
London Mathematical Society ISSN 1461–1570

COMPUTING MINIMAL POLYNOMIALS OF MATRICES

MAX NEUNHÖFFER and CHERYL E. PRAEGER

Abstract

We present and analyse a Monte-Carlo algorithm to compute
the minimal polynomial of an n × n matrix over a finite field
that requires O(n3) field operations and O(n) random vec-
tors, and is well suited for successful practical implementation.
The algorithm, and its complexity analysis, use standard al-
gorithms for polynomial and matrix operations. We compare
features of the algorithm with several other algorithms in the
literature. In addition we present a deterministic verification
procedure which is similarly efficient in most cases but has a
worst-case complexity of O(n4). Finally, we report the results
of practical experiments with an implementation of our algo-
rithms in comparison with the current algorithms in the GAP
library.

1. Introduction

Let F be a finite field and M ∈ F
n×n a matrix. This paper presents and analyses

a Monte Carlo algorithm to compute the minimal polynomial of M , that is, the
monic polynomial μ ∈ F[x] of least degree, such that μ(M) = 0. Determining the
minimal polynomial is one of the fundamental computational problems for matrices
and has a wide range of applications. As well as revealing information about the
Frobenius normal form of M , the minimal polynomial also elucidates the structure
of F

n viewed as F[x]-module, where x acts by multiplication with M . In addition
the order of M modulo scalars is often found by first determining the minimal
polynomial. Apart from these applications it has important practical utility, for
example in the context of the matrix group recognition project [10].

For these and other reasons a number of algorithms to determine the minimal
polynomial may be found in the literature. We discuss some of them below. Our
primary objective was to provide a simple and practical algorithm that could be
implemented easily and would work well over small finite fields. In particular we
did not want to produce matrices with entries in larger fields or polynomial rings
as intermediate results, and we preferred to restrict ourselves to using only row
operations (rather than a combination of row and column operations). In addi-
tion we wished to use standard field and polynomial arithmetic, and we wished to
give an explicit worst-case upper bound for the number of elementary field opera-
tions needed, and not only an asymptotic complexity statement. Our Monte Carlo
algorithm adheres to these requirements for matrices over fields Fq of order q.

Received 8 May 2007, revised 5 February 2008; published 4 August 2008.
2000 Mathematics Subject Classification 15A21 (primary), 15A15 (secondary)
c© 2008, Max Neunhöffer and Cheryl E. Praeger

LMS J. Comput. Math. 11 (2008) 252–279https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

http://www.lms.ac.uk
http://www.lms.ac.uk/jcm/
http://www.lms.ac.uk/jcm/11
https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

Theorem 1.1. For a given matrix M ∈ F
n×n
q and a positive real number ε <

1/2, Algorithm 5 computes the minimal polynomial of M with probability at least
1− ε. For sufficiently large n and fixed ε, the number of elementary field operations
required is less than 7n3 plus the costs of factorising a degree n polynomial over Fq

and constructing at most n random vectors in F
n.

Our algorithm to compute the minimal polynomial first computes the charac-
teristic polynomial in a standard way by spinning up and then factoring out cyclic
subspaces. However, the novel aspect in this first phase is the introduction of ran-
domisation. While not necessary for the computation of the characteristic polyno-
mial it underpins our proof of the Monte Carlo nature of our minimal polynomial
algorithm. In addition to the Monte Carlo minimal polynomial algorithm we present
and analyse in Section 8 a deterministic verification procedure to be run after Al-
gorithm 5 that has a similar asymptotic complexity in many cases, but is O(n4)
in the worst-case scenario. Our motivation for giving concrete upper bounds for
the costs of various component procedures was that, in practical implementations,
these assist us to compare different algorithms in order to decide which to use in
different situations. At the end of the paper we discuss a practical implementation
and tests of the algorithms in the GAP system [4].

