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Introduction. Consider a group presentation

A

P=<x;r>. (1)

Here x is a set and r is a set of non-empty, cyclically reduced words on the alphabet
x Ux~! (where x™ ! is a set in one-to-one correspondence x<>x~' with x). We assume
throughout that P is finite. Let F be the free group on x (thus F consists of free
equivalence classes [ W] of word on xUx™ 1), and let N be the normal closure of {[R]:
Rer} in F. Then the group G = G(P) defined by P is F/N. We will write W, = W, if
[WAIN=[W>]N. . i

Associated with P is a certain crossed module (2, F, d). This can be described in
several different (but equivalent) ways:

(a) topologically as the relative second homotopy group (K, KM®) where K is
the standard 2-complex modelled on P and KU is its 1-skeleton;

(b) algebraically in terms of sequences;

(c) geometrically in terms of pictures.

Also, there is the (absolute) second homotopy group n2(75):Ker 9, which is a ZG-
module. Elements of this can be represented algebraically by identity sequences, or
geometrically by spherical pictures. See [1], [3], [10] for details. We will use the sec-
ond description (b), and refer the reader to [10] for basic terminology and results
concerning identity sequences. (However, for the reader’s convenience we give a
brief account of this material in §1 below.)

Now P gives rise to a monoid presentation P for G, where

P=[x,x;R=1(Rer),xx*=1(xex,e==%l)].

The monoid defined by P is the quotient of the free monoid F on x U x~! by the
smallest congruence p generated by the relations. A typical element of this monoid is
a congruence class Wp (WeF), and we have an isomorphism from this monoid to G,

given by
Wp > [WIN (W € F).

We will often identify Wp and [W]N (if no confusion can arise) and will denote this
element by W.

Now in [12] (see also [11]) we associated with any monoid presentation Q a 2-
complex D(Q) (“the 2-complex of monoid pictures’) and we showed that the first
homology group H; (D(Q)) has considerable significance. The fundamental groups
of D(Q) are also of considerable interest and have been investigated by Guba and
Sapir [7], and Kilibarda [8].

For our presentation P above, the 2-complex D(P) has underlying graph as
follows. The vertex set is F and the edge set consists of all the atomic monoid
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pictures (U,T,e,V) (U,VeF,Ter U {xx~',x"!'x : xex}, e= £ 1) (Figure 1). The initial,
terminal and inversion functions ¢,z,”! are given by
U, T,1,Vy=2(U,T,—-1,V)=UTV,
u, T,-1, M) =«U,T,1,V)y=UV,
(U’ T’ g, V)71 = (Us T7 —&, V)'

There are obvious (compatible) left and right actions of F on this graph. Paths in
this graph are called (monoid) pictures. The left and right actions of F extend to
actions on pictures. The defining paths of D(P) are the paths

[A,B] = (A - «B))(x(A) - BYA™" - 7(B))(A) - B™"). 2

(A,B are edges of the graph.) See [11], [12] for further details.

U T \ U \
T > W—»'> L - g“’_, g
T
(U, T, +1,V) (U, T,-1,V)
Figure 1

Now elements of the fundamental groupoid m(D(P)) are represented by monoid
pictures. Consequently, in view of (c) above, it is natural to ask for our group G
what is the relationship (if any) between 7{(D(P)) and X.

In fact to obtain a relationship we need to modify D(P) by adding some extra
defining paths to it. For each xex, ¢ £ 1 we have the spherical monoid picture as in
Figure 2. (This is a path of length 2 in D(P).) We let D(P)* be the 2-complex
obtained from D(P) by adding the extra defining paths

w-.P.-V (P asin Figure 2, W, V € F). 3)

Now let ¥* be the collection of all elements of the fundamental groupoid
m1(D(P)*) represented by monoid pictures which start at freely reduced words on x
U x~!, and end at the empty word. We show in §2 that a crossed module structure
(*,F,9%) can be imposed on £*, and we prove (Theorem 1) that there is a crossed
module isomorphism

/D YRS Yl

By restriction, we then get a ZG-isomorphism

7(P) = Ker 8 % Ker & = m1(D(P)*, ).

x¢

XE

Figure 2
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The notion of finite derivation type (FDT) was introduced by Squier in his
posthumously published article [13]. In our terminology, a monoid presentation Q is
FDT if there is a finite set X of spherical monoid pictures over Q such that the 2-
complex D(Q)* obtained from D(Q) by adding the defining paths

W.P.V (W,VeFPeX)

has trivial fundamental groups. A finitely presented monoid S is FDT if some (and
hence, as shown by Squier [13], any) finite presentation of S is FDT. Monoids of
finite derivation type have been discussed in [4], [5], [9], [12].

