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0. Introduction. The primordial problems of 
linear algebra are the solution of a system of linear 
equations 

Ax = b> (i.e., E.a..x = b.) , 

and the solution of the eigenvalue problem 

A-k = Xk-k 

for the eigenvalues X, and corresponding 
eigenvectors x, of a given matrix A . The numer
ical solution of these problems without the aid of an 
electronic computer is a project not to be undertaken 
lightly. For example, using a mechanical desk-
calculator to solve five linear equations in five 
unknowns (and check them) takes me nearly an hour, 
and to calculate five eigenvalues and eigenvectors of 
a five-by-five matrix costs me at least an afternoon 
of drudgery. But any of today1s electronic computers 
are capable of performing both calculations in less 
than a second. 

T~ 
Sections 6 to 11 will appear in this Bulletin at a 
later date. 
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What is the current state of the art of 
solving numerical problems in linear algebra with the 
aid of electronic computers? That question is the 
theme of part of this paper. The rest of the paper 
touches upon two or three of the collateral 
mathematical problems which have captured my attention 
for the past several years. These problems spring 
from the widespread desire to give the computer all 
its instructions in advance. When the computer is 
engrossed in its computation at the rate of perhaps a 
million arithmetic operations per second, human 
supervision is at best superficial. One dare not 
interrupt the machine too frequently with requests 
"WHAT ARE YOU DOING NOW?" and with afterthoughts and 
countermands, lest the machine be dragged back to the 
pace at which a human can plod through a morass of 
numerical data. Instead, it is more profitable to 
launch the computer on its phrenetic way while we 
calmly embrace mathematical (not necessarily 
computational) techniques like error-analysis to 
predict and appraise the machine's work. Besides, 
the mathematical problems of prediction and appraisal 
are interesting in their own right. 
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1. The Time Needed to Solve Linear Equations, 
On our computer (an IBM 709^-11 at the University of 
Toronto) the solution of 100 linear equations in 100 
unknowns can be calculated in about 7 seconds; 
during this time the computer executes about 5000 
divisions, 330000 multiplications and additions, and 
a comparable amount of extra arithmetic with small 
integers which ensures that the aforementioned 
operations are performed in their correct order. 
This calculation costs about a dollar. To calculate 
the inverse of the coefficient matrix costs about 
three times as much. If the coefficients are complex 
instead of real, the cost is roughly quadrupled. If 
the same problem were taken to any other appropriate 
electronic computer on this continent, the time 
taken could differ by a factor between 1/10 and 1000 
(i.e. 1 second to 2 hours for 100 equations) 
depending upon the speed of the particular machine 
used. These quotations do not include the time 
required to produce the equations' coefficients in 
storage, nor the time required (a few seconds) to 
print the answers on paper. 

For the next five years it will be economically 
practical to solve general systems of 1000 or so 
linear equations, but not 10000. One limitation is 
the need to store the equations' coefficients 
somewhere easily accessible to the computer1s 
arithmetic units. A general system of N equations 

2 
has an NxN coefficient matrix containing N 
elements. When N=100 , these 10000 elements fit 
with ease into current storage units. When N=1000 , 
finding the space for a million elements requires 
today some attention to technical details; tomorrowTs 
storage units will handle a million elements easily. 

o 

But when N=10000 space is needed for 10 elements, 
and current storage units with that capacity are 
unable to share their information with the computer 
at speeds commensurate with its arithmetic units. 

o 

Besides, to produce, collect, and check those 10 
elements is a formidable undertaking. 

Today, the solution of 1000 equations is not a 
simple task, even on a large computer like ours. 
Our computer's immediate access store, to which 
reference can be made in a fraction of the time 
required for one multiplication, has a capacity of 
215=32768 words, of which about 10000 would be 
needed for program. The remaining space is just 
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about enough for 10 or 20 rows of the matrix. The 
rest of the matrix, 980 rows, has to be kept in bulk 
storage units, like magnetic tapes or disks, to which 
access takes at least as long as several multiplica
tions. Now, most of the time spent in solving a 
linear system is spent thus: 

Select an element from the matrix, 
multiply by another, 
subtract the product from a third, 
which is then replaced by the difference. 

It is clear that careful organization is required to 
prevent storage-access from consuming far more time 
than the arithmetic. Such organization is possible; 
for a good example see Barron and Swinnerton-Dyer 
(I960). The main idea is to transfer each row of 
the matrix in turn from slow storage to fast storage 
and back in such a way that, while in fast storage, 
each row partakes in-as many arithmetic operations 
with neighbouring rows as possible. Further time is 
saved by the simultaneous execution of input, output 
and calculation; while one row is being transferred 
from slow to fast storage, another is being 
transferred back, and arithmetic operations are 
being performed upon a third row. In this way, 
1000 linear equations could be solved on our machine 
in a morning, not much longer than would be needed 
for the arithmetic operations alone (and in much 
less time than would likely be needed to collect the 
data or to interpret the answer). 

Let us count up those arithmetic operations. 
The methods most widely used for solving linear 
equations are elimination methods patterned after 
that described by Gauss (1826). Here is an outline: 

Given the augmented matrix {A,b_} of the system 

N 
E a±jXj = b± , i-1,2,...,N , 

J ~~ -*-

we select a variable, say xT , and eliminate it 

from all the equations but one. This can be done, 
for example, by selecting a suitable equation, say 

the I , and subtracting (the I equation, times 

a.T/aTT) from (the i equation ) for all i 7* I . 
th th 

After the I equation and J variable have been 
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set aside, one has just (N-l) linear equations in 
(N-l) unknowns left. 

This simple process is repeated until there 
remains only one equation in one unknown; this can 
be solved easily. The solution is substituted back 
into the equation previously set aside and that one 
is solved. This process of back substitution is 
repeated until, at the end, xT is obtained from 

th the I equation after the substitution of the 

computed values of the other N-l variables. 

Gaussian elimination requires 
i-N3(l + I N " 1 - | N " 2 ) additions or subtractions, 

and 1 ^ -1 -2 
-NJ(1 + 3N - N ) multiplications or divisions. 3 

In the 140 years since this method appeared in print, 
many other methods, some of them very different, have 
been proposed. All methods satisfy the following 
new theorem of Klyuyev and Kokovkin-Shcherbak (1965): 

Any algorithm which uses only rational 
arithmetic operations to solve a general 
system of N linear equations requires at 
least as many additions and subtractions, 
and at least as many multiplications and 
divisions as does Gaussian elimination. 

One consequence of this theorem is obtained 
by setting N=10000; to solve 10000 linear equations 
would take more than two months for the arithmetic 
alone on our machine. The time might come down to a 
day or so when machines 100 times faster than ours 
are produced, but such machines are just now being 
developed, and are most unlikely to be in widespread 
use within the next five years. The main impediment 
seems to be storage access time. (For more details, 
see IPIP (1965).) 

In the meantime, there are several good 
reasons to want to solve systems of as many as 
10000 equations. For example, the study of many 
physical processes (radiation, diffusion, 
elasticity,...) revolves about the solution of 
partial differential equations. A powerful technique 
for solving these differential equations is to 
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approximate them by difference equations over a 
lattice erected to approximate the continuum. The 
finer the lattice (i.e. the more points there are in 
the lattice), the better the approximation. In a 
20x20x20 cubic lattice there are 8000 points. To 
each point corresponds an unknown and a difference 
equation. Fortunately, these equations have special 
properties which free us from the limitation given 
by Klyuyev and Kokovkin-Shcherbak. (For details 
about partial difference equations, see Smith (1965) 
or Forsythe and Wasow (i960).) 

2. The Time Needed to Solve a Linear System 
with a Band Matrix. The systems of linear equations 
which arise from the discretization of boundary 
value problems frequently have matrices {a..} with 

the following "band property": 

a. . = 0 if i-j| M 

A Band-Matrix, 

Although N equals the number of lattice points in 
the discretization, and can therefore be quite 
large whenever a fine lattice is needed for high 
accuracy, the half-bandwidth M is usually much 
smaller than N . For a boundary value problem in 
6 dimensions M is usually very near the number of 
points in one or two (6-1) dimensional sections of 
the lattice, and hence the quotient 

M/N 1-1/6 

is frequently between 1 and 3 . With care, the 
matrix corresponding to k coupled boundary value 
problems over the same lattice can often be put in a 
band form for which the quotient above lies between 
k and 3k . 