1.1. Other algorithms in the light of our requirements
There are several interesting and asymptotically efficient minimal polynomial

algorithms for n × n matrices in the literature. The most asymptotically efficient
deterministic algorithm is due to Storjohann [14] in 2001. It is nearly optimal,
‘requiring about the same number of field operations as required for matrix multi-
plication’ (see [14, Abstract, p. 368]). It involves a divide-and-conquer strategy that
produces matrices with entries in polynomial rings as intermediate results. Chang-
ing the scalars to a larger field or polynomial ring is something we wished to avoid
as it creates additional complications in practical applications within a computer
algebra system used for group and matrix algebra computations.

Storjohann’s earlier deterministic algorithm [13] in 1998 uses classical field arith-
metic and requires O(n3) field operations. It first reduces the matrix to ‘zig-zag
form’, using a mix of row and column operations, then produces the Smith normal
form as a matrix with polynomial entries, and finally the Frobenius normal form.
In systems such as GAP, matrices over small finite fields are stored in a compressed
form that makes row operations simple, but column operations difficult. Restricting
to one of these types of operations was one of our criteria.

A Monte Carlo minimal polynomial algorithm of Giesbrecht [5] from 1995 that
runs in ‘nearly optimal time’ contains some features we find desirable for practical
implementation, namely his algorithm first constructs a ‘modular cyclic decomposi-
tion’ using random vectors, similar to our characteristic polynomial computation in
Section 5. However, further steps include a modification of the ‘divide-and-conquer’
Keller-Gehrig algorithm [8] and lead to a Las Vegas algorithm that computes a
Frobenius form over an extension field and then the minimal polynomial. The field
size over which the given matrix is written is assumed to be greater than n2, and if
this is not the case it is suggested that an embedding into a larger extension field
be used. Several of these features were undesirable for us.

253https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

In [1, Section 4] Augot and Camion propose a deterministic algorithm to compute
the minimal polynomial of a matrix which is to some extent similar to our algorithm.
It is deterministic with complexity O(n3 + m2 ·n2) field operations, where m is the
number of blocks in the shift Hessenberg form. They prove that the complexity is
O(n3) in the average case. However, in the worst case it is O(n4), and no constants
are provided in the complexity estimates. Although the principal approach of their
algorithm is similar to ours, the details differ very much from our algorithm and
analysis.

An interesting commentary on various algorithms, together with some new al-
gorithms is given by Eberly [3]. Eberly (see Theorem 4.2 in [3]) gives in particular
a randomised algorithm for matrices over small fields that produces output from
which (amongst other things) the minimal polynomial can be computed, at a cost
of O(n3). The papers [3, 5, 12, 13, 14] contain references to other minimal poly-
nomial algorithms. In all of the algorithms mentioned the asymptotic complexity
statements give no information about the constants involved.

On a practical note, the minimal polynomial algorithm implemented in the GAP
library is the one in [12] and (although we have been unable to confirm this) we
assume that this is the algorithm implemented in Magma [2].

1.2. Outline of the paper
In Section 2 we introduce our notation, in Section 3 we cite a few complexity

bounds for basic algorithms. The next Section 4 introduces order polynomials and
derives a few results about them. Then we turn to the computation of the character-
istic polynomial in Section 5, since this is the first step in our minimal polynomial
algorithm, which is described and analysed in Section 7. We explain and modify the
well-known algorithm to compute characteristic polynomials by introducing some
randomisation, because this is later needed in the analysis of our main Monte Carlo
algorithm. In Section 6 we give some probability estimates that are also used later
in the analysis. The second last Section 8 covers the deterministic verification of
the results of our Monte Carlo algorithm. We describe in detail cases in which this
verification is efficient and when it has a worse complexity. Finally, in Section 9
we report on the performance of an implementation of our algorithm, including
runtimes in realistic applications. We compare these times with the current imple-
mentation for minimal polynomial computations in the GAP library (see [4]), and
as mentioned above, we believe that Magma and GAP are both using the algorithm
in [12]. We show that our algorithm performs much better in important cases, and
that our bounds on the computing cost are reflected in practical experiments.

