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Abstract. A cubic fourfold is a smooth cubic hypersurface of dimension four; $piscialif it con-

tains a surface not homologous to a complete intersection. Special cubic fourfolds form a countably
infinite union of irreducible familie®;, each a divisor in the moduli space of cubic fourfolds.

For an infinite number of these families, the Hodge structure on the nonspecial cohomology of the
cubic fourfold is essentially the Hodge structure on the primitive cohomology of a K3 surface. We
say that this K3 surface a&ssociatedo the special cubic fourfold. In these cas@g,is related to the
moduli spacen, of degreed K3 surfaces. In particula@ contains infinitely many moduli spaces

of polarized K3 surfaces as closed subvarieties. We can often construct a correspondence of rational
curves on the special cubic fourfold parametrized by the K3 surface which induces the isomorphism
of Hodge structures. For infinitely many valuesdyfthe Fano variety of lines on the generic cubic
fourfold of G4 is isomorphic to the Hilbert scheme of length-two subschemes of an associated K3
surface.

Mathematics Subject Classifications1991): 14C30, 14J28, 14J35.
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1. Introduction

Let X be a special cubic fourfold; its hyperplane class, arifl the class of an
algebraic surface not homologous to any multiplekéf The discriminantd is
defined as the discriminant of the saturated lattice spannétdf land 7. Let G,
denote the special cubic fourfolds of discriminanfSection 3.2).

THEOREM 1.0.1 (Classification of Special Cubic Fourfolds) (Theorems 3.1.2,
3.2.3,and 4.3.1)¢, C C is anirreducibledivisor and is nonempty iff > 6 and
d =0,2 (mod6).

In Section 4, we give concrete descriptions of special cubic fourfolds with small
discriminants and explain how certain Hodge structures at the boundary of the
period domain arise from singular cubic fourfolds.

* This work was supported by Harvard University, a National Science Foundation Graduate Fel-
lowship, and a Sloan Foundation Dissertation Fellowship. This paper was revised while the author
was visiting the Institut Mittag—Leffler.
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The nonspecial conomologef a special cubic fourfold consists of the middle
cohomology orthogonal to the distinguished clagseand7. In many cases, it is
essentially the primitive cohomology of a K3 surface of degfeavhich is said
to be associatedo the special cubic fourfold. Furthermore, the varietiesare
often closely related to moduli spaces of polarized K3 surfacesC[8tdenote
the marked special cubic fourfolds of discriminaht(Section 5.2). This is the
normalization ofC, if d = 2 (mod 6) and is a double cover of the normalization
otherwise.

THEOREM 1.0.2 (Associated K3 Surfaces and Maps of Moduli Spaces).
(Theorems 5.1.3 and 5.2.4)5pecial cubic fourfolds of discriminamt have as-
sociated K surfaces iffd is not divisible by four, nine, or any odd prime =

—1 (mod3). In these cases, there is in open immersior€Pf" into the moduli
space of polarized &surfaces of degred.

In particular, arinfinite number of moduli spaces of polarized K3 surfaces may be
realized as moduli spaces of special cubic fourfolds.

We can explain geometrically the existence of certain associated K3 surfaces.
The Fano varietyof X parametrizes the lines contained in it. For certain special
cubic fourfolds these Fano varieties are closely related to K3 surfaces.

THEOREM 1.0.3 (Geometry of Fano Varieties). (Theorem 6.1A43sume that
d = 2(n® 4+ n + 1) wheren is an integer> 2, and letX be a generic special cubic
fourfold of discriminantd. Then the Fano variety df is isomorphic to the Hilbert
scheme of length-two subschemes oBasHrface associated t&.

We should point out that the hypothesis élis stronger than necessary, but sim-
plifies the proof considerably. Combining this with the results on maps of mod-
uli spaces, we obtain examples of distinct K3 surfaces with isomorphic Hilbert
schemes of length-two subschemes (Proposition 6.2.2)

One motivation for this work is the rationality problem for cubic fourfolds.
The Hodge structures on cubic fourfolds and their relevance to rationality ques-
tions have previously been studied by Zarhin [30]. Izadi [15] also studied Hodge
structures on cubic hypersurfaces with a view toward rationality questions. All the
examples of cubic fourfolds known to be rational ([10] [27] [5] [28]) are special
and have associated K3 surfaces. Indeed, a birational model of the K3 surface is
blown up in the birational map from* to the cubic fourfold. Is this the case for all
rational cubic fourfolds? In a subsequent paper [14], we shall apply the methods
of this paper to give new examples of rational cubic fourfolds. We show there is
a countably infinite union of divisors i@g parametrizing rational cubic fourfolds
(Cg corresponds to the cubic fourfolds containing a plane).

Throughout this paper we work ovét. We use the term ‘generic’ to mean
‘in the complement of some Zariski closed proper subset.’ The term ‘lattice’ will
denote a free abelian group equipped with a nondegenerate symmetric bilinear
form.
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2. Hodge Theory of Cubic Fourfolds
2.1. COHOMOLOGY AND THE ABEL—JACOBI MAP

Let X be a smooth cubic fourfold. The Hodge diamondXohas the form:

Let L denote the cohomology grouff*(X,Z), L° the primitive cohomology
H4(X,7)° and(,) the symmetric nondegenerate intersection form_Lotf 4 is
the hyperplane class thés € L andL® = (h?)*.

Our best tool for understanding the middle cohomolog¥ @ the Abel-Jacobi
mapping. LetF be the Fano variety of lines df, the subvariety of the Grassman-
nian G(1, 5) parametrizing lines contained iKi. This is a smooth fourfold ([1]
Section 1). LeZ C F x X be the ‘universal line’, with projectiong andg. The
Abel-Jacobi majs defined as the map

o = p.g*: H(X,Z) - H?*(F, 7).

Let M = H?(F, Z), M° the primitive cohomology, and the class of the hyper-
plane onF (induced from the Grassmannian). Recall thak?) corresponds to
the lines meeting a codimension-two subspacB®sow (h?) = g. Following [3]
and [5], we define th@eauville canonical form(, ) on M so thatg and M° are
orthogonal(g, g) = 6, and(x, y) = g%xy for x, y € M°. Extending by linearity
we obtain an integral form on all @& .

PROPOSITION 2.1.1 (Beauville—Donagi [4] Proposition @he Abel-Jacobi
map induces an isomorphism betweghand M°; moreover, forx, y € L° we

have(a(x), a(y)) = — (x, ).

Indeed, we may interpret is an isomorphism of Hodge structur& (X, C)° —
H?(F,C)%(—1). The—1 means that the weight is shifted by two; this reverses the
sign of the intersection form.