The advantage of a band structure derives from 
the fact that it is preserved by the row-operations 
involved in Gaussian elimination. This is obvious 
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when we select, for I = 1,2,..., N in turn, the 

I equation to eliminate the I unknown from all 
subsequent equations. It is true also when any other 
row-selection rule is used, provided the width of 
that part of the band above the main diagonal is 
allowed to increase by M . Consequently, far less 
time and space are needed to solve band-systems than 
to solve general systems. The following table 
summarizes the dependence of time and space 
requirements upon the parameters M and N . For 
the sake of simplicity, constants of proportionality 
have been omitted, and terms of the order of 1/M 
and 1/N or smaller are ignored. 

Type of Storage required Time required for 
Matrix (Total) arithmetic alone 

Band MN M2N 

Full N2 N3 

Incidentally, there is no need to find space 
for all MN elements of the band-matrix in the 
immediate-access store. Instead, it suffices to 
store the rows of the matrix in slow bulk storage 

2 
(tape or disk) and find space for 2M elements 
(in some cases fewer) in the immediate access store, 

rec 
th 

Then as the I row of the matrix is transferred 

from slow to fast storage, a transformed (I-M) 
row can be transferred from fast to slow. 

The economies that result from band structure 
permit the solution of two dimensional boundary 
value problems with thousands of points, and one 
dimensional problems with tens of thousands of 
points, to be carried out in times measured in 
minutes. (For more details about the solution of 
band systems, see Cayless (1961), Fox (1957) 
pp. 150-155, Walsh's ch. 22 in Fox (1962), or 
Varga (1962) pp. 194-201.) 

3. Iterative Methods for Solving Linear 
Systems. Iterative methods for solving linear 
systems, due originally to Gauss (1823), Liouville 
(1837) and Jacobi (1845), embody an approach which 
is very different from that behind the direct 
methods like Gaussian elimination. The difference 
can be characterized as follows: 
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Direct methods apply to the equation Ax. = b. 
a finite sequence of transformations at whose 
termination the equations have a new form, say 
U:x = c_ , which can be solved by an obvious and 
finite calculation. For example, in Gaussian 
elimination U is an upper triangular matrix which, 
with £ , can be shown to satisfy 

{U-,£} = iT-'-PUjb} 

where P is a permutation of the identity and L 
is a lower triangular matrix with diagonal elements 
all equal to 1 ; and the obvious calculation that 
solves Ux = c_ is back substitution. In the 
absence of rounding errors, the computed solution is 
exact. (For more details see Faddeev and Faddeeva 
(1964) ch. II, Householder (1964) ch. 5, or Fox 
(1964) ch. 3-5.) 

On the other hand, an iterative method for 
solving Ax = b_ begins with a first approximation 
z_n , to which a sequence of transformations are 

applied to produce a sequence of iterates 

z, , z_p , z~ , . . . which are supposed to converge 

toward the desired solution x_ • -̂n practice the 
sequence is terminated as soon as some member z, 

of the sequence is judged to be close enough to x_ • 

An example of an iterative method is the 
Liouvilie-Neumann series which is produced by what 
numerical analysts call nJacobiTs Method": 

Suppose Ax = b_ can be transformed 
conveniently into the form 

x. = Bx_ + c_ 

where the matrix B is small in some sense. To be 
more precise, we shall assume that ||B || = 8 < 1 . 
(The symbol ||. ..|| represents a matrix norm about 
which more will be said later.) We begin with a 
first approximation z_n , for which 0_ will do if 

nothing better is known, and iterate thus: 
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z. k + 1 = Bz^ + £ f o r k = 0 , 1 , 2 , . . . , 

= (I+B+B2+ . . . +Bk)c + B k + 1 z r 

= x + B k + 1 ( z , 0 - x ) • 

Hence, the error is bounded by 

l | z k -x!<S k | l z 0 -x | l . 

The practicality of this scheme depends upon 
three considerations : 

i) The smaller is 3 , the fewer are the 
iterations required to effect a given 
factor of reduction in the error bound. 
Therefore, small values of & are desired 
for rapid convergence. 

ii) The better is z_0 , the fewer are the 

iterations required to bring the error 
bound below a given tolerance. Therefore, 
good initial approximations are desired for 
early termination of the iteration. 

iii) If each matrix-vector multiplication Bz_, 

is cheap enough that we can afford a large 
number of them, then the two previous 
considerations will carry less weight. 

The last consideration is quite important in 
many applications. For example, if the NxN matrix 
B is "sparse", which means that most of BTs 
elements are zeros, then the number of arithmetic 
operations required to compute Bz, may well be a 

p 
small multiple of N instead of N . Such sparse 
matrices are frequently encountered during the study 
of trusswork bridges, electric networks, economists1 

input-output models, and boundary value problems. 
In the case of some large two-dimensional boundary 
value problems, and most three dimensional ones, 
it may be more economical to exploit the sparseness 
of the matrix than to exploit its band properties. 

Despite a sparse matrix and a fast computer, 
the simple iteration described above is usually too 
slow to be practical. This fact has spurred the 

765 

https://doi.org/10.4153/CMB-1966-083-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-083-2


^generalization and improvement of iterative methods 
in a vast diversity of ways. 

One generalization begins with the iteration 

-k+1 = -k + Ck-k 

where 

Zk = b - Azk 

is z, ts "residual" in the equation Ax. = b_ . 

(The Jacob! iteration is obtained formally by 

letting C ~ be ATs diagonal.) For simplicity 

suppose C, = YkC a with scalars y, and the matrix 

C to be chosen later in accordance with the 
subsequent analysis. We find that 

z^ = x + Pk(CA)(z_0-x) 

where P, (w) is a k degree polynomial defined 

by the recurrence 

PQ(w) = 1 , Pk+1(w) = (l-ykw)Pk(w) . 

To simplify the exposition now I shall assume 
that CA!s elementary divisors are all linear; 
otherwise what follows would be complicated by the 
appearance of some derivatives of P^Cw) • The 

matrix CA can be decomposed into its idempotent 
elements E(x) defined by 

(CA)n = z XnE(x) for all n 
X 

where the summation is taken over the values of the 
eigenvalues X of CA . (Cf. Dunford and Schwartz 
(1958) pp. 558-9.) Then 

Pk(CA) = Z Pk(X)'E(A) , 
A 

whence comes the following theorem: 

A necessary and sufficient condition that 
z, -> x as k •> 00 3 no matter how zn —k — * —0 
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be chosen, is that ïV(*) "* 0 f° r every 

eigenvalue X of CA . 

This theorem is not applied directly in 
practice because the eigenvalues X are generally 
not known. But if all the eigenvalues X are known 
to be contained in some region R in the complex 
plane, then it suffices that p

k(
w) ~* ° for all 

w in R . To satisfy this requirement is not 
trivial, because ^(O) = ! f°r a 1 1 k • 

Given R and k , one might seek a polynomial 
Pk(w) which is "best" in the sense that, for 

example, of all polynomials of degree k for which 
P,(0) = 1 , pi<-(

w) h a s the smallest value of 

max |P, (w) | over w in R 

There is no general rule known for finding such best 
polynomials. The following theorem helps in some 
cases : 

Let <j£,(r) be the lemniscate in the complex 

w-plane defined by 

|Lk(w)| £ r < Lk(0) 

for some polynomial L,(w) of degree >_ k . 

Then every k degree polynomial P^Cw) 

with Pk(0) = 1 satisfies 

max |Pk(w)| _> r/Lk(0) for w in ̂ ( r ) . 

Proof. Apply the maximum modulus theorem on 
the exterior of <^f(^) to the rational function 

Lk(0) Pk(w)/Lk(w) 

to conclude that this quotient has magnitude at 
least 1 somewhere on the boundary of <>£ (r) . 

Then apply the same theorem to P^Cw) inside 

4(r) 
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The simplest application of this theorem is 
to the circle 

|Lk(w)| = |(l-w)k| 1 Bk , 

which shows that, if A = I-B and we know only 
that ||B|| == 6 < 1 (so that all eigenvalues X of 
A must satisfy 11-X | <_ 3 < 1) , then the simple 

Jacobi iteration described above is the best that 
can be done. 