Now if G is a group then it has been shown by Cremanns and Otto [5] that G is

FDT if and only if for some (and hence, in fact, any) finite group presentation P of
G, the ZG-module m,(P) is finitely generated.
_ Wegive in §3 a simple proof of the Cremanns/Otto result mentioned above. Let
P, P be as in (1), (2) respectively. We first establish the easy fact that all the funda-
mental groups of D(P)* are isomorphic. Using this we prove (Theorem 2) that P is
FDT if and only if the ZG-module 7;(D(P)*,1) is finitely generated. Then in view of
the isomorphism 75(P) 2= 7(D(P)*,1) (§2), the Cremanns/Otto result follows.

It should be noted that for any group presentation P= <x; r> there is a stan-
dard exact sequence

0 = m(P) > ®rerZGer — BrexZGex — ZG — Z — 0

of ZG-modules (see for example [3], [10]). Using this, together with the generalised
Schanuel Lemma [2], one easily obtains the (well-known) result that a finitely pre-
sented group G is of type FP; [2] if and only if for some (in fact any) finite pre-
sentation P of G, m,(P) is finitely generated. Thus, for finitely presented groups,
FDT and FP; are equivalent. (This result is obtained in [5].)

1. Preliminaries. If P, P’ are paths in D(P)* then we write P ~ P’ if P, P’ are
equivalent (homotopic) in D(P)*. The equivalence class of P will be denoted by
<P>. We will assume the reader has some familiarity with the material regarding
monoid pictures in [12, §§2,5].

An edge of D(P)* of the form (U, x*x%,£1,V) (U,VeF, xex, e= +1) will be
called frivial, and a path will be called trivial if all its edges are trivial. Two vertices
W, W, can be connected by a trivial path if and only if W, and W, are freely
equivalent (the chosen path connecting W; to W, then gives a method of freely
transforming W, to W,). In view of the defining paths (3) of D(P)*, we have that
any two trivial paths between a given pair of vertices Wy, W, are homotopic in D(P)*.
This key observation allows us to replace a trivial subpath T of a given path P by
any other trivial path T’ (where «(T')=«(T), ©(T")=1(T)) without affecting the
homotopy type of P.

Suppose P is a path in D(P)* with «(P)= W, ©(P)=Z, and let T, T be trivial
paths in D(P)* from W, to W, Z, to Z respectively, where W,, Z, are the unique
reduced words freely equivalent to W, Z. Then the picture TPT~" will be said to be
obtained from P by freely reducing the boundary of P, and will be denoted by P*.
Obviously this notation is ambiguous because P* depends on T, 7. However, since
we will be working up to homotopy in D(P)*, we can, by our comment in the previous
paragraph, allow ourselves to choose any trivial paths T, T that suit our purpose. This
simple, but key point will be used over and over again, without further comment.
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Another important point is the following.

Suppose that P; is obtained from P by inserting into P a pair of

(4)

parallel arcs with labels x*, x™° (x € x, ¢ = £1). Then P} ~ P*.

This is because, when we freely reduce the boundary of P; we can begin as in Figure
3. This creates a cancelling pair of discs which can be removed.

XE X~¢€

P P,

Figure 3

If P, P’ are paths in D(P)* then we write P+ P’ for the path (P-«(P"))(z(P)-P’).
Then for paths P, Py, --, P, we define P;+P, +...+ P, inductively to be (P,
+---P,_;) + P,

For any UeF, say U= x1x5- - -X,,, (x;ex Ux~! for i=1,- - -, m) we denote the picture

m
—1 -1 —1
i=1

(see Figure 4) by Tyy-1.

Figure 4

For Rer, UeF, ee{—1,1} we define Ep ;. as follows:

Eru :{ (U,R,1,U") e=1,
Tl WU R -LRTUTY) e=—1.

We complete this section by giving a brief account of X in terms of sequences.
(For further details, as well as for the elementary theory of crossed modules, see [10].
See also [6] for the theory of crossed modules.)

Let r” be the set of all elements of F of the form WREW—! (WeF, Rer,e= 1).
We consider finite sequences 6= (c|, ¢, - -,¢,,) Of elements of r”. We define certain
operations on sequences as follows.