2. Notation

Throughout the paper F will be a fixed field. Although we envisage F to be a
finite field for our applications, this is not necessary for most of our results. However
in the later sections we use some probability estimates from Section 6 that are only
valid for finite fields.

By an elementary field operation we mean addition, subtraction, multiplication
or division of two field elements. In all our runtime bounds we will assume that one
elementary field operation takes a fixed amount of time and we simply count the
number of such operations occurring in our algorithms.

254https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

We denote the set of (m×n)-matrices over F by F
m×n and the set of row vectors

of length m by F
m. For a vector v ∈ F

m we write vi for its i-th component and for
a matrix M ∈ F

m×n we denote its i-th row, which is a row vector of length n, by
M [i]. We use “row vector times matrix” operations, and in general right modules
throughout. If V is a vector space over F and W is a subspace, the quotient space
is denoted by V/W and its cosets by v + W for v ∈ V . The F-linear span of the
vectors v(1), . . . , v(k) ∈ V is denoted by

〈
v(1), . . . , v(k)

〉
F
.

If M ∈ F
n×n is a matrix and V = F

n, we have a natural action of M as an
endomorphism of V by right multiplication. The same holds for every M -invariant
subspace W < V and for the corresponding quotient space V/W . We describe such
a situation by saying that “the matrix M induces an action on the F-vector space”
V, W, V/W respectively.

Throughout, F[x] denotes the polynomial ring over F in an indeterminate x. For
a square matrix M and a polynomial p ∈ F[x] we denote the evaluation of p at M
by p(M).

Whenever a matrix M induces an action on a vector space U , we will view U as a
right F[x]-module by letting x act like M , that is v·x := v·M in the above examples.
We denote the characteristic polynomial of this action by χM,U . That is, χM,U is
the characteristic polynomial of the (dimF(U)×dimF(U))-matrix given by choosing
a basis of U and writing the action of M induced on U as a matrix with respect to
that basis. We use the same convention analogously for the corresponding minimal
polynomial μM,U . Furthermore, we denote the F[x]-submodule of U generated by
the vectors u(1), . . . , u(n) by

〈
u(1), . . . , u(n)

〉
M

.
We use the two functions

s(1)(a, b) :=
a∑

i=b+1

i and s(2)(a, b) :=
a∑

i=b+1

i2 (1)

for complexity expressions. Note that for a > b > c we have s(j)(a, c) = s(j)(a, b) +
s(j)(b, c) for j ∈ 1, 2 and

s(1)(n, 0) = s(1)(n,−1) =
n(n + 1)

2
and (2)

s(2)(n, 0) = s(2)(n,−1) =
n(n + 1)(2n + 1)

6
. (3)

For later complexity estimates we note the following inequalities.

Lemma 2.1 (Some upper bounds). If n =
∑k

i=1 di for some di ∈ N \ {0} and
sj :=

∑j
i=1 di we have

k∑
j=1

sj � n(n + 1)
2

and
k∑

j=1

sj(sj + 1) � n(n + 1)(n + 2)
3

.

Proof. We claim that for fixed n both expressions are maximal if and only if all di

are equal to one. We leave it to the reader to check that both totals increase if we
replace dj in some sequence (di)1�i�k by the two numbers a and dj − a resulting
in the new sequence (d′1, . . . , d

′
k+1) := (d1, d2, . . . , dj−1, a, dj − a, dj+1, . . . , dk) of

length k + 1.

255https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

3. Complexity bounds for basic algorithms

In some algorithms presented in later sections we use greatest common divisors
of univariate polynomials. To analyse these algorithms we use the following bounds
which arise from standard polynomial computation. We take this approach because
the standard algorithms for polynomials are good enough for our complexity es-
timates in applications and we do not need the asymptotically best algorithms,
discussion of which may be found conveniently in [15].

Proposition 3.1 (Complexity of standard greatest common divisor algorithm).
Let f, g ∈ F[x] with n := deg f � deg g =: m, and f = qg + r with q, r ∈ F[x]

such that r = 0 or deg r < deg g. Then there is an algorithm to compute q and r
that needs less than 2(m + 1)(n − m + 1) elementary field operations.

