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1. Introduction. In algebraic geometry it is of interest to examine poly­
nomial surfaces F which transform into themselves under the collineation T 
defined by: 

(x'i, x'2, x'z, x\) = (xlf Exz, E2xz, E*x4) 

where Ev = 1, and p is a prime (2). One of the most obvious ways to ensure 
invariance of a surface is for each term Xiax2

bXzcXAd of F to go into itself. We 
present initially, therefore, a theorem which will be useful in the study of such 
termwise invariance for polynomials of composite degree. Specializations of 
this result are then developed for the case when the polynomial degree is a 
prime. 

2. Polynomial surfaces of composite degree. Assume that each term 
%\ X2 X% X\ of the polynomial is invariant and of degree mp. Then since the 
transform of this term under T is Xiax2

bXzcx4
d(EbE2cEdd) there must hold the 

simultaneous equations b + 2c + 3d = kp and a + b-\-c + d = mp. Dio-
phantine solutions in terms of two parameters n and r are readily developed as 

a = n, b = r — 2n + (2m — k)p, c = n — 2r + (k — m)p, d = r. 

Hence, in terms of congruence classes with respect to the modulus p, a G (n), 
be 0 - 2ri), ce in - 2r), d G 0 ) . 

On the other hand let a, b, c and d (which are such that a + b + c + d = mp) 
be assumed to have membership in the classes (n), (r — 2n), {n — 2r), (r). 
Then the term xiax2

bxd
cx^ transforms under T into x1

ax2
bEbXzcE2cX4dEzd. 

Since 

b + 2c + 3d s (r - 2n) - (2n - 4r) + (3r) = 0 (mod p), 

and Ekp = 1, invariance is established. Thus we have 

THEOREM 1. A polynomial term X\ X2 X3 X4 , which has degree a multiple of 
a prime, p, will go into itself under T if and only if a, b, c, d are respectively 
members of the congruence classes (mod p): (n), (r — 2n), (n — 2r), (r). 

3. Polynomial surfaces of prime degree. Of particular interest in algebraic 
geometry are surfaces where the degree of the defining polynomial is not a 
composite integer but is exactly equal to a prime p > 3. For this case n and r 
are subject to certain restrictions which we now study by setting m = 1 in 
the solution to the simultaneous equations used to develop Theorem 1. 
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Since a,b, c, d are non-negative exponents where each is at most equal to p, 
it is clear on inspecting the equation b + 2c + 3d = kp, that k can take on 
only the values 0, 1,2, and 3. 

If k = 0, b = c — r = 0, and n = p. 
If & = 1, we have the four inequalities: 

(1) 0 < n, 
(2) 0<r-2n + p, 
(3) 0 < n - 2r, 
(4) 0<r. 

From inequality (3) we have 2r < w, and from (2) it follows that 2n < r + p, 
orn < | ( £ + r)- Thus ^ must lie within the range defined by 2r < n < | ( ^ + r ) . 

Since 4r < 2w we may replace 2n by 4r in the inequality (2) obtaining 3r < p, 
or r < | £ . Hence, to obtain an invariant term of degree p, necessary restric­
tions on r and n are (for the case k = 1) that r first be chosen on the range 
0 < r < \p, and that then n be chosen on the range 2r < n < J(£ + r). 

A similar analysis for the case when k = 2 demonstrates that r be chosen 
on the range 0 < r < §£, and then n be chosen on the range 2r — p < n < Jr. 
An inspection of the latter inequality shows that n is non-negative only if 
r ^> i(P + !)• This suggests splitting the range of r obtained into the two 
ranges 

0 < r < \p and \{p + 1) < r < f£, 

with corresponding ranges for ^ of 

0 < n < Jr and 2r — p < n < \r. 

Finally, then, if k = 3, b + 2c + 3d = p, hence r = p and n = b = c = 0. 
To summarize, restrictions on n and r necessary for the degree of the poly­

nomial to be precisely p are : 

(k = 0) (i) r = 0, » = £; 
(£ =. 1) (ii) 0<r<ip;2r<n<$(p + r); 
(k = 2) (iiia) 0 < r < \p\ 0 < n < \r\ 

(iiib) *(£ + 1) < r < f£; 2r - p < n < Jr; 
(jfe = 3) (iv) r = £, » = 0. 

