
0+d . By Proposition 3.2.4 we may assumeK0

d = Z(v1+ d
6w1). We use the notation

of Section 2.1, sov1 andw1 form a basis for a hyperbolic summandH ⊂ L0.
Chooseγ equal to multiplication by−1 on both hyperbolic summands ofL0 and
equal to the identity elsewhere. We have thatγ ∈ 0+d but γ 6∈ G+d , soG+d is a
proper subgroup of0+d .

The second statement follows immediately from the first. As for the third state-
ment, recall thatD lab

d = 0+d \D ′d . Hence ford ≡ 2 (mod 6) the result is immediate.
Ford ≡ 0 (mod 6), we must check that anyγ ∈ 0+d acting nontrivially onKd also
acts nontrivially onD ′d . For d 6= 6, if γ acts nontrivially onKd then the induced
action ond(Kd) is not equal to±1. However, the groupsd(Kd) andd(K⊥d ) are
isomorphic, so the induced action ond(K⊥d ) is not±1. NowD ′d is a topologically
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16 BRENDAN HASSETT

open subset of a quadric hypersurface inP(K⊥d ⊗C), so only scalar multiplications
act trivially onD ′d . In particular,γ necessarily acts nontrivially. 2

Remark. There exists an elementγ ∈ 0+6 − G+6 acting trivially onK⊥6 . It
follows thatDmar

6 6= G+6 \D ′6 but rather thatD lab
6 = G+6 \D ′6.

THEOREM 5.2.2.Letd be a positive integer such that there exists an isomorphism
jd : K⊥d → −30

d (see Proposition5.1.4.) Choose orientations on the negative def-
inite parts ofK⊥d and−30

d compatible withjd , so there is an induced isomorphism
of local period domainsD ′d andN ′d . If d 6= 6 then there is an induced isomorphism
id : Dmar

d → Nd; we also haveD lab
6
∼= N6.

The isomorphism of period domains depends on the choice ofjd . Eachjd induces
an isomorphism of discriminant groupsj ′d : d(K

⊥
d ) → d(−30

d) preserving the
Q/2Z-valued quadratic forms on these groups [22] Section 1.3. We denote the
set of such isomorphisms Isom(d(K⊥d ), d(−30

d)); the group{n ∈ Z/dZ : n2 = 1}
acts faithfully and transitively on this set.

THEOREM 5.2.3. For d 6= 6, the various isomorphismsid : Dmar
d → Nd corres-

pond to elements ofIsom(d(K⊥d ), d(−30
d))/(±1). The isomorphismi6: D lab

6 →
N6 is unique.

These two theorems have the following corollary.

COROLLARY 5.2.4 (Immersions into Moduli Spaces of K3 Surfaces).Letd 6= 6
be a positive integer such that there exists an isomorphismjd : K⊥d → −30

d . Then
there is an imbeddingid : Cmar

d ↪→ Nd, unique up to the choice of an element of
Isom(d(K⊥d ), d(−30

d))/(±1). Moreover, there is a unique imbeddingi6: C̃ lab
6 ↪→

N6.

As we shall see in Section 6, geometrical considerations will sometimes mandate
specific choices ofid (e.g. in the cased = 14).

We prove the first theorem. First, we compare the action of6+d on30
d to the

action ofG+d on K⊥d . We claim that6+d is the group of automorphisms of30
d

preserving the orientation on the positive definite part of30
d⊗R and acting trivially

on the discriminant groupd(30
d). This follows from the results of [22] Section 1.4,

which imply that any such automorphism extends uniquely to an element of6+d .
Similarly,G+d is the group of automorphisms ofK⊥d preserving the orientation on
the negative definite part ofK⊥d ⊗R and acting trivially on the discriminant group
d(K⊥d ).