(I) Replace some term ¢;= WReW~! by ¢/ =W REW'~! where W’ is a word
freely equivalent to W.
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(IT) Delete two consecutive terms if one is identically equal to the inverse of the
other.
(IIT) Replace two consecutive terms ¢;, ¢;+1 by ¢;+1, c,;ll ciciv10rby cicir ¢ e

Two sequences G, o’ are said to be (Peiffer) equivalent if one can be obtained
from the other by a finite number of operations (I), (II), (II)~!, (III). The equiva-
lence class containing o is denoted by <o >. The set X of equivalence classes forms
a (non-abelian) group under the binary operation

<o >+ <0y>=<010) >.

There is a (well-defined) action of F on ¥ given by

W <o>=<o">

(where, if 0= (cy, - -,¢;y) then W' =(We W=1,..., We,, W), and there is a group
homomorphism

0: X —>F, <(c1,02,+,0m) > 1> [cre2 - Cpl.

The triple (£, F, ) then has the structure of a crossed module. A well-known result
(originally proved by Whitehead [14]) is that this crossed module is free, with basis
consisting of the elements bz= <(R)>(Rer). By the elementary theory of crossed
modules, Kerd is abelian and Imd(= N) acts trivially on Kerd, so we get a well-
defined action of G=F/N on Kerd. With this action Kerd becomes a left ZG-module,
which is the second homotopy module of P, denoted m,(P).

2. The crossed module =*. We define a crossed module (£*, F, 9*) as follows.
The elements of £* are the equivalence classes < P > where P is a monoid picture
such that «(P) is a freely reduced word on x U x~! and t(P) is the empty word. We
define a (non-commutative) operation + on X* by

<Pi>+<Pr>=<(P+P)' > (<P > <P,> X,
and an action (which is well-defined by (4)) of F on =* by
Wlo<P>=<(W-P-W 'y > (W eF,<P>ex.

We define
yFiot > F
by
" <P>=[UP)] (<« P>eXT).

Then under the operation +, X* is a group on which F acts. Clearly, for [W]eF,
<P>eX* we have

F(Wlo < P>)=[W]d* < P> [W]".
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Also, as can be seen geometrically (Figure 5), for any < P; >, < P, >eX* we have
<Pi>4+<Py>=F<Pi>0<Pry>+<P>.

Thus (X*, F, 9*) is a crossed module. Note that
—<P>=<P ' (P> (<P>ex).

Figure 5

Let ar= < Eg11 > (Rer).
PROPOSITION. X* is generated (as a crossed module) by the elements ag (Rer).
Proof. Let

B= T1A1T2A2 R TnAnTn+1

be a closed path in D(P)* starting at the reduced word U and ending at the empty
word 1. Here the T’s are trivial paths and the A’s are non-trivial edges. Write
A;=(U; R;, &, V;) (i=1,---,n). We claim that

<B>=¢[U]oag, + -+ &,[Us) 0 ar,. (5)

Let

P=E +E;+---+E,,
where E;=Eg,u., (i=1,- - -,n). Then the right hand side of (5) is < P* >. Now let P be
the picture obtained from P by inserting immediately to the right of the ith disc a suc-

cession of parallel arcs with total label V;/;-1(i=1,- - -,n). Then P* ~ P* by (4). Now

(P) = (ADTAD)  A)T(A) - u(A)T(A) T
©(P) = t(A)T(A) 't(A)T(A) - T(A)T(A)

and so we can take P* to be DPD’ where
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D=T + (TT(AI)-‘T(AI))(T(AI)_I T+ + (Tr(A”)-‘T(An))(T(An)_l “Tut1)

r_ -1 —1
D =T a7 T Trapea,)

(see Figure 6). Making use of the defining paths (3) of D(P)* to eliminate the
“bends” we see that P* ~ B.

T
A

Figure 6

Now since X is free on the elements b= < (R) > (Rer) we have a crossed
module homomorphism

n:X — X* br—>ag.

THEOREM 1. The crossed module homomorphism n is an isomorphism.

Proof. We will construct the inverse of 7.

Define a mapping ¥, from the edge set of D(P)* to X as follows. Trivial edges
are mapped to 0; an edge (U, R, ¢, V) (UVeF,Rer, e==+1) is mapped to
<UR®U~!'>. Then for any edge A

() = [(A)T(A) '], (6)

Now 9 extends to a mapping on paths and it follows from (6) that for any
path P

o (P) = [u(P)z(P)]. (7)

The image of each defining path of D(P)* is 0. This is clear for paths of the form
(3), and for a path as in (2) we have

YolA, Bl = Yo(A) + [T(A)] - Yo(B) — Yo(A) — [(A)] - Yo(B)
= (Yo(A)) - ([x(A)] - Yo(B)) — [(A)] - Yo(B)
(using the crossed module structure on X)
= 0 (using (6)).