PROPOSITION 2.1.2. The middle integral cohomology lattice of a cubic fourfold
is L = (+1)%%1 @ (—1)9? i.e. the intersection form is diagonalizable ov&mwith
entries+1 along the diagonal. The primitive cohomologyli$= B ® H & H &

Eg @ Eg, where

r=(12) #=(3 )
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is the hyperbolic plane, andg is the positive definite quadratic form associated
to the corresponding Dynkin diagram.

We first prove the statement on the full cohomolofys unimodular by Poin-
caré duality and has signatu(2l, 2) by the Riemann bilinear relations. is odd
becauséh?, h?) = h* = 3. Using the theory of indefinite quadratic forms (e.g. [25]
chapter 5 Section 2.2) we conclude the result.

Now we turn to the primitive cohomologg®. By Proposition 2.1.1 it suffices
to computeM?; we first computeM. In [5] Proposition 6, it is shown thaF is
a deformation of a variet!?!, whereS is a degree-fourteen K3 surface asid
denotes the Hilbert scheme of length-two zero-dimensional subscherfigaled
called theblown-up symmetric squacg S). By [3] Section 6 we have the canonical
orthogonal decompositioH?(S1?, Z) = H3(S, Z) ® . 7.8, where(s, §) = —2 and
the restriction of, ) to H?(S, Z) is the intersection form. Geometrically, the divisor
256 corresponds to the nonreduced length-two subschemg&sTdie cohomology
lattice of a K3 surface is well-known (cf. [16] Proposition 12%(S,Z) = A :=
H® @ (—Eg)®?, soM = H® @ (—Eg)®? @ (—2). Furthermore, the polarization
g = 2f — 58, wheref € H%(S, Z) satisfies( f, f) = 14 [5]. The automorphisms
of H(S, Z) act transitively on the primitive vectors of a given nonzero length ([16]
Theorem 2.4). Ifv; andw; are elements of the first summaitwith (vy, v1) =
(w1, w1) = 0 and(vy, wy) = 1, then we may takef = vy + 7wy andg =
2v1 + 14w, — 568. Usingvy + 3wy — 28 ands — 5w, as the first two elements of a
basis ofM°, we obtain the result. O

Remark. Note that our computation shows thit is even.

2.2. HODGE THEORY AND THE TORELLI MAP

We review Hodge theory in the context of cubic fourfolds; a general introduction to
Hodge theory is [12]. Recall that a complete marking of a polarized cubic fourfold
is an isomorphisng: H*(X, Z) — L mapping the square of the hyperplane class
to k2 e L. If we are given a complete marking, the complex structureXon
determines a distinguished subspat&x) = H3*!(X,C) c L satisfying the
following properties:

(1) F3(X) is isotropic with respect to the intersection fotm;
(2) the Hermitian formH (u, v) = — (u, ) on F3(X) is positive.

LetQ C IP(L%) be the quadric hypersurface defined by (1), and/let Q be
the topologically open subset where (2) also holdss a homogeneous space for
the real Lie group S(I]%) = S0O(20, 2). This group has two components; one of
them reverses the orientation on the negative definite pdrﬁofxvhich coincides

with (F3 @ F3) N LY. Changing the orientation corresponds to exchangihgnd
F3 (see Section 6 of the appendix to [24] for details). Hence the two connected
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components ot/ parametrize the subspacgs and F3 = H'3(X) respectively;
we denote themD’ and D’. The componentD’ is a twenty-dimensional open
complex manifold, called thiecal period domairfor cubic fourfolds.

LetT" denote the group of automorphismslopreserving the intersection form
and the distinguished clagg, andT't c T the subgroup stabilizingd’. This
is the index-two subgroup df which preserves the orientation on the negative
definite part ofLﬂ%. 't acts holomorphically oD’ from the left; for a point in
D’ corresponding to the marked cubic fourfal®, ¢) the action isy (X, ¢) =
(X, y o ¢). The orbit spaced = '\ D’ exists as an analytic space and is called
theglobal period domain

Two cubic fourfolds are isomorphic iff they are projectively equivalent. Let
C denote the coarse moduli space for smooth cubic fourfolds, constructed as a
Geometric Invariant Theory quotient [18] chapter 4 Section 2. Each cubic fourfold
determines a point i, and the corresponding map ¢ — D is called the
period map By general results of Hodge theory, this is a holomorphic map of
twenty-dimensional analytic spaces. For cubic fourfolds we can say much more.
First, we have the following result due to Voisin.

THEOREM 2.2.1 (Torelli Theorem for Cubic Fourfolds[29])r: € — D is an
open immersion of analytic spaces.

In particular, if X; and X, are cubic fourfolds and there exists an isomorphism of
Hodge structuresr: H*(X1, C) — H*(X», C), thenX; and X, are isomorphic.
Secondy is not just an analytic map.

PROPOSITION 2.2.2. D is a quasi-projective variety of dimension twenty and
7. C — D is an algebraic map.

In Section 6 of the appendix to [24], it is shown that the manifpldis a bounded
symmetric domain of type IV. The group™ is arithmetically defined and acts
holomorphically ond’. In this situation we may introduce the Borel-Baily com-
pactification ([2] Section 10): there exists a compactificationDdf compatible
with the action ofl"*, so that the quotient is projective. MoreovEr\ D’ is a Za-

riski open subvariety of this quotient. To complete the proof, we use the following
conseqguence of A. Borel's extension theorem [6]

Let D’ be a bounded symmetric domain, afican arithmetically defined torsion-
free group of automorphisms. L& = G\D’ be the quasi-projective quotient
space, andZ an algebraic variety. Then any holomorphic map— D is algeb-
raically defined.

While 't has torsion, some normal subgrokpof finite index is torsion-free ([24]
IV Lemma 7.2). Letl'*(N) denote the subgroup &f" acting trivially onL/N L.
For some largeV, 't /H acts faithfully onL/NL soI't(N) c H and is torsion-
free. LetC(N) denote the moduli space of cubic fourfolds with marl&avZz
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cohomology. This is a finite (and perhaps disconnected) cover we useC?(N)
to denote a connected component. IN) = I'"(N)\D’, which is also finite
overD. The period map lifts to a magy: C%(N) — D(N). By Borel's theorem
Ty is algebraic, and a descent argument imptiés also algebraic. O

Remark. It follows that € is a Zariski open subset @ and its complement is
defined by algebraic equations.

3. Special Cubic Fourfolds
3.1. BASIC DEFINITIONS

DEFINITION 3.1.1. A cubic fourfold X is specialif it contains an algebraic
surfaceT not homologous to a complete intersection.