Furthermore, there is an algorithm to compute gcd(f, g) that needs less than
2(m + 1)(n + 1) elementary field operations.

Remark 3.2. We intentionally give bounds here which are not best possible, since
we want the bound for the gcd computation to be symmetrical in m and n.

Proof of Proposition 3.1. Use polynomial division and the standard Gcd algorithm
and count. See [15, Section 2.4 and Section 3.3] for smaller bounds that imply our
symmetric bounds.

3.1. Polynomial factorisation
Some of our algorithms return partially factorised polynomials which facilitate

later factorisation into irreducible factors. However, since the extent of this par-
tial factorisation is difficult to estimate, we use in our analyses the complexity of
finding the complete factorisation of a polynomial over a finite field as a product
of irreducibles. We need such factorisations in our main algorithm. In keeping with
our other methods we make use of standard polynomial factorisation procedures.

Details can be found in Knuth [9, 4.6.2] of a deterministic polynomial factorisa-
tion algorithm inspired by an idea of Berlekamp. Its cost is polynomial in both the
degree n and field size |F| = q, as it requires O(q) computations of greatest common
divisors. Thus it works well only for q small. There is available a randomised (Las
Vegas) version of the procedure which (for arbitrary q) will always return accurately
the number r of irreducible factors of f(x) ∈ F[x], but for which there is a small
non-zero probability that it will fail to find all the irreducible factors. It involves
the procedure RandomVector, which is discussed further in Subsection 5.1, to
produce independent uniformly distributed random elements of an n-dimensional
vector space over F for which a basis is known. Throughout the paper logarithms
are always taken to base 2.

Remark 3.3 (PolynomialFactorisation). Suppose f(x) ∈ F[x] of degree n � 1
with r irreducible factors (counting multiplicities) and, if q is large, suppose that
we are given a real number ε such that 0 < ε < 1/2. The number fact(n, q) of
elementary field operations required to find a complete set of irreducible factors of
f(x) is at most

8n3 + (3qr + 17 log q)n2 deterministic algorithm
O
(
(log ε−1)(log n)(ξn +n2 log3 q) + n3 log2 q

)
Las Vegas algorithm

256https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

where ξn is an upper bound for the cost of one run of RandomVector on F
n.

The Las Vegas algorithm may fail, but with probability less than ε.

4. Order polynomials

Let M be a matrix in F
n×n that induces an action on an F-vector space V .

We briefly recall the definition of the term “order polynomial”:

Definition 4.1 (Order polynomial ordM (v) and relative order polynomial). The
order polynomial ordM (v) of a vector v ∈ V is the monic polynomial p ∈ F[x] of
smallest degree such that v · p(M) = 0 ∈ V . In particular ordM (0) = 1.

For an M -invariant subspace W < V , the relative order polynomial ordM (v+W)
(of v relative to W) is the order polynomial of the element v + W ∈ V/W with
respect to the induced action of M on V/W .

Remark 4.2. If we consider V as an F[x]-module as in Section 2, then p is the
monic generator of the annihilator annF[x](v) of v in F[x].

The following observation follows immediately from the definition above.

Lemma 4.3 (Relative order polynomials). For an M -invariant subspace W < V
and v ∈ V , ordM (v + W) is the monic polynomial p ∈ F[x] of smallest degree such
that v · p(M) ∈ W .

We now turn to the question of how one computes the order polynomial of a
vector v ∈ V . The basic idea is to apply the matrix M to the vector repeatedly
computing a sequence v, vM, vM2, . . . , vMd until vMd is a linear combination

vMd =
d−1∑
i=0

aivM i,

with ai ∈ F, for 0 � i < d. If d is minimal such that this is possible, we have

ordM (v) = xd −
d−1∑
i=0

aix
i.

Although this procedure is simple and well-known, we present it in order to make
explicit the number of elementary field operations needed. To this end we describe
in detail the computation of solutions for the systems of linear equations involved.