Now suppose we are given an isomorphismjd : K⊥d → −30
d . This induces

isomorphismsD ′d → N ′d , G
+
d → 6+d , and id : G

+
d \D ′d → 6+d \N ′d . Applying

Proposition 5.2.1, we obtain an isomorphismid : Dmar
d → Nd for d 6= 6. The

remark after the proposition also yields an isomorphismi6: D lab
6 → N6. 2
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We turn to the proof of the second theorem. We must determine when two different
isomorphismsj1

d : K⊥d → −30
d andj2

d : K⊥d → −30
d induce the same isomorph-

ism id : G
+
d \D ′d → 6+d \N ′d . If j2

d = σ ◦ j1
d for someσ ∈ 6+d then j1

d and j2
d

induce the same isomorphisms of period domains. Also, ifj1
d = −j2

d thenj1
d and

j2
d induce the same isomorphism betweenD ′d andN ′d , because these manifolds lie

in the projective spacesP(K⊥d ⊗ C) andP(30
d ⊗ C).

On the other hand, assume thatj1
d andj2

d induce the same isomorphism between
G+d \D ′d and6+d \N ′d . Then there existγ ∈ G+d andσ ∈ 6+d such thatj1

d ◦ γ and
σ ◦ j2

d induce the same isomorphism betweenD ′d andN ′d , soj1
d ◦ γ = ±σ ◦ j2

d .
We conclude that the isomorphisms betweenG+d \D ′d and6+d \N ′d correspond to
certain elements of Isom(d(K⊥d ), d(−30

d))/(±1).
It remains to check that each element of Isom(d(K⊥d ), d(−30

d))/(±1) actually
arises from an isomorphism betweenK⊥d and−30

d respecting the orientations on
the negative definite parts. NowK⊥d has an automorphismg reversing the orient-
ation on the negative part and acting trivially ond(Kd). Takeg to be the identity
except on a hyperbolic summand of the orthogonal decomposition forK⊥d ; on the
hyperbolic summand setg equal to multiplication by−1. Hence it suffices to show
that the automorphisms ofK⊥d induce all the automorphisms ofd(K⊥d ), which is
proved in [22], Theorem 1.14.2 and Remark 1.14.3. 2
6. Fano Varieties of Special Cubic Fourfolds

6.1. INTRODUCTION AND NECESSARY CONDITIONS

Here we provide a geometric explanation for the K3 surfaces associated to some
special cubic fourfolds. The general philosophy underlying our approach is due to
Mukai [19–21]. LetS be a polarized K3 surface and letMS be a moduli space
of simple sheaves onS. Quite generally,MS is smooth and possesses a natural
nondegenerate holomorphic two-form ([19] Theorem 0.1). Furthermore, the Chern
classes of the ‘quasi-universal sheaf’ onS ×MS induce correspondences between
S andMS . If MS is compact of dimension two then it is a K3 surface isogenous
to S; the Hodge structure ofMS can be read off from the Hodge structure of
S and the numerical invariants of the sheaves ([20] Theorem 1.5). Conversely,
given a varietyF with a nondegenerate holomorphic two-form and an isogeny
H 2(S,Q) → H 2(F,Q), one can try to interpretF as a moduli space of sheaves
onS. In the case whereF is a K3 surface, we often have such interpretations ([20]
Theorem 1.9). Note thatF ∼= S[n] can be interpretted as the moduli space of ideal
sheaves onS of colengthn; such sheaves are simple.

PROPOSITION 6.1.1. LetX be a cubic fourfold with Fano varietyF . Assume
there is an isomorphism betweenF and S[2] for some K3 surfaceS. ThenX
has a labellingKd such thatS is associated to(X,Kd); id : Cmar

d ↪→ Nd may
be chosen so thatid(X,Kd) = S. If (X1,Kd) is a generic element ofCmar

d and
S1 = id(X1,Kd), then the Fano varietyF1 is isomorphic toS[2]1 .

https://doi.org/10.1023/A:1001706324425 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001706324425


18 BRENDAN HASSETT

For nongenericX1 the isomorphism betweenF1 andS[2]1 can break down. LetX1

contain two disjoint planesπ1 andπ2, so thatX1 ∈ C14. The proposition holds for
d = 14, but the (birational) map betweenF1 andS[2]1 acquires indeterminacy at the
lines supported in theπi (see [13] for details).