Let A(X) = H?%(X) n H*(X,Z), which is positive definite by the Riemann
bilinear relations. The Hodge conjecture is true for cubic fourfolds [31]4 €0)

is generated (oveR) by the classes of algebraic cycles;is special if and only

if the rank of A(X) is at least two. This is equivalent to saying that the rank of
LN F3(X)* is at least two, or thak® N F3(X)* # 0. A Hodge structure € D’

is specialif L° N F3(x)* is nonzero.

THEOREM 3.1.2 (Structure of Special Cubic Fourfoldsgt K C L be a positive
definite rank-two saturated sublattice containih§ [K] the 't orbit of K, and
Cik) the cubic fourfoldsX such thatA(X) D K’ for someK’ € [K]. Every special
cubic fourfold is contained in son®k;, which is an irreducible algebraic divisor
of @, and is nonempty for all but a finite number[a&f].

Given such a lattic&’, we setk® = KN L. Let D} be thex € D’ such thatk®
x*; this is a hyperplane section @’ C IP’(L%). Each special Hodge structure is
contained in someDj,. Let K+ denote the orthogonal complementkan L. We
see thatD}, is a topologically open subset of a quadric hypersurfad¥ i), has
dimension nineteen, and classifies Hodge structures structures on theXattias

in the previous section, we can prove tia} is a bounded symmetric domain of
type IV. Letl') = {y € I'*:y(K) C K}. As before, the quotierit{\ D}, is quasi-
projective. Furthermore, the induced holomorphic migp D) — I'\D’' = D

is algebraically defined, so its image is an irreducible algebraic divisor.

We enumerate the divisors parametrizing special Hodge structueds ach
one corresponds tb;\D) for somek C L as above, buk is not uniquely
determinedK; and K, give rise to the same divisor if and only&f, = y (K>) for
somey € I'*, i.e. F,ng and Fjgz are conjugate im*. Let Dk, denote the corres-
ponding irreducible divisor iD. SinceC is Zariskiopen inD (Proposition 2.2.2),
Cik1 = C N Dk, is anirreducible algebraic divisor @&, andDx; C (D — C) for
finitely many[K]. O
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DEFINITION 3.1.3. Let(K, {(, )) be a positive definite rank-two lattice containing
a distinguished elemerit® with (h2, h?) = 3. A marked(resp.labelled special
cubic fourfold is a cubic fourfoldX with the data of a primitive imbedding of
lattices K < A(X) preservingh? (resp. the image of such an imbedding.) A
special cubic fourfold isypical if it has a unique labelling.

We write D/3) for I'f \ Dj.. The morphismD{3 — Dy is birational (indeedd/%)

is the normalization ofD(k,), SO a general point it x; has a unique labelling. The
fiber productD/%) x » € will be denotede%).

3.2. DISCRIMINANTS AND SPECIAL CUBIC FOURFOLDS

DEFINITION 3.2.1. Thediscriminantof a labelled special cubic fourfol@dX, K)
is the determinant of the intersection matrixof

PROPOSITION 3.2.2Let (X, K) be a labelled special cubic fourfold of discrim-
inantd and letv be a generator oK °.

(1) d > 0andd =0, —1 (mod 3),

(2) d' = (v,v) = L ooty
= (v,v) = d§ if 4 =0 (mod3),
32 ifd=-1(mod3),

0\ _
©) (U’L)—{Z if d =0 (mod3),

(4) dis even.

The first three statements are straightforward computations, so we omit their proofs.
The fourth follows from the remark after Proposition 2.1.2. O

We refine the results of the previous section by classifying the orbits of the rank-
two sublattices under the action Bf. The following theorem is a consequence of
Theorem 3.1.2 and Proposition 3.2.4.

THEOREM 3.2.3 (Irreducibility Theorem)The special cubic fourfolds possess-
ing a labelling of discriminant/ form an irreducible (possibly empty) algebraic
divisor G, C C.

Elements ofC, are calledspecial cubic fourfolds of discriminant; the corres-
ponding rank-two lattice is denoted;. We write D, for Dy, DE° for DT, €
for Cx,;, andC® for €.

PROPOSITION 3.2.4. Let K and K’ be saturated rank-two nondegenerate sub-
lattices of L containingh?. ThenK = y(K’) for somey e I't if and only if K
and K’ have the same discriminant.
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We claim it suffices to prove the result fbr We find somez € ' — I'* stabilizing
sublattices with every possible discriminant. Takéo be the identity except on
the second hyperbolic plane in the orthogonal decompositioh%pon this com-
ponent seg equal to multiplication by-1. (We refer to the computation @ in
Proposition 2.1.2)

Now we analyze the action df on our rank-two sublattices, or equivalently,
on saturated nondegenerate rank-one sublati®es L°. We apply the results of
Nikulin on discriminant groups and quadratic forms; see [22] or [9] for basic defin-
itions and proofs. The elementsbffix /2, so they act trivially on the discriminant
groupsd (Zh?) andd(L°) [22] Section 1.5. Conversely, any automorphism8f
that acts trivially ond (L°) extends to an element 6f[22] 1.5.1.

Let K° denote a lattice generated by an elementith (v, v) = d’, gxo the
quadratic form ond(K°), andg the quadratic form o/ (L°). The lattice L° is
the unique even lattice of signatuf20, 2) with discriminant quadratic forng
[22] 1.14.3. Any saturated codimension-one sublatiicec L is the orthogonal
complement inL of a rank-two sublattic&, so there is an induced isomorphism
d(K+) = d(K)[22] 1.6.1, andi(K*) is generated by at most two elements. This
implies the isomorphism class &+ is determined by its signature and discrim-
inant form, and any isomorphism gf K ) preserving the discriminant quadratic
form is induced by an automorphism &f- [22] 1.14.3.

Two primitive imbeddings of: K° — L° differing only by an element df are
said to becongruent Applying the results of [22] Section 1.15 in our situation, we
find the primitive imbeddings: K° — L° correspond to the following data:

(1) asubgroupd, C d(LY),

(2) a subgroupHyo C d(K°),

(3) an isomorphism : Hxo — H, preserving the restrictions of the quadratic
forms to these subgroups, with graph = {(h, ¢ (h)): h € Hgo} C d(K° @
d(L%),

(4) an even lattic&k - with complementary signature and discriminant fayp,
and an isomorphismgi: gg1 — —38, wheres = ((gxo ® —q)|1"$)/[‘¢, (and
F(j is the orthogonal complement g, with respect tazxo @ g).

Another imbedding” with data(H,, Hy., ¢', (K')*", k1) is congruent ta if
and only if Hgo = H, and¢ = ¢'.