Having chosen a polynomial *V(W) > the 

numbers y . are defined as the reciprocals of the 

zeros of Pk^w^ ' This relation amounts to an 

inconvenient restriction on the sequence of 
polynomials P.(w) for j < k , and is also a 

source of possible numerical instability. To 
illustrate this point, suppose all the eigenvalues 
X of CA lie in an interval on the real axis, 
say 0 < a o < _ X < _ a . The following theorem of 

Markoff is applicable: 

Of all k degree polynomials p
k(

z) with 

P,(0) = 1 , the one for which 

max |P,(z)| on ag <_ % <_ a 

is smallest is just the Tchebycheff polynomial 

where 

Tk(L(z))/Tk(L(0)) 

T,(cos 0) = cos k Q and 

L(z) = (am + a0 - 2z)/(am - a0) . 

Proof. If |Pk(z)| <_ l/Tk(L(0)) on 
ao £ z £ a m 9 then the difference 

Tk(L(z)) - Tk(L(0))Pk(z) has at least one zero 

between each pair of adjacent extrema of T,(L(z)) 

on the interval, and another at z = 0 , making k+1 
zeros altogether. 

Now, the zeros \."" of T,(L(z)) include 
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some numbers quite near ao > which may be very small 

in cases of slow convergence. But then the term 
Y-tCr. , when its turn comes in the iteration, can be 

so large and so much magnify the effects of rounding 
errors that the convergence of the iteration is 
jeopardized (Young (1956)). 

Fortunately, the Tchebycheff polynomials 
satisfy a three-term recurrence 

Tk+1(L(z)) = 2L(z)Tk(L(z)) - T^1(L(z)) 

which can be implemented conveniently and is 
numerically stable. A suitable form for the 
iteration is 

^k+i • k̂ + Vïk + 6k^k - s*-i> • 

and an appropriate choice of y , , 6, , and 

zk = x + Tk(L(CA))(zQ - x)/
T
k(

L(°)) 

for all k >_ 0 . One great convenience of this 

iteration is that the polynomial ^(w) that 

appears in the relation 

zk = x + Pk(CA) (z_Q - x) 

is the "best" such polynomial for each k , so that 
there is no need to choose a degree k in advance. 
This convenience persists whenever the sequence of 
polynomials P, (w) are orthogonal polynomials 

2 
which minimize some weighted mean value of |P(w)| 
over an interval of interest, because these 
polynomials also satisfy a three-term recurrence. 
For details see Stiefel (1958) and Faddeev and 
Faddeeva (1964) ch. 9. 

A very different approach to iterative 
methods can be illustrated by the Jacobi method 
once again. We note that, since 

*k+i - 2-= B ( ^ k - 1 > > 
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where 6 = ||B|| < 1 . In other words, each iteration 

reduces the norm of the error by a factor 3 < 1 . 

More generally, given a norm for the error 
||z, - x|| or for the residual ||b_ - A^J| , one seeks 

a direction £, and distance \, such that the 

norm associated with 

is smaller than for z, . In Gauss-Seidel 

iterations the direction g. is one of the 

coordinate directions; in gradient iterations the 
direction g, is that in which the norm is 

decreasing most quickly. For further discussion see 
Householder (1964) sec. 4.2-3. I shall elaborate 
upon only one such method, called "the method of 
conjugate gradients". 

Suppose A is symmetric and positive definite^ 

and let us use || r» || = (r,Trk) as a norm for the 

residual r, = b_ - Az, . Then each iteration step 

Sk+i = ^k + y<A + 6 k ( ^k " S t - i > 

looks formally just like the iteration that was used 
above to construct the Tchebycheff polynomials, but 
now the constants -y, and 6, must be chosen to 

minimize IK,.-J I i-n that step. This choice of "y, 

and 6, has the stronger property that no other 

choice of v Q, 6Q, \-., 6-,, ... , Y, , 6, could yield 

a smaller value for IIUV+TJI • I n particular, 

ÎIM = 2. > the iteration converges in a finite number 

of steps. An excellent exposition of this powerful 

technique is given by Stiefel (1953) and (1958). 

Another approach to iterative methods is 
embodied in the relaxation methods. The basic idea 
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here is to adjust some unknown Xj to satisfy 

("relax") the I equation I. a^. x. = b. , 

even though in doing so some other equation may be 
dissatisfied. The next step is to relax some other 
equation, and so on. Gauss (1823) claimed that this 
iteration could be performed successfully 

"... while half asleep, or while thinking 
about other things". 

Since his time the method has been systematized and 
generalized and improved by orders of magnitude, 
especially where its applications to discretized 
boundary value problems are concerned. The best 
survey of this development is currently to be found 
in Vargafs book (1962). Nowadays some of the most 
active research into iterative methods is being 
conducted upon those variants of relaxation known 
as Alternating Direction Methods; see for example 
Douglas and Gunn (1965)* Gunn (1965)* Murray and 
Lynn (1965), and Kellog and Spanier (1965). 

The result of the past fifteen years of 
intense mathematical analysis concentrated upon 
iterative methods has been to speed them up by 
factors of ten and a hundred. Some idea of the times 
involved can be gained from surveys by Engeli et al 
(1959), Martin and Tee (1961), and Birkhoff, Varga 
and Young (1962). For example, the difference 
analogue of Dirichlet?s problem (Laplace's equation 
with specified boundary values) in a two-dimensional 
region with about 3000 lattice points can be solved 
to within about 6 significant decimals in about 300 
iterations of successive over-relaxation, requiring 
about 30 seconds on our machine. This is one third 
as long as would be needed to apply Gaussian 
elimination to the corresponding band matrix. A 
three-dimensional problem with 10000 equations and 
unknowns could be solved on our machine in less than 
5 minutes by iteration; here Gaussian elimination 
takes hundreds of times as long, so the value of 
iteration is well established. But the time required 
for iterative methods generally cannot easily be 
predicted in advance except in special cases (which 
are fortunately not uncommon). Furthermore, the 
choice of one out of several possible iterative 
methods is frequently a matter of trial and error. 
Even if the iterative method is chosen on rational 
grounds, there will be parameters (like the constants 
Y k and 6, above) which must be chosen carefully 

for maximum efficiency; but to choose their values 
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will frequently require information that is harder 
to obtain than the solution being sought in the 
first place, (A welcome exception is the method of 
conjugate gradients.) Evidently there is plenty of 
room for more research, and especially for the 
consolidation of available knowledge. 

4. Errors in the Solution of Linear Systems. 
It is possible in principle to perform a variant of 
Gaussian elimination using integer arithmetic 
throughout in such a way that no rounding errors 
are committed (see Aitken's method described by 
Fox (1964) on pp. 8 2 - 8 6 ) . But the integers can 
grow quite long, as much as N times as long as 
they were to begin with in the given NxN matrix A. 
Whenever N is large, one is easily persuaded to 
acquiesce when the computer rounds its arithmetic 
operations to some finite number of significant 
digits specified in advance. Consequently, it comes 
as no surprise when the calculated value ẑ  of the 
solution of 

Ax = b 

exhibits a small residual 

r = b_ - A^ . 

How small must r be to be negligible? The 
following example shows that this question can have 
a surprising answer. 

Example 1. 

A _ / . 2 1 6 1 . l 4 4 l \ / . l44o\ v _ / . 9 9 1 1 \ 
A " U.2969 -8648/ > 5 . " (.8642/ > £ ~ (- .4870/ • 

Then the residual is 

r = b - Az = (--0000000l\ e x a c t l y . r D_ - AZ_ - ^ .00000001/ e x a c t ±y > 

no other vector z_ specified to 4 dec. can have 
a smaller residual r unless r = 0_ . But z_ does 
not contain a single correct digit I The"correctft 

solution is 

Linear systems with this kind of pathological 
behaviour are often called "ill-conditioned". 
Precisely what does "ill-conditioned" mean? 
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This example and other problems of error 
analysis are easier to discuss using the language of 
matrix norms, which I digress to introduce here. 