Definition 4.4 (Row semi echelon form). A non-zero matrix S = (Si,j) ∈ F
m×n

is in row semi echelon form if there are positive integers r � m and j1, . . . , jr � n
such that, for each i � r, Si,ji = 1 and Sk,ji = 0 for all k > i, and also Sk,j = 0
whenever k > r. For i � r, column ji is called the leading column of row i, and
we write lc(i) = ji. A sequence of vectors u(1), . . . , u(m) ∈ Fn is said to be in semi
echelon form if the matrix with rows u(1), . . . , u(m) is in row semi echelon form.

Note that in Definition 4.4 we do not assume j1 < j2 < · · · < jr which is the usual
condition for an echelon form.

Definition 4.5 (Semi echelon data sequence). Let Y ∈ F
m×n be a matrix with

m � n and of rank m. A semi echelon data sequence for Y is a tuple Y = (Y, S, T, l),

257https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

where S ∈ F
m×n is in row semi echelon form with leading column indices l =

(lc(1), . . . , lc(m)), and T ∈ GL(m, F) with TY = S. Further, T is a lower triangular
matrix, that is, for T = (Ti,j) we have Ti,j = 0 for i < j. For a semi echelon data se-
quence Y we call the number m its length, sometimes denoted length(Y). A semi ech-
elon data sequence Y ′ = (Y ′, S′, T ′, l′) is said to extend Y if length(Y ′) > length(Y),
the first length(Y) rows of Y ′ and S′ form the matrices Y and S respectively, and
the first length(Y) entries of l′ form the sequence l.

Remark 4.6. (a) The idea of this concept is that for a matrix S ∈ F
m×n in row

semi echelon form it is relatively cheap to decide whether a given vector v ∈ F
n

lies in the row space of S, and if so, to write it as a linear combination of the rows
of S, that is, to find a vector a ∈ F

m such that v = aS = aTY (see Algorithm 1).
Thus, the vector v is expressed as a linear combination of the rows of Y using the
vector aT as coefficients.

(b) We call a semi echelon data sequence trivial if m = 0. In this case, by
convention, we take the row spaces of the empty matrices Y and S to be the zero
subspace of F

n, we denote the empty sequence in F
0 by 0, and we interpret aS as

the zero vector of F
n.

We now present Algorithm 1, which is one step in the computation of a semi
echelon data sequence for a matrix Y . We denote by S[i] the i-th row of the matrix
S, and by RowSp(S) the row space of S.

Algorithm 1 CleanAndExtend

Input: A semi echelon data sequence Y = (Y, S, T, l) with Y, S ∈ F
m×n, v ∈ F

n

(possibly m = 0).
Output: A triple (c,Y ′, a′) where c is True if v ∈ RowSp(Y) and False other-
wise, Y ′ equals or extends Y respectively with length(Y ′) � length(Y) + 1, and
a′ ∈ F

length(Y′), such that v = a′S′.

w := v
a := 0 ∈ F

m {note that w = v − aS}
for i = 1 to m do

ai := wli

w := w − ai · S[i]
end for {still w = v − aS}
if w = 0 then

return (True, (Y, S, T, l), a)
else

j := index of first non-zero entry in w
a′ := [a wj], l′ := [l j],

Y ′ :=
[

Y
v

]
, S′ :=

[
S

w−1
j · w

]
, T ′ :=

[
T 0

−w−1
j · aT w−1

j

]
return (False, (Y ′, S′, T ′, l′), a′)

end if

Proposition 4.7 (Correctness and complexity of Alg. 1: CleanAndExtend).
The output of Algorithm 1 satisfies the Output specifications. Moreover, Algorithm 1

258https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

requires at most 2mn field operations if v ∈ RowSp(Y), and (2m+1)n+(m+1)2+1
field operations otherwise.

Remark 4.8. (a) Given a semi echelon data sequence (Y, S, T, l) with Y, S ∈ F
m×n

and a vector v ∈ F
n, Algorithm 1 tries to write v as a linear combination of the rows

of S. If this is not possible, it constructs an extended semi echelon data sequence.