Our proof now divides into two cases. In the first cadsg = {0}, or equiv-
alently, (i(K©), L%) = Z (i.e. 3d). By the characterization above, all primitive
imbeddings ofk©® are congruent. In the second cag = d(L° = Z/3Z, or
equivalently,(i (K°), L%) = 3Z. In this cased (K °) has a subgroupio of order
three and B/’. There are two possible isomorphisms betweéeh’) and Hyo, thus
two congruence classes of imbeddingskdfinto L°. O

Using [22] Section 1.15 and Proposition 3.2.2, we can compute the discriminant
quadratic forms of the lattices ;
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PROPOSITION 3.2.51f d = 0 (mod6) thend(K;) = Z/%Z @ 7Z/37Z, which is
cyclic unles®|d. We may choose this isomorphism so tngm(o, 1= % (mod 27Z)
andgy1(1,0) = —32 (mod2Z). If d = 2 (mod6) thend(K}) = Z/dZ. We may
choose a generatar so thathdL () = 2"3—;1 (mod 27).

4. Examples
4.1. SPECIAL CUBIC FOURFOLDS WITH SMALL DISCRIMINANTS

The examples here are discussed in more detail in [13]. i a smooth surface
contained in a cubic fourfold then(T, T) = ca(Ny/x) = 6h% + 3hr Ky + K2 —
xr Wherexr is the topological Euler characteristic ahg is the hyperplane class
restricted tor'.

4.1.1. d = 8: Cubic fourfolds containing a plangsee [29])

X contains a plané, so that(P, P) = 3 and our marking is

h? P
Kg= h?|3 1.
Pl1 3

The cubic fourfolds inCg generally contain other surfaces, like quadric surfaces
and quartic del Pezzo surfaces.

4.1.2. d = 12:Cubic fourfolds containing a cubic scroll

X contains a rational normal cubic scr@l| so that(T', T) = 7 and our marking is
h2
3
3

~N w S

Kio=h
T

4.1.3. d = 14: Cubic fourfolds containing a quartic scroll/Pfaffian cubic
fourfolds

X is a cubic fourfold containing a rational normal quartic scialso that(7T, T') =
10 and our marking is

W2 T
Kiu= h?|3 4.
T|4 10

Special cubic fourfolds of discriminant 14 generally also contain quintic del Pezzo
surfaces and quintic rational scrolls. One can show that the quartic scrolls, quintic
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scrolls, and quintic del Pezzos dhform families of dimensions two, two, and
five respectively. Note that Morin [17] uses a spurious parameter count to deduce
that the quartic scrolls form ane dimensional family. From this, he concludes
incorrectly thateverycubic fourfold contains a quartic scroll.

Another description of an open subset ®f; is the Pfaffian construction of
Beauville and Donagi [5]. The dimension counts above follow easily from their
results. They also show that the Pfaffian cubic fourfolds are rational. Finally, we
should point out that the cubic fourfolds containing two disjoint planes possess a
marking with discriminant 14, and thus are also containe@qin (See [10] and
[27] for more discussion of these examples.)

4.1.4. d = 20: Cubic fourfolds containing a Veronese

X contains a Veronese surfate so that(V, V) = 12 and our marking is

h2 v
K= h?2|3 4.
vida 12

4.2. d =6: CUBIC FOURFOLDS WITH DOUBLE POINTS

A double point isordinary if its projectivized tangent cone is smooth. Cubic hyper-
surfaces ifP® with an ordinary double point are stable in the sense of Geometric
Invariant Theory. This is proved using Mumford’s numerical criterion for stability
([18] Section 2.1) and the methods of ([18] Section 4.2). @atenote the quasi-
projective variety parametrizing cubic fourfolds with (at worst) a single ordinary
double point.

Let X be a cubic fourfold with a single ordinary double pojmt Projection
from p gives a birational map,: Xo — P* which can be factored

Xo = Bls(PY) —2— X,

q2

P4

whereg; is the blow-up of the double point and g, is the blow-down of the
lines contained irX passing througlp. These lines are parametrized by a surface
S c P4, which is the complete intersection of a quadric and a cubic. The quadric is
nonsingular becauseis ordinary; the complete intersection is smooth becalise

the only singularity ofX,. In particular,S is a sextic K3 surface. The inverse map
n;l is given by the linear system of cubic polynomials through this K3 surface.
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Conversely, given any sextic K3 surface contained in a smooth quadric, the image
of P4 under this linear system is a cubic fourfold with an ordinary double point.
Note that the sextic K3 surfaces contained in a singular quadric hypersurface are
precisely those containing a cubic plane curve.

This construction suggests that we associate a sextic K3 surface to any element
of @ — C.

PROPOSITION 4.2.1The Torelli map extends to an open immersior® — D.
The closed safs := C — € is mapped intaDg.

In Section 5.2 we shall see th&ls coincides with the period domain for sextic
K3 surfaces. A detailed proof of the proposition is given in Section 4 of [29],
so we merely explain some details needed for our calculations. (It also follows
from the delicate analysis of singular cubic fourfolds in Section 6.3.)Xgbe

a cubic fourfold with an ordinary double point and Igtbe the associated K3
surface. Smoothings of ordinary double points of even codimension have mono-
dromy satisfyingT? = I, so any smoothing oK, yields a pure limiting mixed
Hodge structuref;}... The corresponding point of the period domain is denoted
7(Xp). The limiting Hodge structure may be computed with the Clemens—Schmid
exact sequence [7], which implies there is a natural imbedding of the primitive
cohomologyH?(S, C)°(—1) into H;-.. The orthogonal complement to the image
consists of a rank-two lattice of integré, 2) classes

W2 T
Ke= h?|3 O
T |0 2

s0T(Xp) € De.

4.3. EXISTENCE OF SPECIALCUBIC FOURFOLDS

D,y C D is nonempty if and only it/ is positive and congruent tq 2 (mod 6
(Proposition 3.2.2), so we restrict to these valueg.of

THEOREM 4.3.1 (Existence of Special Cubic Fourfoldsgtd > 6 be an integer
with d = 0, 2 (mod6). Then the diviso, is nonempty.

We saw in the last section why there are no smooth cubic fourfolds of discriminant
six: Dg corresponds to the limiting Hodge structures arising from cubic fourfolds
with double points. In the next section we shall explain why there are no cubic
fourfolds of discriminant twoD, corresponds to the limiting Hodge structures
arising from another class of singular cubic fourfolds. Is the complen@ent C
equal todD, U De?

To prove the theorem, we need the following lemmas.
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LEMMA 4.3.2. Let P be an indefinite even rank-two lattice representing six.
Assume thaP is not isomorphic to any of the following:

(30) (20) (6 %) (33)

Then there exists a smooth sexti8 &urface S lying on a smooth quadric with
Pic(S) = P.