A common vector norm is the Holder norm 

||x||p = (Zjlxjl?)1^ for 1 I P < - . 

This norm i s e a s i l y shown t o have t h e p r o p e r t i e s 
t h a t one e x p e c t s of a v e c t o r norm: 

| | x | | > 0 excep t t h a t ||0J| = 0 . 

||a2L|| = I a I I I ^ L I I
 f o r a 1 1 s c a l a r s a . 

||2L + Z.|| £ | | £ | | + ||JL|| (The T r i a n g l e I n e q u a l i t y ) . 

Any l i n e a r t r a n s f o r m a t i o n A from one normed l i n e a r 
space t o a n o t h e r can be normed i n t h e n a t u r a l way: 

||A|| = max ||AxJ|/| |x|| over x + _0 . 

(I use "max" instead of "sup" because they amount to 
the same thing for finite dimensional spaces,) 
Among the matrix norms most often used are 

||A|| = max ||Ax|| / | | x |L w i th s u i t a b l y chosen 

p and q ; e . g . 

oô oo = max llAxllyHxJI^ = maX l | ^ | a i J | (max row-sun) 

, _ = max | |Ax|J,/ | |x |L = max. | z . | a - . | (max column-sun) 

IIAIL,I =max iML/yii =max ij iaiji 
||A||2 2 = max ||AxII2/||xJ|2 = (max e i g e n v a l u e of A T A ) 1 / 2 

T 1/2 (Another m a t r i x norm, J|AjJE = ( t r a c e A A) ' , i s 

widely used but cannot be defined as a maximum of a 
ratio of two vector norms. Its main value is as an 
easily computed estimate of |JAJJ2 2 , because 

Ul\E L M2$2 > W E / ^ r a n k (A) . ) 

U n t i l f u r t h e r n o t i c e , t h e m a t r i x norm used below 
w i l l be assumed t o be one of t h e norms IIAII 
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= 1 

Finally, the notion of a dual linear 
functional should be mentioned.. If the row-vector 

£T is regarded as a linear operator from a normed 
vector space to the space of complex numbers normed 
as usual, then 

Bz.T||a max lz.Tï.|/||x|l over 2L * £ • 

e-g- Blip = max lzTx|/||x||p = ||ï||q where p"
1 + q"1 

And the Hahn-Banach theorem guarantees that to each 

x ^ 0 corresponds a dual functional £T such that 

Z\ = IIJLT|| 11*11 = 1 • 

(For more details, see Householder (1964) or any text 
on normed linear spaces; e.g. Day (1962), Kantorovich 
and Akilov (1964).) 

Now it is possible to discuss the meaning of 
"ill-condition". To each matrix A , regarded as a 
linear operator from one normed space to another, can 
be assigned its condition number K(A) associated 
with the norms and defined thus: 

K(A) -= S2L M/l 
W l l HI 

over a l l x ï 0_ and £ ï jO 

In other words, if the vectors Ax, and Ab are 
regarded as errors correlated by A(x̂  + AxJ = b_ + Ab̂  , 
where x_ a n d 5. satisfy Â c = b_ , then 

1/K(A) £ (i|Axtl/||x|l)/(llAb||/||b||) <K(A) . 

This means that a small change Ab_ in b_ causes a 
change Ax in x_ which has, relatively speaking, a 
norm that can be K(A) times as big. When K(A) is 
very large, we say that "A is ill-conditioned" . 

It is easy to prove that when A is a square 
matrix, 

K(A) - |A| HA"1! . 

The matrix A of the numerical example is very ill-
conditioned indeed; 
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/ -86480000. Il*4l0000.> 

\i2969OOOO. -21610000. A" - UonEnnnnn o-i£-innnrj J and 

K(A) * 2 x 108 . 

If we apply the inequality, associating r with Ajb 
and z_ - x with Ax , we verify that 

(fl£ - xJl/fl^l)/(|IlJ|/IlbJ|) * (l/2)/(l(T8) < K(A) . 

Had K(A) been known in advance, the example would 
not have come as a surprise. 

Another important property of the condition 
number is given by the following: 

THEOREM: A differs from a singular matrix 
by no more in norm than |]A||/K(A) , (Gastinel) 

i.e., given A , ||A||/K(A) = min ||AA|| over all 

singular (A + AA) . 

Proof . Of c o u r s e , i f (A + AA) i s s i n g u l a r , 
t h e n t h e r e i s some x ^ 0_ f o r which (A + AA) x. = Q. 

T h e r e f o r e || AA|| >_ ||AAX)| / ||x || 

• rai/M 
= I I A X I I / I I A - 1 AXII 
i I/HA"1)! = ||A||/K(A) . 

To find a AA which achieves the inequality we 

consider that vector £ f o r which 

II A " 1 d = II A " 1 ! ! ||Z|J ¥ 0 . 
T -1 

Then let w be dual to A £ 

i.e. wT A"1
 Z = JJwTj| jJA"1 2|| - 1 , 

and set AA = - £ wT . 
We have (A + AA) A~ £ = 0 , so A + AA is singular. 

And 

|AA[| = max JJ^ wTxJJ/j|x|| o v e r 2L ^ H 
= BjJ max |wTx|/ i ixii 
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- l id I*TI MMI/lK^Jl = i/IJA-1! 
= ||A||/K(A) . 

Let us return to the example again. If the 
elements of A have been rounded to 4 decimal 
places, then the uncertainty introduced by the 
rounding is 10000 times larger than the difference 
between A and the nearest singular matrix! Under 
these circumstances it is reasonable to ask whether 
the system Ax_ = b_ deserves to have a solution. 

The pathological behaviour of ill-conditioned 
matrices seems to have preyed upon the minds of the 
early analysts of the error committed during 
Gaussian elimination. Certainly the conclusions of 
von Neumann and Goldstine (19^7, 1951 ) are 
incredibly pessimistic; for example they concluded 
that on a machine like ours there were substantial 
risks taken in the numerical inversion of matrices 
of orders much larger than 20, although their 
error-analysis was correct in other respects. 
(Their trouble arises from an attempt to compute 

A" from the formula 

A - 1 = ( A ^ r 1 AT , 

an attempt which we know now to have been ill-
conceived. ) 

A more nearly modern error-analysis was 
provided by Turing (1948) in a paper whose last few 
paragraphs foreshadowed much of what was to come, 
but his paper lay unnoticed for several years until 
Wilkinson (I960) began to publish the papers which 
have since become a model of modern error-analysis. 

WilkinsonTs main result about Gaussian 
elimination can be summarized thus: 

Provided Gaussian elimination is carried out 
in a reasonable way (about which more later), the 
computed approximation z_ to the solution of 

Ax = b_ 

will satisfy instead an equation of the form 

(A + AA) z = b 
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where, although AA is not independent of b̂  and 
z, , AA satisfies an inequality of the form 

||AA||< c gN NP 3 " S ||A|| 

where N is the order of A , 

3~s represents "1 unit in the last place" 
-s -8 e.g. e =10 on an 8 dec. digit machine, 

c is a modest positive constant, usually 
less than 10, 

p is a small positive constant always 
smaller than 3. 

gN is the pivot-ratio, about which more later. 

The constants c and p depend upon the details of 
the arithmetic and the norm; they will not be 
discussed here. (See Wilkinson (1963) and references 
cited therein.) 

In short, JJAAjl is comparable to rounding 
errors in JJAJJ ; and if the data in A is already 
uncertain by more than a few hundred units in the 
last place carried then the perturbation AA 
attributable to the process of elimination will be 
quite negligible by comparison. Indeed, in many 
cases the perturbation AA will amount to less than 
one unit in the last place of each element of A ! 

So, a small residual 

r = b_ - Az_ = AA z 

is just what might be expected from Gaussian 
elimination. But the error z, - x. is another 
matter; 

£ - x =-A AA z_ , where JJ AA|) <_ e |}AJ[ , say . 

T h e r e f o r e \\z - x|l 1 IIA"1 II I|AA|| || z j | 

< K ( A ) e 11 M 

- 1 - K(A) e , l ^" 

where K(A) is Afs condition number, 

e = c gN N
p B~S and is very small, 

and we assume that K(A) e < 1 . 
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In other words, although the residual r is always 
small, the error £ - x. may be very large if A is 
ill-conditioned; but this error will be no worse than 

c gN N^ units in its if A were in error by about 

last place to begin with. 