(b) For the case of finite fields a simple and useful optimisation is to reduce, where
possible, the number of operations for vectors and matrices, for example, where a
vector is multiplied by the zero scalar and the result is added to some other vector.
This can reduce the number of operations for sparse vectors and matrices. Our
estimates for the numbers of field operations then become over-estimates.

Proof of Proposition 4.7. The proof of the correctness of Algorithm 1 is left to the
reader. The for loop needs 2mn field operations if we count both multiplications
and additions. If v ∈ RowSp(Y) then the algorithm terminates after this loop.
On the other hand, if v �∈ RowSp(Y), then Algorithm 1 needs one inversion of
the scalar wj plus 2 ·∑m

i=1 i = m(m + 1) field operations for the vector times
matrix multiplication aT , because T is a lower triangular matrix. This is altogether
m(m+1)+1 operations. Finally, the scalar negation of w−1

j and the multiplication
of aT by −w−1

j needs another m + 1 field operations, and a further n operations
are needed for the computation of w−1

j w in S′. Thus the total number of field
operations is at most 2mn + (m + 1)2 + 1 + n.

Having Algorithm 1 at hand we can now present Algorithm 2, which computes
relative order polynomials. Since a (non-relative) order polynomial may be regarded
as a relative order polynomial with respect to the zero subspace, Algorithm 2 can
also be used to compute order polynomials, starting with the trivial semi echelon
data sequence, (see Remark 4.6 (b)).

Proposition 4.9 (Correctness and complexity of Alg. 2: RelativeOrdPoly).
Let Y = (Y, S, T, l) be a semi echelon data sequence with Y, S ∈ F

m×n (possibly
m = 0), v ∈ F

n, and M ∈ F
n×n such that W := RowSp(Y) is M -invariant. The

output of Algorithm 2 satisfies the Output specifications, and moreover if d > 0, then
rows m+1, . . . , m+d of Y ′ are equal to v, vM, . . . , vMd−1 respectively. Algorithm 2
requires at most

2dn2 + (n + 2)d + 2(m + d)n + 2(n + 1)s(1)(m + d − 1, m − 1) +
+ s(2)(m + d − 1, m − 1) + 2s(1)(m + d, 0)

elementary field operations where s(1) and s(2) are the functions defined in (1).

Remark 4.10. Note that, if d = 0 then S′ = S, so v = b′Y ∈ W , and in this case
p = 1. Algorithm 2 successively considers the vectors v+W, vM +W, . . . , vMd +W
(those are the successive values of v′) until vMd + W lies in the subspace of V/W
generated by the vectors v + W, vM + W, . . . , vMd−1 + W . The given matrix S
together with Algorithm 1 defines a direct sum decomposition of the F-vector space
V := F

n = W ⊕ W ′ where W ′ is the subspace of vectors having 0 in all positions
occurring in the list l. Since W ′ ∼= V/W , Algorithm 2 effectively computes in V/W
by always ‘cleaning out’ vectors using S first.

259https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

Algorithm 2 RelativeOrdPoly

Input: A semi echelon data sequence Y = (Y, S, T, l) with Y, S ∈ F
m×n (possibly

m = 0), v ∈ F
n, and M ∈ F

n×n such that W := RowSp(Y) is M -invariant.
Output: A triple (p,Y ′, b) consisting of the relative order polynomial p :=
ordM (v + W) of degree d, a semi echelon data sequence Y ′ = (Y ′, S′, T ′, l′)
of length m + d equal to or extending Y, and a vector b ∈ F

m+d such that
vMd = bY ′.