LEMMA 4.3.3. Let P be a rank-two indefinite even lattic¢, € P a primitive
element withd := f? > 0, and assume there is B € P with E? = —2 and
fE = 0. Then there exists a¥surfaceS with Pic(S) = P and f a polarization
on S. Moreover, f is very ample unless there exists an elliptic cuéven S with
C?=0andfC =1or2

Recall thatA denotes the lattice isomorphic to the middle cohomology of a K3
surface. Using the results of Section 2 of [16], there exists an imbedtiing A.

So for some elements of the period dom&requals the lattice ofl, 1)-classes.

The surjectivity of the period map for K3 surfaces implies the existence of a K3
surfaceS with Picard groupP so thatf contained in the Kahler cone ¢f (see

pp. 127 of [4]). This impliesf is a polarization ofS. To complete the proof, we
apply Saint Donat's results for linear systems on K3 surfaces [23]. Specifically,
we use Theorems 3.1, 5.2, and 6.1, along with the analysis of fixed components in
Section 2.7. a

To prove Lemma 4.3.2, we note that the image ungéris not contained in a

singular quadric becauge ( g g) (i.e. S does not contain a plane cubia)

Now we prove the theorem. Lef be one of the K3 surfaces constructed in
Lemma 4.3.2 an& the corresponding singular cubic fourfold. et P be prim-
itive with respect to the sextic polarization. Recall th&k(S, C)°(—1) is naturally
imbedded into the limiting Hodge structurg’ arising fromXo. The image ob is
anintegral class of type, 2) in H;} , denoted)’. RelabelH} by letting K, denote
the saturation of the lattic&h? + Zv'. By Proposition 3.2.2J = —%diso(P). For
eachd = 0,2 (mod6,d > 6, there exist lattice® satisfying the hypotheses of

Lemma 4.3.2 with discriminant 2d. If d = 6n (resp.d = 6n + 2) we may take

(5 2) (2 3))

Setxg = T(Xp) so thatxg € Dg N D,;. We construct a smoothing: XX — A’
whereX; is smooth forr # 0, andr (X;) € D,. Lety: A — D be a holomorphic
map such thay (0) = xg andy (1) € D, — D for u # 0. The existence of such a
curve follows from the construction @b as the quotienf+\D’. Becauser is an
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open immersion, we may shrink so thaty lifts throught, giving a mapu: A —
C. Consequently, there exists a ramified base change — A and a family
X — A’sothatX, = u(b(¢)). By construction we hav&, € € Nt~ 3(D,) = €4,
fort #0, soC; # . a

4.4, 4 =2: THE DETERMINANTAL CUBIC FOURFOLD

Thedeterminantal cubic fourfol(y is defined by the homogeneous equation:

a b c
R=|b d e|=0.
c e f

It is singular where the Z 2 minors of the determinant are simultaneously zero,
i.e. along a Veronese surfadé. We shall consider deformatio®§ — A of Xj
with equationsR + G, whereG is the equation of a smooth cubic fourfold, and
the curveC c V defined by the equatio6 |y = 0 is also smooth. Le§ be the
double cover ofV branched ove€, a degree-two K3 surface.

THEOREM 4.4.1. The limiting mixed Hodge structure arising frodd — A
is pure and special of discriminant two. The orthogonal complemerit Aas
isomorphic to the primitive Hodge structufg?(s, C)°(—1).

This result will not be used elsewhere in this paper. Its proof is essentially a calcula-
tion on the semistable reduction f&f using the Clemens—Schmid exact sequence
[7] (see [13] for details). Geometrically is contained in the indeterminacy locus

of the Torelli map, but after blowing up the map is well-defined at the generic point
of the exceptional divisor. Moreover, this exceptional divisor maps birationally to
D, C D.

5. Associated K3 Surfaces
5.1. NONSPECIALCOHOMOLOGY

DEFINITION 5.1.1. Thenonspecial cohomology latticd a labelled special cubic
fourfold (X, K,) is defined as the orthogonal compleméft. The nonspecial
cohomology denotedWy ,, is the polarized Hodge structure induced &p by
the Hodge structure oH*(X, C)°.

PROPOSITION 5.1.2.Let (X, K14) be a generic Pfaffian cubic fourfold. Then
there exists a degree-fourteer8 KurfaceS and an isomorphism of Hodge struc-
turesWy x,, = H3(S, C)°(-1).

This is a consequence of [5] Proposition 6 (cf. Section 2.1) and Proposition 6.1.1.
However, it is best explained by observing that the birational Ffap> X blows
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up a surface birational t8, which therefore parametrizes a correspondence of
rational curves orX.

Motivated by this example, we determine the special cubic fourfolds whose
nonspecial cohomology is isomorphic to the primitive cohnomology of a polarized
K3 surface.

THEOREM 5.1.3 (Existence of Associated K3 Surfacekgt (X, K,;) be a la-
belled special cubic fourfold of discriminard, with nonspecial cohomo-
logy Wy k,. There exists a polarized K3 surfads, /) such thatWy x, =
H?(S, C)°(—1) if and only if the following conditions are satisfied:

(1) 4fd and9)d,
(2) pfdif pisanodd primep = —1(mod 3.

We say that the pai¢S, f) is associatedo (X, K,).

We first show the theorem boils down to a computation of lattices (Proposition
5.1.4). Recall that @seudo-polarizations a divisor f contained in the closure

of the Kahler cone with(f, f) > 0; the primitive cohomology of a pseudo-
polarized K3 surfacé&s, f) is the orthogonal complement tbin H?(S, Z). Let

AY be a lattice isomorphic to the primitive middle cohomology of a degtee
K3 surface. The isomorphism asserted in the theorem implies an isomorphism of
lattices K+ = —A9Y. On the other hand, given a labelled special cubic fourfold
(X, K;) and an isomorphism of latticek ; = —AS, Wx k,(+1) has the form

of the primitive cohomology of a pseudo-polarized K3 surface. Indeed, since the
Torelli map for K3 surfaces is surjective [4] [26], there exists a pseudo-polarized
K3 surface(S, f) such thatif?(S, C)°(—1) = Wy k,. Moreover,X is smooth so
H*(X,7)° N H?>?(X) does not contain any classes with self-intersecti@([29]
Section 4 Proposition 1). Therefore there arg#@)-curves onS orthogonal tof,

and f is actually a polarization.

PROPOSITION 5.1.4.Retain the notation above&X; = —AY if and only if the
conditions of Theorerh.1.3 are satisfied.