The constant gN has an interesting history 

It is connected with the rate of growth of the 
"pivots" in the Gaussian elimination scheme. The 

pivot is the coefficient a-j-j by which the I 

equation is divided during the elimination of x, . 

This term "pivot" will be easier to explain after 
the following example has been considered: 

Example 2. 

A = 

-10 -1 

1 

1 

,-1 

.1 
2 x. 

À A. 
0 -2 

h { -2 0.9999999998 . „ «. , -2 

2 1.0000000002 0.9999999998/ xQ 

1.0000000002 1 x. 

Clearly, A is not ill-conditioned at all. 
But suppose we apply Gaussian elimination to solve 
the equation Ax_ = b_ . Our first step could be to 

eliminate x, from equations 2 and 3 by subtracting 

suitable multiples of equation 1 from them. The 
reduced matrix should be 

x __1 

2 x 

0 

0 

lu"10 -1 

-4999999999 

5000000001 

13 
1 

5000000001 

-^999999999/ 

"1 
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But if we have a calculator whose capacity is limited 
to 8 decimal digits then the best we could do would 
be to approximate the reduced matrix by 

-10 -1 

-5 x 10-

22. 
l 

5 x 10: 

5 x 10* -5 x 10' 

ul 
bf. 

but this is precisely the reduced matrix we should 
have obtained without rounding errors if A had 
originally been 

A + AA = 

-10 
_2 
-1 

0 

0 

In other words, the data in Afs lower right hand 
2 x 2 submatrix has fallen off the right hand end 
of our calculator's 8-digit register, and been lost. 
The result is tantamount to distorting our original 
data by the amount of the loss, and in this example 
the distortion is a disaster. 

These disasters occur whenever abnormally 
large numbers are added to the moderate sized 
numbers comprising our data. To avoid such disasters 
it is customary to choose the variable Xj to be 

eliminated, and/or the row I with which it is to be 
eliminated from all other rows, in such a way that 
the pivot a IJ is the largest available element a 

in its row, or column, or both. Since the typical 
ij 

computation replaces a 
ij by 

ij = a ij "
 aiJ aIj/aIJ for all (i,j) Ï (I,J) 

max we see that max.^a1..! <_ 2 

so that no abnormally large numbers should appear. 
ij1 ij 

In the example above we might choose 

pivot to obtain the reduced matrix 

l21 as the 
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1 

•1.0000000 

2 

1.0000000 

2 

°2 
b' 

(working to 8 significant digits) . 

This reduced matrix is what would have resulted if 
no rounding errors had been committed during the 
reduction of 

A + AA = 

-1 

1 

1 

which differs negligibly from the given matrix A . 

Wilkinson's error bound, quoted above, assumes 
that each pivot aTT is the largest in its row or 

else in its column of the reduced matrix, and then 
gN is the ratio of the largest of the pivots to 

the largest element in A . We can see that, since 
the largest elements of each reduced matrix never 
exceed twice those of the previous one, 

% ± 2 N-l 

This bound is achieved for X = 1 by the matrix 

Example 3: 

Ax • 

1 0 
-1 1 
-1 -1 

0 0 
0 0 
1 0 

-1 -1 -1 1 

-1 -1 -1 

0 1 
0 1 
0 1 

1 0 1 
-1 1 1 
-1 -1 X 

a±J = -1 if i > j , 

a ± ± = 1 if i < N , 

a±1 • 0 if i < j < N, 

a.j, = 1 if i < N, and 

N x N 

= X 
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if each pivot is chosen on the diagonal as one of 
the largest elements in its column, and the columns 
are chosen in their natural order 1,2,3, ..., N 
during the^elimination. But when we repeat the 
computation with X = 2 and sufficiently large N , 
an apparent disaster occurs -because the value of 
X = 2 gets lost off the right-hand side of our 
computing register. On a binary machine like our 
7094 (using truncated 27-bit arithmetic), X = 2 
is replaced by X = 1 if N > 28 . An example like 
this was used by Wilkinson (1961, p. 327) as part of 
the justification for his recommendation that one 
use both row and column interchanges when selecting 
pivot aTT to ensure that it is one of the largest 

elements in the reduced matrix. This pivot-selection 
strategy is called "complete pivoting" to distinguish 
it from "partial pivoting" in which either row 
exchanges or column exchanges, but not both, are 
used. 

The other justification for complete pivoting 
was Wilkinson1s proof of a remarkable bound for the 
ratio gN of the largest pivot to the largest 

element of A : 

gN < iX.Z1^1'2.*1'3 ... N 1 / ( N - 1 } ) 1 / 2 < 2N** 1 O « N , 

which is certainly far smaller than 2 

(This bound is worth a small digression. It 
is known to be unachievable for N > 2 ; and the 
bound 

% £N 

has been conjectured for complete pivoting when A 
is real. The conjectured bound is achieved whenever 
A is a Hadamard matrix, and L. Tornheim has shown 
that the conjecture is valid when N s 3 • He has 
also shown that when A is complex the larger bound 

g3 £ 16/3
372 

can be achieved.) 

Despite the theoretical advantages of complete 
pivoting over partial pivoting, the former is used 
much less often than the latter, mainly because 
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interchanging both rows and columns is far more of a 
nuisance than interchanging, say, rows alone. 
Moreover, it is easy to monitor the size of the 
pivots used during a partial pivoting computation, 
and stop the calculation if the pivots grow too 
large; then another program can be called in to 
recompute a more accurate solution with the aid of 
complete pivoting. Such is the strategy in use on 
our comDUter at Toronto, and the results of using 
this strategy support the conviction that intolerable 
pivot-growth is a phenomenon that happens only to 
numerical analysts who are looking for that 
phenomenon. 

Despite the confidence with which the computed 
vector z_ , produced by Gaussian elimination or some 
other comparable method, can be expected to have a 
residual 

r = b_ - Az_ 

which is scarcely larger than the rounding errors 
committed during the calculation of r_ , 

i . e . Dr | | - lib - AzJI ~ N6-S(||b|| + ||A|| | |Z| |) , 

an important problem remains. How large is the 
error z_ - x. with which z_ approximates the "true 
solution" x. of Ax = b_ ? This question is 
meaningful even if A and b_ are not known 
precisely; we can interpret z_ to be the solution of 
a perturbed system 

(A + AA) z, = ;b + Ab_ 

i n which |] AA JJ and ||Ab_|| a r e bounded i n some g i v e n 
way, and hence so i s v_ = AAz_ - Ab_ . A p r e c i s e 
answer t o t h e q u e s t i o n i s 

x - z = K-\ , || z - x | | < || A"1!! | | r | | , 

but here we must know || A" || in order to complete 

the answer. If we try to compute A~ , we shall 
instead obtain some approximation, say Z , and 
once again we shall have to ask the question 

How large is the error Z - A" ? 

This question can be answered fairly easily if Z 
is accurate enough, as shall now be shown. 
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Each column z. of Z = {z.-,,z_p> ... > Zvr) 

can be regarded as an approximation to the 
corresponding column X- °f 

A = A = I X_n y X_P * * * * * ~Kf * 

the solution of AX = I . A reasonable way to solve 
the last equation is to use Gaussian elimination, in 
which case each column z_. will be computed 

separately and will satisfy 

(A + A±A) z_. = (the i t h column of I) 

where ||A.A|| <_ e || A || for some small e which 

depends upon the details of the program in a way 
discussed by Wilkinson (1961). 

Now let R be the residual 

R = I - AZ . 

It is not necessary to compute R ; we can write 

R = I-A {z^z^, ... 3 z_N> = {A1Az_1,A2Az_2, ..., A ^ ^ } , 

i n which each column A.Az_. of R i s bounded i n 

norm by 

KAzJ < cflAfllzJ . 
Therefore 

P = llHJI i n | |A|| |jZ|| 

where r\/e depends upon N and the norms; usually 

n/e 1 N 1 / 2 . 