We thus get a well-defined mapping of equivalence classes
v
<P > yy(P),

and in particular, we get a function
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Y Xt 3.

Now ¢ is a group homomorphism, since for any < Py >, < P, >€ ¥* we have

Y(< Pp > 4+ < Py >) = ¢o((Py - (P2))P2)")
= Yo((Py - «(P2))P2)
= Yo(Py1 - «(P2)) + ¥o(P2)
= Yo(P1) + ¥o(P2)
=Y <Pi>4+y <Py >.

Also, it is easily checked that v respects the F-action, and it follows from (7) that
dyr=0*. Hence v is a crossed module homomorphism.
Since vn agrees with the identity on the generating set ap (Rer) of T*, yn=1.
Similarly ny=1.
This proves the theorem.
Note that, by restriction, we get a mutually inverse pair of isomorphisms
m(P) = Ker § &= ker 9* = m1(D(P)", 1).

The G-action on 712(75) induces a G-action on 7 (D(P)*, 1) by the rule

Wo<P>=<(W-P-W)*> (WeG, <P >em(DP) 1),

and n, ¢ are then ZG-isomorphisms.

3. The fundamental groups of D(P)*. Let UeF. We have a well-defined group
homomorphism

¢U . EI(D(P)*v 1) g RI(D(P)*v U),

<B>r~ <B-U>.

This is in fact an isomorphism, for consider the (well-defined) function
v : m(D(P)", U) — m(D(P)", 1)
<P> 1+ <P-UHY>.
Now 6y¢y =1, for if B is a spherical monoid picture with (B)=1 then (B-UU~1)* ~

B*=B by (4). Also, ¢y6y =1, for if P is a spherical monoid picture with «(P)=U
then (see Figure 7)

(P-UHY.U~P.

Thus 0y, ¢y are mutually inverse isomorphisms.
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Figure 7

We will need the following result.

LEMMA. Let P be a spherical monoid picture over P with «(P)=U. Suppose W,
VeF are such that WUV =g 1. Let D be any path in D(P)* from 1 to WUV. Then in

m1(D(P)*, 1) we have
<D(W-P-V)D7!'>= Woby<P>.

This can be seen geometrically as follows. First note that V~/U~/W~'=¢l so
there is a path D in D(P*) from 1 to V~/U~/W~'. Then we have the equivalence as
in Figure 8 (where for simplicity we have taken W, U, V to each consist of a single

letter).

D

D -]
45 Ufl W—l o O
4 U > T
1%
P ~ (| P ~ P
w T U
D" ?
I]']—l

Figure 8

THEOREM 2. P is of finite derivation type if and only if the left ZG-module
i (D(P)*, 1) is finitely generated.

Proof. First suppose that P has finite derivation type. Then there is a finite col-
lection X of spherical monoid pictures over P such that the 2-complex D(P)*

obtained from D(P) by adjoining the defining paths
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W.-P.V (W,VeF, PeX)

has trivial fundamental groups.
Let B be any spherical monoid picture with «(B)=1. Then B is homotopic in
D(P) (and hence in D(P)*) to a product of the form

n
[ [D«w:-P;- vy D!
i=1
where PieX, ¢==+1, W, VieF, D; is some path in D(P) with «(D;)=1,
(D)=uW;-P;- V) (i=1,---, n). Hence in 7{(D(P)*, 1) we have

& < D(Wi-Pi- VD' >

n
<B>=

i=1

n
= Zeil/f/i o 6yp,) < P; > (by the Lemma).
i=1

Thus the module 7;(D(P)*, 1) is generated by the elements

{Ql(p) <P>:PelX}

Conversely, suppose there is a finite set Y of spherical monoid pictures (each
starting at 1) such that the elements < B > (BeY) generate 7;(D(P)*, 1) as a
module. Let P be any spherical monoid picture, and suppose that «(P)= U. Then

n
GU < P>= Z«S‘[W,‘O < B,‘ >

i=1
where BieY, WeF, ¢;= £1 (i=1,---, n). Thus in 7;(D(P)*, U) we have

dv(Wio < B; >)°

n
<P>=

i=1

=11 <Tww-r - OOV By - W UNTyypr - U >
i=1

Consequently, we see that if we adjoin to D(P)* the additional defining paths

W-B-V (W,VeF,BeY)

then all fundamental groups of the resulting complex are trivial. Thus if X consists
of the pictures in Y together with the pictures of the form (3), then D(P)¥ has trivial
fundamental groups, and so P is of finite derivation type.
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