We prove the proposition. As in Section 2.1, there is an isomorphism
H 2(F,Z) ∼= H 2(S,Z) ⊕⊥ Zδ and the hyperplane classg = af − bδ wheref
is some polarization ofS with d := (f, f ). Let K⊥d equalα−1(H 2(S,Z)0(−1))
whereα is the Abel–Jacobi map, and setKd = (K⊥d )⊥. Applying Theorem 5.2.2
with jd = α|K⊥d , we obtain a mapid with the desired properties. To explainid
geometrically, we need the following result.

THEOREM 6.1.2 (Deformation Spaces ofS[2] [3]). Let S be a K3 surface and
2δ ⊂ S[2] be the elements supported at a single point. The deformation space ofS[2]
is smooth and has dimension twenty-one. Deformations of the formS

[2]
1 correspond

to a divisor in this space which may be characterized as the deformations for which
δ remains a divisor.

We defineCd as the deformations ofF for which δ remains algebraic. Applying
Theorem 6.1.2, there is some small analytic neighborhood inCd where the de-
formations are isomorphic toS[2]1 for some deformationS1 of S. This isomorphism
holds in an open étale neighborhood ofX in Cd , so a generic cubic fourfold inCd
has Fano variety of the formS[2]1 . 2
For which values ofd are the conclusions of Proposition 6.1.1 valid? Theorem 5.1.3
gives sufficient conditions for the existence of a K3 surface associated to(X,Kd),
but these do not guarantee thatF ∼= S[2].
PROPOSITION 6.1.3. Assume that the Fano variety of a generic special cubic
fourfold of discriminantd is isomorphic toS[2] for some K3 surfaceS. Then there
exist positive integersn anda such thatd = 2(n2+ n+ 1)/a2.

This is equivalent to the existence of a line bundle onS[2] of degree 108, the de-
gree of the Fano variety. For instance, Fano varieties of special cubic fourfolds of
discriminant 74 are not generally of the formS[2], because 74a2 = 2(n2 + n + 1)
has no integral solutions (see [11]).

We can produce infinitely many examples of special cubic fourfolds with Fano
variety isomorphic to the symmetric square of a K3 surface.

THEOREM 6.1.4. Assume thatd = 2(n2 + n + 1) wheren is an integer> 2.
Then the Fano variety of a generic special cubic fourfoldX of discriminantd is
isomorphic toS[2], whereS is a K3 surface associated to(X,Kd).

This is proved in the next two sections. The condition ond corresponds to setting
a = 1 in Proposition 6.1.3. The proof of the theorem suggests that the condition of
the proposition is the correct sufficient condition.
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6.2. AMBIGUOUS SYMPLECTIC VARIETIES

DEFINITION 6.2.1. LetF be an irreducible symplectic Kähler manifold, and
assume that there exist K3 surfacesS1 andS2 and isomorphismsr1: F → S

[2]
1 and

r2: F → S
[2]
2 such thatr∗1δ1 6= r∗2δ2. Then we say thatF is ambiguous.

Our first example is a special case of a construction of Beauville and Debarre [8].
Let S be a smooth quartic surface inP3, p1+p2 a generic point inS[2], and`(p1+
p2) the line containingp1 andp2. By Bezout’s theorem̀(p1 + p2) ∩ S = p1 +
p2+q1+q2. Settingj (p1+p2) = q1+q2 for eachp1+p2, we obtain a birational
involution j : S[2] → S[2]. If S contains no lines thenj extends to a biregular
morphism. Letf4 be the degree-four polarization onS and the corresponding class
on S[2]. Following [8], one may computej ∗(x) = −x + (x, f4 − δ) (f4 − δ) on
H 2(S[2],Z). Settingr2 = j ◦ r1, we find thatF = S[2] is ambiguous.