The automorphisms of = H?(S, Z) act transitively on the primitive vectors with
(v, v) = d # 0 ([16] Theorem 2.4), sa9 = (—d) ® H®2@ (— Eg)®?, lety denote
the distinguished element witty, y) = —d. The discriminant groug (A%) and
quadratic formy .o are equal t&.(y/d)/Zy, with g0 (y/d) = —1/d (mod Z).We
determine whed (K ;) andd (—A9) are isomorphic as groups withy/ 2Z-valued
guadratic form. We first consider the case= 2 (mod 6. Here both discriminant
groups are isomorphic t@/d7, so we just need to check when the quadratic
forms are conjugate by an automorphismZfdZ. Let u and w be generators
of d(K}) andd(—AY) such thayyy 1 (u) = 2d — 1/3d (mod Z) andq_,o(w) =

1/d (mod Z) (see Proposition 3.2.5). The quadratic forms are conjugate if and
only if the integen2d — 1) /3 is a square modulaZ2 or equivalently—3 is a square
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modulo 2/. By quadratic reciprocity this is the case if and only ifs not divisible
by four and any odd prime|d satisfiesp # —1 (mod 3. A similar argument
holds in the casé = 0 (mod 6.

We have seen that the conditions #mre necessary fak ;- to be isomorphic
to —AY. On the other handk ; is theuniqueeven lattice of signaturél9, 2) with
discriminant form(d(Kdl), quL) [22] 1.14.3. Hence if the discriminant forms of

K+ and—A9Y agree therk = —AS. m

5.2. ISOMORPHISMS OF PERIOD DOMAINS

We retain the notation of Sections 2.1 and 5.1. Eatenote the automorphisms of
A, andX, the automorphisms fixing some primitives A with (v, v) = d, which
yield automorphisms oAY = vt. As in Section 2.2, letV; be thelocal period
domainfor degreed K3 surfaces, an open 19-dimensional complex manifold.
Let =} C X, denote the subgroup stabilizing;. As before, .~ is a bounded
symmetric domain of type IVE] is an arithmetic group acting holomorphically
on A, and the quotientv, := /A is therefore a quasi-projective variety, the
global period domairfor degreed K3 surfaces.

We introduce a bit more notation for special cubic fourfolds as well. et
'’ be the subgroup acting trivially oki; and letD"® denote the marked special
Hodge structures of discriminagat modulo the action of7}. The fiber product
DI x o € is written €', themarked special cubic fourfolds of discriminant
We have natural forgetting magB' — D' ande@ — @3,

PROPOSITION5.2.1G} =T if d = 2 (mod 6) and G, C I'J is an index-two
subgroup ifd = 0 (mod 6). The natural mapD™ — D' is an isomorphism
if d = 2 (mod 6) and a double cover i§ = 0 (mod 6). Furthermore, D™ =
G\D) and thus is connected for all # 6.

We begin with the first statement. The latti€g has no automorphisms preserving
h?if d = 2 (mod 6), SOG); = T'J. If d = 0 (mod 6) thenK, has an involution,
which acts onk? as multiplication by—1. We claim it extends to an elemente
I';. By Proposition 3.2.4 we may assur§ = Z(vy + £w;). We use the notation
of Section 2.1, sw; and w; form a basis for a hyperbolic summan#i c L°.
Choosey equal to multiplication by-1 on both hyperbolic summands bf and
equal to the identity elsewhere. We have that ') buty ¢ G, soG} is a
proper subgroup of'} .

The second statement follows immediately from the first. As for the third state-
ment, recall thaD!®® = T'7\ D). Hence fod = 2 (mod 6) the result is immediate.
Ford = 0 (mod 6), we must check that any € '} acting nontrivially onk; also
acts nontrivially onD),. Ford # 6, if y acts nontrivially onk, then the induced
action ond(K,) is not equal tot1. However, the group8(K,) andd(Kdi) are
isomorphic, so the induced action 0K ;) is not+1. Now D), is a topologically
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open subset of a quadric hypersurfac®{ik; ® C), so only scalar multiplications
act trivially on D). In particular,y necessarily acts nontrivially. O

Remark. There exists an elememt € I'Y — G¢§ acting trivially on K. It
follows thatD{™" £ G ¢\ D but rather thatDE® = G\ Dy

THEOREM5.2.2.Letd be a positive integer such that there exists an isomorphism
ja: K — —AY (see Propositiors.1.4.) Choose orientations on the negative def-
inite parts ofK ;- and— A9 compatible withyj,, so there is an induced isomorphism
of local period domainsD,, and V. If d # 6 then there is an induced isomorphism
ig: DT — Ny; we also haveDE® = .

The isomorphism of period domains depends on the choigg. &achj, induces

an isomorphism of discriminant grougs: d(K;) — d(—AS) preserving the
Q/2Z-valued quadratic forms on these groups [22] Section 1.3. We denote the
set of such isomorphisms Ised(K ), d(—AS)); the group{n € Z/dZ : n?> = 1}

acts faithfully and transitively on this set.

THEOREM 5.2.3. For d # 6, the various isomorphismg: D" — N, corres-
pond to elements dom(d(K+), d(—A%))/(£1). The isomorphisnis: DE° —
Mg IS unique.

These two theorems have the following corollary.

COROLLARY 5.2.4 (Immersions into Moduli Spaces of K3 Surfacdstd # 6

be a positive integer such that there exists an isomorphiisnk 7 — —A9%. Then
there is an imbedding,: CJ™ — N;, unique up to the choice of an element of
Isom(d(K}), d(—AY9))/(£1). Moreover, there is a unique imbeddig C&° —
Ne.

As we shall see in Section 6, geometrical considerations will sometimes mandate
specific choices of; (e.g. in the casé = 14).

We prove the first theorem. First, we compare the actiol pfon A9 to the
action of G on K. We claim thatZ] is the group of automorphisms a9
preserving the orientation on the positive definite park & R and acting trivially
on the discriminant groug(AY). This follows from the results of [22] Section 1.4,
which imply that any such automorphism extends uniquely to an elemen} of
Similarly, G}/ is the group of automorphisms &f;- preserving the orientation on
the negative definite part & ; ® R and acting trivially on the discriminant group
d(K7).

Now suppose we are given an isomorphigm K — —A9. This induces
isomorphismsD, — N, GI — X1, andis;: GI\D, — T \N,. Applying
Proposition 5.2.1, we obtain an isomorphigm D"*" — A, for d # 6. The
remark after the proposition also yields an isomorprﬁ§m)g°‘b — M. a
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We turn to the proof of the second theorem. We must determine when two different
isomorphismsj}: K+ — —A% andj?: K — —AY induce the same isomorph-
ismi,;; Gi\D, — TI\N,. If j7 = o o ji for somes € T then ji and ;7
induce the same isomorphisms of period domains. Alsg} i —j2 then j} and

jZ induce the same isomorphism betwe®fand .V, because these manifolds lie

in the projective space®(K; ® C) andIP’(AS ® C).