Since e can be predicted in advance, so can n ; 
and it is possible to check whether 

n IIAJUJZJI < 1 , 

in which case p < 1 and the following argument is 
valid: 
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H A-̂ fl̂ Jlzll+H A-^-zj^nzii^ IIA-^-CI-AZ)!! =!IZ/|+||A-:LR|| 

£l|z|M|Ai|p ; 

llA^llillZll/d-p) . 

Then I IA" 1 -ZIU lU""1!! p £ ||z||p/(l-p) . 

The last inequality says that, neglecting 
modest factors which depend upon N , the relative 

error || A~1-Z||/||z || is at worst about K(A) times 
as large as the relative errors committed during 
each arithmetic operation of ZTs computation. In 
other words, if A is known precisely then one must 
carry at least l°g-iQ K(A) more decimal guard 

digits during the computation of A~ than one 
wants to have correct in the approximation Z , and 
one can verify the accuracy of Z at the end of 
the computation by computing n ||A || ||Z || . 

If the method by which an approximation Z 

to A~ was computed is not known, there is no way 
to check the accuracy of Z better than to compute 
R and p directly, and this calculation is not 
very attractive for two reasons. First, the 
computation of either residual 

R = I-AZ or I-ZA 

costs almost as much time as the computation of an 
-1 3 

approximate A ; both computations cost about N 
multiplications and additions. Second, if K(A) is 
large then ||l-AZ|| and || I-ZA || can be very 
different, and there is no way to tell in advance 
which residual will give the least pessimistic 
over-estimate of the error in Z . 

(p=||l-AZ|J = ||A(I-ZA)A""1|| <_ K(A)||I-ZA|| etc.) 

Both residuals can be pessimistic by a factor like 

K(A) . Finally, although a better approximation to 

A" than Z is the matrix 

Z1 = Z + Z(I-AZ) = Z + (I-ZA)Z 

(because [[I-AZj = |[(I-AZ)2[| <_ ||l-AZ||2 ) , 
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the computation of Z., is in most cases more costly 

and less accurate than a direct computation of an 

approximate A" using Gaussian elimination with 
double precision arithmetic. For example, on our 
7094 it takes less than twice as long to invert A 
to double precision (carrying 16 dec.) than to do 
the same job in single precision (8 d e c ) , and the 
double precision computation has almost 8 more 
correct digits in its answer. But Z., has at most 

twice as many correct digits as Z . Therefore, if 
Z comes from a single precision Gaussian elimination 
program, it will have about 8-log K(A) correct 
digits. Z, will have 16-2 log K(A) digits at 
best. The double precision elimination will produce 
about 16-log K(A) correct digits. Thus does 
engineering technique overtake mathematical 
ingenuity ! 

The solution of Ax_ = b_ for a single vector 
x_ is not normally performed by first computing 

A" and then x = A" b_ for four reasons. First, 
the vector Zb_ , where Z is an approximation to 

A~ , is frequently much less accurate than the 
approximation z_ given directly by Gaussian 
elimination. Second, the direct computation of the 
vector £ by elimination costs about 1/3 as much 
time as the computation of the matrix Z . Third, 
if one wants only to compute a vector z_ which 
makes r = b_ - Az_ negligible compared with the 
uncertainties in b_ and A , then Gaussian 
elimination is a satisfactory way to do the job 
despite the possible ill-condition of A , whereas 
b_ - A(Zb_) = Rb_ can be appreciably larger than 
negligible. Fourth, Gaussian elimination can be 
applied when A is a band matrix without requiring 
the vast storage that would otherwise be needed for 

A" . The only disadvantage that can be occasioned 

by the lack of an estimate Z of A~ is that 
there is no other way to get a rigorous error-bound 
for ẑ  - x . This disadvantage can be partially 
overcome by an iterative method known as 
re-substitution. 

To solve Ax_ = b_ by re-substitution, we 
first apply any direct method, say Gaussian 
elimination, to obtain an approximation z_ to x • 
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This vector ẑ  will be in error by e_ = x - z_ , and 

Ae_ = A(x-z) = b - A^ = r , 

which can be computed. (It is necessary to compute 
r carefully lest it consist of nothing but the 
rounding errors left when ID and A_z nearly cancel. 
Double precision accumulation of products is 
appropriate here.) Clearly, the error e_ satisfies 
an equation similar to xTs except that r replaces 
b_ . Therefore, we can approximate e_ by f , say, 
obtained by repeating part of the previous calcula
tion. If enough intermediate results have been 
saved during the computation of z_ , one obtains f_ 
by repeating upon r the operations that transformed 
b_ into z_ . The cost of f_ in time and storage is 
usually negligible. 

Now z_! = z_ + f_ is a better approximation to 
x than was £ , provided _z was good enough to 
begin with. We shall see that this is so in the case 
of Gaussian elimination as follows: 

(A + A-ĵ A) z. = b , where || A ^ || <_ e||A || . 

r = b_ - A;z , say exactly for simplicity. 

Il£ll = llA3_Az.ll <. s||A|| |(z.|| , 

and this inequality is not normally a wild over
estimate. 

(A + A2A) f = r , ||A2A|| <_ e||A|| . 

r = b_ - Az/ = r - Af = A2Af , so 

ll£'ll 1 e | |A| | Hill < £ | |A|| ||(A + AgA)-1!! | |£ | | 

1 e K ( A ) l l l l l l /^1 - e K(A)) i f e K(A) < 1 . 

And if e K(A) << 1 then ||rf|| can be expected to 
be much smaller than || r || . If z_! is renamed z_ , 
the process can be continued. We have left out 
several details here; the point is that the process 
of re-substitution generally converges to an 
approximation z_ which is correct to nearly full 
single precision, provided the matrix A is jfarther 
from a singular matrix than a few hundred units in 
its last place. The problem is to know when to stop. 

786 

https://doi.org/10.4153/CMB-1966-083-2 Published online by Cambridge University Press

llA3_Az.ll
https://doi.org/10.4153/CMB-1966-083-2


The word "convergence" is well-defined 
mathematically in several contexts. But the 
empirical meaning of "convergence" is more subtle. 
For example, suppose we consider the sequence 
ZpZp, . . ., z_ , ... of successive approximations to 

x_ produced by the re-substitution iteration, and 
suppose that z = z ,-, = z , 0 = . . . . We should ^ -m -m+1 -m+2 
conclude that the sequence has converged. And if 
z n - z is a good deal smaller than —m-1 —m ° 
z n - z ., j we should incline to the belief that —m-2 —m-1 ' 

the convergence of the sequence is not accidental; 
there is every reason to expect z to be the J ^ -m 
correct answer x_ except for roundoff in the last 
place. But a surprise is possible if A is 
exceptionally ill-conditioned: 

Example 4. Here is an example of a 2x2 
system with 

= /.8647 .5766) = /.2885 ) A 1.4322 .2822/ a n a - (.1442/ * 

We shall use Gaussian elimination to compute a first 
approximation z_ to the solution x of Ax = b_ . 
Then r = b_ - Az, is computed exactly, and the 
solution e_ of Aê  = r is approximated by £ , 
obtained again by Gaussian elimination. z_T = z. + f. , 
and rT = b_ - Az_T . 

We shall try to calculate x correctly to 
3 sig. figTs. It seems reasonable to carry one 
guard digit at first, since we can repeat the 
calculation with more figures later if that is not 
enough. We shall truncate all calculations to 
4 sig. figfs., just like our 7094 (except that it 
truncates to about 8 sig. figTs.). Intermediate 
results enclosed in parentheses are obtained by 
definition rather than by means of an arithmetic 
operation. 
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Comment 

1st pivotal 
.4327/.8647= 

.4998xEl Is 

E2-E1' 

E3/.lxl0~3 

.5766xZ2 
E1-E3* 
E4/.8647 

row is . 
.4998 

. . . 

. . . 

Our first approximat 

Equ'n 
no. 

. . El 
E2 

El' 

E3 
Z2 

E3' 
E4 
Zl 

ion is z 

Coef. 
of x. 