(Y ′, S′, T ′, l′) := (Y, S, T, l) {the primed variables change during the algorithm}

v′ := v
m′ := m {can be zero!}
loop

(c, (Y ′, S′, T ′, l′), a) := CleanAndExtend((Y ′, S′, T ′, l′), v′)
{T ′Y ′ = S′, v′ = aS′}

if c = True then
leave loop

end if
v′ := v′ · M
m′ := m′ + 1

end loop {at this stage c = True, v′ = aS′, m′ = length(Y ′)}
d := m′ − m
b := a · T ′

p := xd −∑d−1
i=0 bm+1+ix

i

return (p, (Y ′, S′, T ′, l′), b)

Proof of Proposition 4.9. We again leave the proof of correctness of Algorithm 2 to
the reader. Algorithm 2 calls Algorithm 1 (CleanAndExtend) exactly d+1 times
with the lengths of the input semi echelon data sequences being m, m+1, . . . , m+d.
After each but the last call to Algorithm 1 the value of c returned is False, and
after the last call the value of c is True. Thus, by Proposition 4.7, the number of
steps needed for the d + 1 runs of Algorithm 1 is at most(

m+d−1∑
i=m

((2i + 1)n + (i + 1)2 + 1)

)
+ 2(m + d)n

= s(2)(m + d − 1, m − 1) + (2n + 2)s(1)(m + d − 1, m− 1) + (n + 2)d + 2(m + d)n.

In addition, we have to do d multiplications of v′ with M , which require 2n2 elemen-
tary field operations each, and finally the computation of b requires 2s(1)(m + d, 0)
elementary field operations, again since T ′ is a lower triangular matrix. Summing
up gives the expression in the statement.

We conclude this section with two lemmas that are used to compute absolute
order polynomials using relative ones. We again view V as an F[x]-module by let-
ting x act like M . For {v(1), . . . , v(m)} ⊆ V , we denote by

〈
v(1), . . . , v(m)

〉
M

the
submodule of V generated by {v(1), . . . , v(m)}, that is, the smallest M -invariant
subspace containing {v(1), . . . , v(m)}. If m = 1 then

〈
v(1)

〉
M

is the F-span of the set
{v(1), v(1)M, . . . , v(1)Mn−1}. We call

〈
v(1)

〉
M

a cyclic subspace relative to M .

260https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

Lemma 4.11 (Order polynomials in cyclic subspaces). Let v ∈ V , W = 〈v〉M < V ,
and p := ordM (v) with d := deg(p). Then for each w ∈ W , there is a unique
polynomial q ∈ F[x] of degree less than d such that w = vq(M). Moreover,

ordM (w) =
p

gcd(p, q)
.

We omit the routine proof for the sake of brevity.

Lemma 4.12 (Absolute and relative order polynomials). Let W be an M -invariant
subspace of V , v ∈ V and q := ordM (v + W) ∈ F[x]. Then

ordM (v) = q · ordM (vq(M)).

We omit the routine proof for the sake of brevity.

5. Computing the characteristic polynomial

In this section we present a version of a standard algorithm for computing the
characteristic polynomial of a matrix together with its analysis. It differs from the
standard version in its use of randomisation.

5.1. Random vectors
Our characteristic polynomial algorithm, and later ones, make use of the algo-

rithms RandomVector and RandomVector* that produce independent uni-
formly distributed random vectors, and independent uniformly distributed random
non-zero vectors, respectively, in a given finite vector space for which a basis is
known. The algorithms are invoked for spaces F

s, for s ∈ N, and for subspaces of
V of the form

V (l) = {v | vli = 0 for 1 � i � m} where l = (l1, . . . , lm).

If l is the empty sequence then V (l) = V . For a semi echelon data sequence Y =
(Y, S, T, l), the vector space V is the sum V = V (l) ⊕ RowSp(S).

If b = RandomVector(Flength(Y)), then bS is a uniformly distributed random
vector of RowSp(S). Moreover we assume that for the disjoint spaces F

length(Y) and
V (l) the algorithms RandomVector and RandomVector* are applied indepen-
dently so that in particular, if a = RandomVector*(V (l)) then the sum a + bS
is a uniformly distributed random vector of V \ RowSp(S).