We must now demonstrate the sufficiency of the above inequalities, i.e., 
that any n and r so chosen will yield a polynomial term of degree p. We illus­
trate the method of proof for (ii), for the case where p is of the form 6a + 1 
and K is any even member of the range 0 < r < \p. L is any corresponding 
member of the range 2r < n < \ (p + r). Then 

r=\{p-3K- 1), 0 < X < K / > - 1) 

and 

n = i (£ + r _ 2 L - 1), 0 < £ < |/T. 
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The exponent b = r — 2n + p is equal to 2L + 1 upon substitution and sim­
plification, and in the same way the exponent c = n — 2r can be shown to 
equal (3/2)i£ — L. Then the polynomial term corresponding to the particular 
choice of K and L will be 

The degree of this term is p, as can be readily shown by adding the exponents. 
In a like manner the sufficiency of (ii) for p = 6a + 1 and K odd can be 

readily established. A similar treatment will establish the inequalities (iiia) 
and (iiib) for all possible cases where p is either of the form 6a + 1 or 6a — 1 
and K is either even or odd. Since conditions (i) and (iv) are obvious, sufficiency 
is completely demonstrated. We summarize these results in the following: 

THEOREM 2. Necessary and sufficient conditions that a polynomial term 
XiaX2bXzcXéd of prime degree p > 3 shall be invariant under T are that: 

a £ (»), be (r - 2n), c £ ( » - 2r), d e (r), 

and also n and r must satisfy the conditional inequalities: 

(a) r = 0, n = p\ 
(b) 0 <r < \p, 2r <n < §(p + r) ; 
(ci) 0 < r < ip, 0 < n < | r ; 
(c2) i(/> + 1) < r < ip, 2r - p < n < £r; 
(d) r = p, n = 0. 

4. A numerical example. Theorem 2 makes possible the selection with 
certainty of the largest possible number of terms of a polynomial of degree p 
which is term wise invariant under the collineation T. For example, by the 
laborious process of writing out all terms of a given degree and testing them 
individually for invariance it is a known result (1) that the largest such 
polynomial for degree 5 is 

Fh = # 1 5 + #25 + XiX^Xz + X1
2X2X<i

2 + Xi2X2
2X* + Xi3X^Xi 

+ X3
5 + X2X33^4 + X22X^Xi2 + XiX%2Xé2 + #iX2#43 + X45. 

Application of Theorem 2 leads to 12 pairs of values for r and n as follows: 

2; 
(a) r = 0, « = 5; 
(b) r = 0, » = 0, 1 

r = 1, » = 2, 3 
(c) r = 0, n = 0; 

r = 1, » = 0; 
r = 2, » = 0, 1 
r = 3, « = 1; 

(d) r = 5, w = 0. 

The application of these pairs leads precisely to the polynomial F&. 

https://doi.org/10.4153/CJM-1955-026-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1955-026-4


SURFACES INVARIANT UNDER CYCLIC COLLINEATIONS 207 

5. The number of invariant terms. In conclusion we establish 

THEOREM 3. For a prime p > 3 the number of invariant terms is equal to 
!(£2 + 6£+17). 

Proof. It must first be indicated that all pairs (n, r) selected by Theorem 2 
lead to different polynomial terms. We can exclude from further consideration 
the pair (0, 0) since its appearance in Theorem 2 (b and Ci) produces the poly­
nomials X2P, and Xzp. An examination of the controlling inequalities indicates 
that all other pairs (n, r) are distinct since (b) and (ci) differ in n, (b) and 
(c2) differ in r, as do (ci) and (C2). Then since n is the exponent of Xi and r is 
the exponent of X4, the distinct pairs (n, r) produce distinct polynomial terms. 

To count the number of terms in (b) (Theorem 2) for p — 6a + 1 we enu­
merate the pairs (K, L) where 0 < K < \(p - 1) and 0 < L < \(ZK + 1) 
as in the accompanying table. 

K 0 1 2 3 \(P ~ 1) 

L 0 0,1,2 0,1,2,3 0,1,2,3,4,5 o,...,up-D 

The number of terms is thus 

[1 + 3 + 4 + 6 + 7 + . . . + \{p - 1) + \{p + 1)] 

= [1 + 4 + 7 + . . . + UP + 1)] + [3 + 6 + 9 + . . . + HP - 1)]. 

By the ordinary formulas for an arithmetic series the number of terms is equal 
to [p2 + 6p + 5)/12. 

By a similar analysis, the inequality (ci) contributes (p2 + 6p + 5)/16 
terms if a is odd, and (p2 + Qp + 9)/16 terms if a is even. In a like manner 
(c2) contributes (p2 + 6p + 5)/48 if a is odd and (p2 + 6p - 7)/48 terms if 
a is even. In either case the number of terms contributed by both (ci) and 
(c2) is (p2 + 6p + 5)/12 since 

(P2 + GP + 5)/16 + (p2 + <5p + 5)/48 = (p2 + <5p + 5)/12, 
(P2 + 6P + 9)/16 + (p2 + 6p - 7)/48 = (p2 + 6p + 5)/12. 

The total number of terms thus obtained which are invariant under T 
(when p = 6a + 1) is thus shown to be \(p2 + Qp + 17). A similar analysis 
for p = 6a — 1 can be shown to yield the same result. 
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