We digress to give another beautiful example of ambiguous varieties.

PROPOSITION 6.2.2.Assume that3|d and that the Fano varietyF of a generic
cubic fourfold inCd is isomorphic toS[2]1 for some K3 surfaceS1. ThenF is
ambiguous.

This follows immediately from Proposition 6.1.1 and the results of Section 5.2,
which imply thatC lab

d imbeds into aZ/2Z-quotient ofNd if 3|d.

6.3. CONSTRUCTION OF THE EXAMPLES

Let X0 ∈ C̃6, F0 its Fano variety of lines, andS the sextic K3 surface associated
toX0 (see Section 4.2). Letφ: X→ 1 be a family inC̃ with central fiberX0 and
Xt smooth fort 6= 0. Let F → 1 be the corresponding family of Fano varieties
andX′ → 1′ a semistable reduction ofX → 1. For simplicity, we assume that
the central fiber of the semistable family is of the formX′0 = X0 ∪ Q where
X0 = BlS(P4) is the desingularization ofX0, Q is a smooth quadric fourfold, and
Q0 = X0 ∩Q is the smooth quadric inP4 containingS. This is the case ifφ is a
sufficiently generic smoothing ofX0.

LEMMA 6.3.1. F0 is singular along the lines through the double point, which
are parametrized byS. These singularities are ordinary codimension-two double
points and the blow-upσ : BlSF0→ F0 desingularizesF0. If S0 does not contain a
line thenBlSF0

∼= S[2].
The first part follows from Section 4.2 and [1] 1.10. For the second part, we
realizeσ by blowing up the GrassmannianG(1,5) along the locusL(p) of lines
containingp. The fiber square
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S - F0

L(p)
?

- G(1,5)
?

gives a natural closed imbedding of normal conesCSF0 ↪→ CL(p)G(1,5)|S. The
projectivizationP(CL(p)G(1,5)) corresponds toP(C6/S), whereS is the restric-
tion of the universal subbundle. NoteL(p) ∼= P4 andCL(p)G(1,5)` corresponds
to the linesλ such that̀ ∈ λ ⊂ P4. For ` ∈ Sing(F0) the fiber ofP(CSF0)`
corresponds to those linesλ such that̀ ∈ λ ⊂ Q0. These are parametrized by a
smooth conic curve, henceF0 has codimension-two ordinary double points along
S and BlSF0 is smooth.

This description implies that we can regard BlSF0 as a parameter space for
certain curves onX0. These curves are of the following types:

(1) lines onX0 disjoint fromp;
(2) unions of proper transforms of lines throughp and lines contained inQ0 ⊂ X0.

These in turn may be identified with:

(1) two-secantsλ to S ⊂ P4;
(2) three-secantsλ with a distinguished points ∈ λ ∩ S.

We emphasize that each line meetingS in more than two points is contained inQ0

but not inS, and thus is a three-secant toS. We claim elements ofS[2] naturally
correspond to curves of this type. For each ideal sheafI of colength two there is a
unique lineλ containing the corresponding subscheme. Eitherλ is a two-secant, or
λ is a three-secant ands is the support ofI/Iλ∩S. 2
LEMMA 6.3.2. Retain the notation and assumptions introduced above. The family
of Fano varietiesF ×1 1′ has ordinary codimension-three double points along
the surfaceS. The varietyF ′ = BlS(F ×1 1′) is smooth, and the exceptional
divisorE ⊂ F ′0 is a smooth quadric surface bundle overS. The component ofF ′0
dominatingF0 is isomorphic toS[2].