.8647 

.4322 

(.4322) 

( 0 ) 

( 0 ) 

( 0 ) 
(.8647) 
( 1 ) 

• h 

Coef. Right hand 
of x2 

.5766 

.2882 

.2881 

.lxlO"3 

( 1 ) 

(.5766) 
( 0 ) 
( 0 ) 

333l\ • 
.000/ 

side b 

.2885 

.1442 

.1441 

.lxlO"3 

1.000 

.5766 
-.2881 
-.3331 

Next we compute r 
precision: 

Residual of El ... 

Residual of E2 ... 

= b - Az exactly using double 

Rl 

R2 

-.6843x10 

-.3418x10 

-4 

-4 

We get f_ by repeating upon r the operation which 
transformed b into z . 

.4988XR1 
R2-R1' 

R3/.lxlO-3 . 

.5766xF2 

R1-R3' 

R4/.8647 

Rl' 

R3 
F2 

R3' 
R4 

Fl 

-.3420x10 

.2xl0"7 

.2000x10 

-4 

.1153x10 

-.1837x10 

-.2124x10 

-3 

-3 

-3 

-3 

z = /-3331) 
- (1.000/ 

f = 
-.2124 
.2000 x l0~ 3

 z ' = z + f = M 3 3 3 1 2 l | | x±u , z_ zti_ (1#o002000/ * 

Clearly z_! i s so close to z_ t ha t e i t h e r i s an 
acceptable 3-f igure approximation t o x . But, j u s t 
in case t he r e i s some doubt, we compute 

= b - AzT = - . 0 0 0 0 0 0 0 8 7 7 2 , > 
, 0 0 0 0 0 0 0 2 0 7 2 
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which is reassuringly smaller than r_ . 

Is x = (î'Joo) t o 3 s i g' f ig ? s ? No> 1= / _ 1 

The only clue to ATs ill-condition is the 
cancellation in E3 . If there were time and space 
available, an example could be constructed of 
sufficiently high dimensionality that severe 
cancellation would not occur to warn of the disaster. 
Presumably this kind of disaster is rare in practice, 
because none has yet been reported elsewhere. Indeed, 
a prominent figure in the world of error-analysis has 
said 

"Anyone unlucky enough to encounter this 
sort of calamity has probably already been 
run over by a truck." 

But being run over by a truck can hardly go 
unnoticed. 

Despite the risks, re-substitution is the 
most reasonable and efficient way to check and 
improve the accuracy of an approximation z_ when 
the matrices A and b_ are known more precisely 
than to within the uncertainties AA and Ab_ 
in the perturbed equation 

(A + AA) z, = b + Ab 

satisfied by the product z_ of Gaussian elimination. 
For fuller detail, see Wilkinson (1963) pp. 121-126. 
But if A and b_ are intrinsically uncertain in, 
say, their fourth decimal place, and if Gaussian 
Elimination has been carried out with about 6 to 8 
sig. figTs and with a reasonable pivotal strategy, 
then re-substitution may well be pointless, since 
the errors committed during the elimination will be 
negligible compared with intrinsic uncertainties. 

5. Pivoting and Equilibration. How reliable 
are the sizes of the pivots as indications of a 
matrixfs ill-condition? Is it true that a matrix is 
ill-conditioned if and only if some of its pivots 
are small? Most people who are experienced with 
hand calculations would answer "yes" to the last 
question unless they have tried to test their belief 
on problems of high dimensionality with the aid of 
an electronic computer. When the dimensionality of a 
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problem becomes large (say > 30), much of our 
experience and Intuition with small dimensionality 
(say <. 5) becomes misleading. The following 
examples are designed to correct misleading 
impressions. 

MIS-STATEMENT NO. 1. The determinant of A 
is the product of the pivots encountered during 
Gaussian elimination (to within a * sign); and since 
a singular matrix has determinant zero, and det A 
is a continuous function of A , an ill-conditioned 
(nearly singular) matrix must have a small 
determinant and hence must have at least one small 
pivot. 

The flaw in this argument is the same as that which 

says that, since |x| is a continuous function of 

x no matter how large N may be, |x| / must be 
small when x is small. The trouble is that two 
"small" numbers can still be relatively very different. 
A matrix counterexample is 

Example 

A = 

5. 
f 

1 
0 
0 
• 

fi 

- 1 
1 
0 

- 1 
- 1 

1 
• 

• • • 

. . . 

• • 

1 

- 1 
- 1 
- 1 

• 

- 1 
1 

a ± J = 0 i f i > J , 

a1(J - - 1 i f i < j , 

& i l = 1 . 

NxN 

Here det A = 1 , and every pivot can be 1 

A can be made singular by subtracting 2 1-N 

all a il Therefore, when N is large A 

but 

from 
differs 

negligibly from a singular matrix, and must be ill-
conditioned. The ill-condition of A is not 
"caused" by a large number of nearly equal elements, 
as some observers have suggested, because |if all 
-lTs in A are replaced by +lfs then A becomes 
the well conditioned inverse of 

1 - 1 0 
0 1-1 
0 0 1 

0 
0 
0 

1 -1 
0 1 
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The foregoing examples indicate that Gaussian 
elimination is a poor way to determine the rank of 
a matrix because a few rounding errors may suffice to 
cause none of the pivots to be small despite a 
theorem which says that, in the absence of rounding 
errors, the rank of a matrix is the same as the 
number of non-zero pivots generated during Gaussian 
elimination with both row and column pivotal 
interchanges to select maximal pivots. 

Most other methods for determining rank fare 
no better in the face of roundoff. For example, the 
Schmidt orthogonalization procedure can be described 
in terms of an orthogonal projection of ATs n-th 
column a upon the space spanned by the previous 

n-1 columns a-,, . . . , a __-, (see Householder (1964) 

pp. 6-8 and 134-7). The columns can be interchanged, 
if necessary, in order at each stage to maximize the 
distance from a to the space of a., ..... a -, . —n ^ — l* 5 —n-1 
If this is done, the rank r of A will become 
evident when a ,-,, a + ?, •••* and aN all have 

distance zero from the space spanned by a-, , a,p, ..., 

and a . However, if A is merely nearly singular, 

there is no guarantee that any of the distances 
mentioned above will be anywhere near as small as 
the distance between A and the nearest singular 
matrix. Difficulties arise whenever || Av|| << |JA|| [|v|| 
for some vector v whose components v. can be 

ordered in such a way that they steadily decrease in 
magnitude to a point where the smallest component is 
negligible compared with the largest. The following 
example illustrates the phenomenon: 

i-1 for i,j = 1,2, 

a.. = 0 if i > J 

a.. = s-

i-1 . « . 
a. . = -cs if l 
ij 

2 2 
Here N is large (N > 30) and s + c = 1 . 

Since A is upper triangular, the n column of 1 
is distant a from the space spanned by the 

previous columns. Also, this example has been so 
chosen that no column interchanges are needed to 
maximize the distance, since a , a^,,, ... , and 

aN are all equally distant from the space spanned 
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by a,, a2, ... j ân i •
 T h e smallest distance 

N-l 
ann l s aNN = s * H o w m u c h s m a H e r > t h a n a„N 

is the distance || AA || between A and the nearest 
singular matrix A + AA ? 

By examining the vector Av , where 

v. := c(l+c) " •"" except v„ = 1 , 

we can show that 

||AA||/aNN = 0 ( l / ( l + c ) N " 1 ) as N - « . 

- 0 ( l / ( l + / l - a N N
2 / N ) N ) . 

For fixed aNN = a > 0 , the righthand side tends to 

zero like 

l/[a exp/-2 (N - 1/3 log a) log a ] as N -> °° . 

-N For fixed N , it is like 2 as a ™ •> 0 . In 

other words, A can be closer to singular than 
a. by orders of magnitude if N is large. 

No simple method is known for computing the 
rank of a matrix in the face of roundoff. An 
effective but complicated method has been given by 
Golub and Kahan (1965). 

MIS-STATEMENT NO. 2. The reason for pivotal 
interchanges is to prevent incorrect answers caused 
by the use of an inaccurate small pivot. 

This statement seems reasonable in the light 
of the 2x2 example at the end of section 4 of 
this paper,, where cancellation in E3 produced a 
tiny pivot .0001 whose value consisted almost 
entirely of rounding error. And the computed 
answer was quite wrong. Post hoc ergo propter hoc. 

However, the pivot 2x10"" in example 2 is quite 
accurate, yet any answer gained by its use is 
likely to be wrong. 