On the other hand, assume thiaind ;2 induce the same isomorphism between
Gi\D, andZ\N,. Then there exisf € G} ando € £ such thatj; o y and
o o jZ induce the same isomorphism betweBfand A, s0jl oy = +0 o j7.
We conclude that the isomorphisms betwe&gh\ D/, and =\ .V correspond to
certain elements of Iso@(K ), d(—A%))/(£1).

It remains to check that each element of IS@K } ), d(—Ag))/(il) actually
arises from an isomorphism betwe&i} and— A9 respecting the orientations on
the negative definite parts. Nok/; has an automorphism reversing the orient-
ation on the negative part and acting trivially 80K ,;). Takeg to be the identity
except on a hyperbolic summand of the orthogonal decompositiok foion the
hyperbolic summand sgtequal to multiplication by-1. Hence it suffices to show
that the automorphisms df ;- induce all the automorphisms @K ;), which is
proved in [22], Theorem 1.14.2 and Remark 1.14.3. O

6. Fano Varieties of Special Cubic Fourfolds
6.1. INTRODUCTION AND NECESSARY CONDITIONS

Here we provide a geometric explanation for the K3 surfaces associated to some
special cubic fourfolds. The general philosophy underlying our approach is due to
Mukai [19-21]. LetS be a polarized K3 surface and Ig#ts be a moduli space

of simple sheaves of. Quite generally.Ms is smooth and possesses a natural
nondegenerate holomorphic two-form ([19] Theorem 0.1). Furthermore, the Chern
classes of the ‘quasi-universal sheaf’ $ix Mg induce correspondences between

S and M. If Mg is compact of dimension two then it is a K3 surface isogenous
to S; the Hodge structure oy can be read off from the Hodge structure of

S and the numerical invariants of the sheaves ([20] Theorem 1.5). Conversely,
given a varietyF with a nondegenerate holomorphic two-form and an isogeny
H?(S,Q) — H?(F,Q), one can try to interpreF as a moduli space of sheaves
on S. In the case wher€ is a K3 surface, we often have such interpretations ([20]
Theorem 1.9). Note that = S!"! can be interpretted as the moduli space of ideal
sheaves o1 of colengthn; such sheaves are simple.

PROPOSITION 6.1.1. Let X be a cubic fourfold with Fano variety'. Assume
there is an isomorphism betwedn and S'? for some K surface S. Then X

has a labellingK, such thatS is associated taX, K,); is: CI'* — ~N; may
be chosen so thaf (X, K,) = S. If (X1, K,;) is a generic element a2 and

S1 = ig(X1, K4), then the Fano variety; is isomorphic tasi?!,
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For nongenericX; the isomorphism betweeF; and Si?! can break down. LeX;
contain two disjoint planes; andn,, so thatX; € C14. The proposition holds for
d = 14, but the (birational) map betwedhn ande] acquires indeterminacy at the
lines supported in the; (see [13] for details).

We prove the proposition. As in Section 2.1, there is an isomorphism
H?(F,7) = H?(S,7) @, 78 and the hyperplane clags= af — b where f
is some polarization of with d := (f, f). Let K equala~1(H?(S, Z)°(-1))
wherea is the Abel-Jacobi map, and s&; = (K;)*. Applying Theorem 5.2.2
with j; = «|K+, we obtain a mag, with the desired properties. To explaipn
geometrically, we need the following result.

THEOREM 6.1.2 (Deformation Spaces 8! [3]). Let S be a K3 surface and

28 C S be the elements supported at a single point. The deformation sp&te of

is smooth and has dimension twenty-one. Deformations of theﬂfﬂm:nrrespond

to a divisor in this space which may be characterized as the deformations for which
8 remains a divisor.

We defineC, as the deformations af for which § remains algebraic. Applying
Theorem 6.1.2, there is some small analytic neighborhoo@,invhere the de-
formations are isomorphic L@JEZ] for some deformatiois; of S. This isomorphism
holds in an open étale neighborhoodXfn C,, so a generic cubic fourfold i@,
has Fano variety of the forrsi”, O

For which values ofl are the conclusions of Proposition 6.1.1 valid? Theorem 5.1.3
gives sufficient conditions for the existence of a K3 surface associated %,),
but these do not guarantee thags S

PROPOSITION 6.1.3. Assume that the Fano variety of a generic special cubic
fourfold of discriminantd is isomorphic toS'? for some K3 surfacé. Then there
exist positive integers anda such thatd = 2(n? + n + 1) /a?.

This is equivalent to the existence of a line bundleSé# of degree 108, the de-
gree of the Fano variety. For instance, Fano varieties of special cubic fourfolds of
discriminant 74 are not generally of the fost?!, because 7 = 2(n? +n + 1)
has no integral solutions (see [11]).

We can produce infinitely many examples of special cubic fourfolds with Fano
variety isomorphic to the symmetric square of a K3 surface.

THEOREM 6.1.4. Assume thatl = 2(n? + n + 1) wheren is an integer> 2.
Then the Fano variety of a generic special cubic fourf&ldf discriminantd is
isomorphic toS'?!, wheres is a K3 surface associated toX, K,).

This is proved in the next two sections. The conditiondotorresponds to setting
a = 1in Proposition 6.1.3. The proof of the theorem suggests that the condition of
the proposition is the correct sufficient condition.
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6.2. AMBIGUOUS SYMPLECTIC VARIETIES

DEFINITION 6.2.1. LetF be an irreducible symplectic Kahler manifold, and
assume that there exist K3 surfacgsandS, and isomorphisms;: F — Sf] and
ry: F — S such that}sy # ris,. Then we say thak is ambiguous

Our first example is a special case of a construction of Beauville and Debarre [8].
Let S be a smooth quartic surfaceld, p1 + p» a generic point irs®, and¢(p; +
p2) the line containingp, and p,. By Bezout’s theorend(p1 + p2) NS = p1 +
P2 +q1+qgo. Settingj (p1+ p2) = g1+ g for eachp, + p,, we obtain a birational
involution j: S — SI21 If S contains no lines theri extends to a biregular
morphism. Letf, be the degree-four polarization drand the corresponding class
on S, Following [8], one may computg*(x) = —x + (x, fa — &) (fa — 8) on
H?(S? 7). Settingr, = j o r1, we find thatF = S is ambiguous.

We digress to give another beautiful example of ambiguous varieties.

PROPOSITION 6.2.2.Assume tha8|d and that the Fano variety' of a generic
cubic fourfold in @, is isomorphic toS!? for some K3 surfaces;. Then F is
ambiguous.