The proof is essentially the same as the first lemma. Our next result is:

PROPOSITION 6.3.3.Retain the notation and assumptions introduced above.
Then there is a smooth familyF → 1′, birational toF ×1′, such thatFu = Fu
andF 0 = S[2].
We start with the familyF ′ described in the previous lemma. The fibers ofE→ S

are all smooth quadric surfaces, so the variety parametrizing rulings ofE is an
étale double cover ofS. SinceS has no nontrivial étale coverings we may choose
a ruling ofE. Blowing downE in the direction of this ruling, we obtain a smooth
family F . This map induces an isomorphism from the proper transform ofF0 in
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F ′0 to the central fiber ofF . The proper transform toF0 in F ′0 is isomorphic toS[2],
soF satisfies the conditions of the proposition. 2
We now prove Theorem 6.1.4. LetS be an algebraic K3 surface with Picard group

P =
f6 f4

f6 6 n+ 5
f4 n+ 5 4

andn > 2. By Lemma 4.3.2, such a surface exists and we may assume that|f6|
imbeds it as a smooth sextic surface. The divisorf4 is effective because it has
positive degree with respect tof6. We claim thatf4 is very ample. Iff4 were
not ample, then there would exist a(−2)-curveE with f4E 6 0. This follows
from the structure of the Kähler cone ofS ([16] Section 1, Section 10). Note that
f4E 6= 0 becauseP does not contain a rank-two sublattice of discriminant−8.
Recall that the Picard–Lefschetz reflection associated toE is given by the equation
rE(x) = x + (E, x)E. Applying this to the classf4, we find thatrE(f4)

2 = 4 and
(f6, rE(f4)) < (f6, f4). Hencef6 and r(f4) span a sublattice with discriminant
smaller than that ofP , which is impossible. Finally, applying Lemma 4.3.3 we see
that the linear system|f4| imbedsS as a smooth quartic surface.

Our hypothesis onP implies that the image ofS under|f6| lies on a smooth
quadric hypersurface and does not contain a line, and that the image ofS under|f4|
also does not contain a line. In particular,S corresponds to a singular cubic fourfold
X0 ∈ C̃6. FurthermoreS[2] is ambiguous, with an involutionj : S[2] → S[2] so that
δ2 := j ∗δ = 2f4 − 3δ. Using Proposition 6.3.3 and the arguments of Section 4.3,
X0 has a smoothingφ: X → 1 such that (after base change) the corresponding
family of smooth symplectic varietiesF → 1′ is a deformation ofS[2] for which
δ2 remains algebraic. By Theorem 6.1.2 the Fano varietyFu ofX′u is isomorphic to
S[2]u .

If we chooseφ generally, we may assume that theX′u are typical and that
Pic(Su) is generated by the polarizationf ′. Let 5 = Pic(Fu), a lattice (with
respect to the canonical form) of discriminant−2deg(Su). On the other hand,5
is the saturation ofZg + Zδ2. Specializing toS[2] we obtain5 = Z(2f6 − 3δ) +
Z(f6 − f4) with discriminant−4(n2 + n + 1). In particular, theSu have degree
d(n) = 2(n2+ n+ 1) and theXu are special of discriminantd(n). 2
We have shown that the pure limiting Hodge structures parametrized byD6 actu-
ally arise from smooth symplectic varieties. This may be interpretted as a weak sur-
jectivity result for the corresponding Torelli map. It also explains the computation
of the limiting mixed Hodge structureH 4

lim in Section 4.2.
There are a number of ways Theorem 6.1.4 might be generalized. We need

not assume that the polarizationsf6 and f4 actually generate the Picard lattice
of S. Another approach is to replacẽC6 by some other divisorCd parametrizing
special cubic fourfolds whose Fano varieties are of the formS[2]. To make precise
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statements one requires explicit descriptions of two complicated closed sets: the
complementDd − Cd and the locus inCd where the isomorphism between the
Fano varieties and the blown-up symmetric squares breaks down. Finally, Mukai’s
philosophy suggests that whenever we have an associated K3 surfaceS, the Fano
varietyF might be interpretted as a suitable moduli space of simple sheaves onS.
It would be interesting to find such interpretations whenF cannot be a blown-up
symmetric square.
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