Now, what can one mean by the accuracy of a 
pivot? The meaning would be clear if the object of 
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our computation were to calculate pivots, but that 
is not our object. We wish to satisfy a set of 
linear equations, and the computed solution £ can 
come very near to satisfying Ax_ = b_ even though 
almost all pivots are entirely different from what 
they would have been in the absence of roundoff. In 
example 4, Rl and R2 are as small as one could 
reasonably expect from 4-figure working, and remain 
so even when the pivot .0001 is replaced by, say, 
.0002 . There are occasions when a small residual 
is all that is wanted (see the discussion of 
eigenvector calculations below). In such a case, 
we must conclude that small pivots have not prevented 
a correct answer from being produced. Besides, 
pivotal interchanges do not prevent small pivots. 

What is the significance of a small pivot? 
In the absence of other information, none. For 
example, if A is a diagonal matrix 

a.. = 10"1 exactly , 

then the system Ax̂  = b_ can be solved trivially 
and precisely (in decimal arithmetic) despite tiny 
pivots. On the other hand, if we are given a matrix 
norm such that all perturbations AA of equal norm 
|| A A || are considered equally important, and if we 
measure the ill-condition of A in terms of this 
norm, then a small pivot tells us that A is ill-
conditioned as follows: 

If the rows and columns of A are ordered 
•properly to begin with, the process of Gaussian 
elimination can be identified with a triangular 
factorization 

A = LU - E 

where L is unit lower triangular(l. . = 0 if i<j and £..,=1), 

U is upper triangular (u..=0 if i>j) , and 

E is the contribution of roundoff. 
(See Wilkinson (1963).) 
If partial pivoting is used, |&. .| £ 1 for i >_ j . 

If complete pivoting is used, |u. . | <_ |u..| too. 

The pivots are the numbers u.. , and 

II E|| 1 e ||L || ||U || 
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where e is comparable with the relative error 
associated with one rounding error (e is about 
—8 

10"" on our machine). 

Suppose, now, that some pivot u.. is small. 

Then let U+AU differ from U only in that u.. 

is replaced by zero. Therefore, 

A + A A = A + E + LAU = L(U + AU) is singular . 

And || A A || is of the order of || L|| ( e||u|| + I ^ J ) . 

Since 1 <_ || L || < N for most norms of interest here, 
and |f TU II < Ng„ [f"A || in most cases of interest (g„ 

was the pivot-growth ratio), one perturbation 
AA that makes A+AA singular is of the same order of 
magnitude as the smallest pivot u.. . And since 
|| A A || > 
K(A) > 

/K(A) , the condition number 
/(N|u..|) . A small pivot implies ill-

condition with respect to the given norm. 

The foregoing argument also shows why pivotal 
interchanges are necessary. They help to keep ||U|| 
from growing too large, thereby contributing to 
keeping ||E|| small, and this last is what we want. 

The error in example 2 when 2x10" is used as a 
pivot illustrates the consequences of allowing ||u|| 
to grow too large. Had any other element of A 
been chosen as a pivot, no such error could have 
occurred. 

MIS-STATEMENT NO. 3. If ATs condition 
number K(A) is very large, and if A and b_ are 
uncertain by a few units in their last place, then 
no numerical method is capable of solving Ax_ = b_ 
more accurately than to about K(A) units in 
x_!s last place. 

This statement would be true if the 
uncertainties in A , b_ .and x^ were measured in 
the norms corresponding to K(A) . The most 
appropriate norms for b_ and x_ would be such that 
perturbations of equal norm were equally likely or 
equally costly or otherwise practically 
indistinguishable. But rarely in practice is an 
appropriate norm chosen on that basis. Usually one 
of the Holder norms is chosen on the basis of 
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convenience, and such norms can be terribly 
inappropriate. 

Example 6. 

Let A = -1 10 " 10 " and b = 

— 8 
with a relative uncertainty of 10" in each 

element. In other words, A + AA is acceptable in 

place of A provided | Aa.. . | <_ 10" | a.. . | . If any 

of the aforementioned Holder norms are used, the 

condition number of A is at least 10 because 

there exists a AÂ with || AÂ || <_ 10"10 ||Â|| such 

that Â+AA is singular. Therefore, when Gaussian 
elimination carried out with eight sig. fig. 
arithmetic gives no useful answer, one is not 
surprised. "The system is ill-conditioned." 
However, the true solution is 

x = 

_7 
with a relative error smaller than 10 in each 

component no matter how A and b_ are perturbed, 

provided only that no element of A or b is 

changed by more than 10 of itself. This system 
is well conditioned! But not in the usual Holder 
norm. 

Example 6 can be obtained from example 2 by 
a diagonal transformation; 

I = DAD with D = diag (105 , 10"5 , 10~5) . 

This transformation does no more than shift a 
decimal point 10 places left or right. If Gaussian 
elimination is applied simultaneously to the 

matrices A and A , then the results in both 
cases will be identical down to the rounding errors 
except for the 10 place shifts of decimal point. 

But example 2 teaches us not to use 2x10" as a 
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pivot, whereas the most natural pivot in example 6 
is the corresponding element 2. Any other pivot 
would be far better. 

This is where equilibration comes in. 
Equilibration consists of diagonal transformations 
intended to scale each row and column of A in such 
a way that, when Gaussian elimination is applied to 
the equilibrated system of equations, the results 
are nearly as accurate as possible. In other words, 
the system 

Ax = b 

is replaced by 

(RAC) £ = (Rb) 

where R and C are diagonal matrices. Then 
Gaussian elimination (or any other method) is applied 
to the array {RAC, RM to produce an approximation 
to 2. anc* hence to x. = Ẑ. • 

How should R and C be chosen? No one has 
published a foolproof method. The closest anyone has 
come is in a paper by F.L. Bauer (1963) in which the 
R and C which minimize K(RAC) are described in 
terms of an eigenvalue and eigenvectors of certain 

matrices constructed from A and A*" . But no way 
is known to construct R and C without first 

knowing A" 

There is some doubt whether R and C 
should be chosen to minimize K(RAC) . The next 
example illustrates the problem; the reader should 
write out the matrices involved in extenso for N = 6 
to follow the argument. 

Let A be the NxN matrix defined in 
A 

example 3, and le t 

ri 1. o^-N 01-N 01-Nv -, 
R = diag (h 9 h , . . . y 2 , 2 , 2 ) a n d 

C = diag ( 1 , 2 , . . . , 2N~3 ̂  2N~2 , 1) . 

-1 T -1 

We observe that A1 = (RA^C) , so k± and A± 

are both well-conditioned matrices with elements no 
larger than 1. 
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Let u = (0, 0, 0, ... , 0, 1) T and note 
that 

A. = A, + u uT . 

Therefore, by a simple computation, 

A2~
X = A1"

1 - (1 + 2X~N) A ^ 1 u uT A ^ 1 . 

Now recall that when row-pivoting alone is used with 
Ap , the result can be an error tantamount to 

replacing Ap by A.. , and if no other errors are 

committed then one will compute A ~ instead of 

Ap" . Note that, when the usual Holder-norms are 

used, 

||A1-A2||/||A1| | = 0(1) and || A ^ - A , , " 1 1 | = 0(1) . 

Next observe that either complete or partial 
pivoting can be used with RApC ; the result is to 

make an error which replaces RApC by RA-.C . But 
now 

IIRA1C - RA2CI1/HRA1C|| = 0(2"
N) and 

|| ( R A ^ T 1 - (RA2C)-
1||/||(RA2C)-

1|| = 0 (2"N) . 

In other words, despite some hocus-pocus 
with shifted binary points, the error made in 
applying Gaussian elimination to RApC is the same 

as that made with Ap , except for a change of 

scale. But the former error looks negligible and 

affects (R'A9C)~ negligibly, whereas the same 
d _1 

errors look disastrous in A2 and A2 . And 
nowhere is there any ill-conditioned matrix, nor do 
any of the matrices look poorly scaled by the 
usual criteria! 

The moral of the story is that the choice of 
R and C should reflect the norms by which the 
errors are being appraised. But no one knows yet 
precisely how to effect such a choice. 
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