This follows immediately from Proposition 6.1.1 and the results of Section 5.2,
which imply thatC'?* imbeds into &/2Z-quotient ofA;, if 3|d.

6.3. CONSTRUCTION OF THE EXAMPLES

Let Xo € G, F its Fano variety of lines, anfl the sextic K3 surface associated
to X, (see Section 4.2). Let: X — A be a family inC with central fiberX, and

X; smooth forr £ 0. LetF — A be the corresponding family of Fano varieties
and X’ — A’ a semistable reduction &€ — A. For simplicity, we assume that
the central fiber of the semistable family is of the foi§j = Xo U Q where
X, = Blg(P? is the desingularization o, Q is a smooth quadric fourfold, and
Qo = Xo N Q is the smooth quadric if** containingsS. This is the case i is a
sufficiently generic smoothing df.

LEMMA 6.3.1. Fj is singular along the lines through the double point, which
are parametrized bys. These singularities are ordinary codimension-two double
points and the blow-up: BlsFy — Fy desingularizedy. If Sy does not contain a
line thenBlgFy = S,

The first part follows from Section 4.2 and [1] 1.10. For the second part, we
realizeo by blowing up the Grassmanni&i(1, 5) along the locud.(p) of lines
containingp. The fiber square
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S Fo
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gives a natural closed imbedding of normal coig$y — C(,)G(1, 5)|S. The
projectivizationP(C.,»G(1, 5)) corresponds t&®(C%/8), where$ is the restric-
tion of the universal subbundle. Notgp) = P* and Cy(, G(1, 5), corresponds
to the linesi such thatt € A C P* For¢ e Sing(Fp) the fiber of P(CgFo),
corresponds to those linessuch that? € A C Qq. These are parametrized by a
smooth conic curve, hend& has codimension-two ordinary double points along
S and Bk Fj is smooth.

This description implies that we can regards By as a parameter space for
certain curves oiX,. These curves are of the following types:

(1) lines onXj disjoint from p; o
(2) unions of proper transforms of lines througlnd lines contained i@y C Xo.

These in turn may be identified with:

(1) two-secants. to S C P4
(2) three-secants with a distinguished poing € A N S.

We emphasize that each line meetifign more than two points is contained @y
but not in S, and thus is a three-secant o We claim elements o§'? naturally
correspond to curves of this type. For each ideal shexdfcolength two there is a
unique linea containing the corresponding subscheme. Eithiera two-secant, or
A is a three-secant ands the support of /. O

LEMMA 6.3.2. Retain the notation and assumptions introduced above. The family
of Fano varieties¥ x A’ has ordinary codimension-three double points along
the surfaceS. The variety¥’ = Blg(F x A’) is smooth, and the exceptional
divisor E C Fy is a smooth quadric surface bundle ov&rThe component of;
dominatingF; is isomorphic tas'?.

The proof is essentially the same as the first lemma. Our next result is:

PROPOSITION 6.3.3.Retain the notation and assumptions introduced above.
Then_there is a smooth famiff — A’, birational to ¥ x A’, such thatF', = F,
and Fo = S12I,

We start with the family#” described in the previous lemma. The fiber&of> S

are all smooth quadric surfaces, so the variety parametrizing rulings isfan
étale double cover of. SinceS has no nontrivial étale coverings we may choose
a ruling of E. Blowing downE in the direction of this ruling, we obtain a smooth
family #. This map induces an isomorphism from the proper transforiiyoh
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F; to the central fiber ofF . The proper transform ty in F} is isomorphic taS'?,
S0 F satisfies the conditions of the proposition. O

We now prove Theorem 6.1.4. L&tbe an algebraic K3 surface with Picard group

| fe fa
f4 n+5 4

andn > 2. By Lemma 4.3.2, such a surface exists and we may assumgfghat
imbeds it as a smooth sextic surface. The divigpiis effective because it has
positive degree with respect ts. We claim thatf, is very ample. If 4 were
not ample, then there would exist(a-2)-curve E with f,E < 0. This follows
from the structure of the Kéhler cone 8f([16] Section 1, Section 10). Note that
faE # 0 becauseP does not contain a rank-two sublattice of discrimina&.
Recall that the Picard—Lefschetz reflection associatddlisogiven by the equation
re(x) = x 4+ (E, x)E. Applying this to the clasgs, we find thatz ( f4)?> = 4 and
(fe. re(fa)) < (fs, fa). Hence fg andr(fs) span a sublattice with discriminant
smaller than that oP, which is impossible. Finally, applying Lemma 4.3.3 we see
that the linear systen,| imbedsS as a smooth quartic surface.

Our hypothesis orP implies that the image of under|fg| lies on a smooth
qguadric hypersurface and does not contain a line, and that the im&agender| f,4|
also does not contain a line. In particul&icorresponds to a singular cubic fourfold
Xo € @Gg. FurthermoreS'? is ambiguous, with an involutiori: $'2 — §12 so that
8, := j*§ = 2f4 — 358. Using Proposition 6.3.3 and the arguments of Section 4.3,
X, has a smoothing: XX — A such that (after base change) the corresponding
family of smooth symplectic varietie® — A’ is a deformation of? for which
8, remains algebraic. By Theorem 6.1.2 the Fano vaiigtgf X', is isomorphic to
stz
If we choose¢ generally, we may assume that tkg are typical and that
Pic(S,) is generated by the polarizatiofi. Let IT = Pic(F,), a lattice (with
respect to the canonical form) of discriminandeds,). On the other handi1
is the saturation o¥.g + Z8,. Specializing taS' we obtainIl = Z(2fs — 358) +
Z(fs — fa) with discriminant—4(n? + n + 1). In particular, theS, have degree
d(n) = 2(n® +n + 1) and theX,, are special of discriminant(n). a

We have shown that the pure limiting Hodge structures parametrizetislactu-
ally arise from smooth symplectic varieties. This may be interpretted as a weak sur-
jectivity result for the corresponding Torelli map. It also explains the computation
of the limiting mixed Hodge structurd,t. in Section 4.2.

There are a number of ways Theorem 6.1.4 might be generalized. We need
not assume that the polarizatiorfs and f, actually generate the Picard lattice
of S. Another approach is to repla@; by some other diviso€, parametrizing
special cubic fourfolds whose Fano varieties are of the f8t#h To make precise
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statements one requires explicit descriptions of two complicated closed sets: the
complementD, — ¢, and the locus inc, where the isomorphism between the
Fano varieties and the blown-up symmetric squares breaks down. Finally, Mukai’'s
philosophy suggests that whenever we have an associated K3 stiyfédieeFano
variety F might be interpretted as a suitable moduli space of simple sheavgs on

It would be interesting to find such interpretations wherannot be a blown-up
symmetric square.
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