RandomVector and, if we neglect the possibility of obtaining the zero vec-
tor, also RandomVector*, could proceed by selecting independent uniformly dis-
tributed random field elements as coefficients of the basis vectors. For the subspace
V (l), we could put zeros into the entries occurring in l and make random selec-
tions of elements from F for each entry not in l. For this reason we denote by
ξr an upper bound for the cost of RandomVector or RandomVector* ap-
plied to an r-dimensional space for one of these cases. If r < s then ξr � ξs and
ξr1 + ξr2 � ξr1+r2 , and we would expect ξr to vary linearly with r. In practical
implementations the cost is much less than the cost of the field operations involved
in the algorithm below.

261https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

5.2. Characteristic polynomial algorithm
The characteristic polynomial algorithm below would terminate successfully with-
out making random selections of vectors. However, the use of randomisation is key
to our application of this algorithm for finding minimal polynomials. As in previous
sections, let M be a matrix in Fn×n acting naturally on V := F

n.

Algorithm 3 CharPoly

Input: M ∈ F
n×n

Output: A tuple (k, (p(j))1�j�k,Y, (b(j))1�j�k), where each p(j) ∈ F[x] and∏k
i=1 p(i) = χM,V is the characteristic polynomial of M in its action on V , each

b(j) ∈ F
n and Y is a semi echelon data sequence of length n with the properties

specified in Proposition 5.1.

i := 0
Y(0) := a trivial semi echelon data sequence
while length(Y(i)) < n do

i := i + 1
a := RandomVector(Flength(Y(i−1)))
c := RandomVector*(V (l(i−1)))
v(i) := aS(i−1) + c

{ v(i) �∈ RowSp(S(i−1)) where Y(i−1) = (Y (i−1), S(i−1), T (i−1), l(i−1))}
(p(i),Y(i), b(i)) := RelativeOrdPoly(Y(i−1), v(i), M)

{b(i) ∈ F
length(Y(i)); we add n − length(Y(i)) zeros to make b(i) ∈ F

n}
end while
k := i
return (k, (p(j))1�j�k,Y(k), (b(j))1�j�k)

Proposition 5.1 (Correctness and complexity of Algorithm 3). Algorithm 3 sat-
isfies the Output specifications, and furthermore Y = (Y, S, T, l) where Y ∈ F

n×n is
invertible with rows

v(1), v(1)M, . . . , v(1)Md1−1, v(2), v(2)M, . . . , v(2)Md2−1, . . . , v(k), v(k)M, . . . , v(k)Mdk−1

where di := deg(p(i)) for 1 � i � k. Further, for 1 � i � k, v(i) is a uniformly
distributed random element of V \ Wi−1, v(i)Mdi = b(i)Y and p(i) = ordM (v(i) +
Wi−1), where Wi−1 :=

〈
v(1), . . . , v(i−1)

〉
M

(for i > 1), an M -invariant subspace
of V of dimension si−1 :=

∑i−1
j=1 dj , and W0 = 0 of dimension s0 = 0. Moreover,

Algorithm 3 requires at most
33
6

n3 + 4n2 +
3
2
n

elementary field operations, plus kξn for the k calls to RandomVector* and
RandomVector. Neglecting the latter cost this is less than 6n3 elementary field
operations, for sufficiently large n.

Remark 5.2. We denote the semi echelon data sequences Y(i) in the algorithm
using indices to enable us to speak more easily about the intermediate results.
However in practice we have only one variable Y = (Y, S, T, l), the entries of which
are growing during the execution of the algorithm.

262https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

Remark 5.3. Note that we do not multiply together the factors of χM,V because
in our application of Algorithm 3 we do not need the product itself.

Proof of Proposition 5.1. Most statements in the proposition follow immediately
from Proposition 4.9: note that, because of the conventions explained in Remark
4.6(b), in the first run of the ‘while’ loop v(1) = c is a random non-zero vector of
V and p(1) = ordM (v(1)), and more generally, in the ith run of the ‘while’ loop,
Algorithm 3 chooses a vector v(i) that is a uniformly distributed random element
of V \ RowSp(S(i−1)) and applies Algorithm 2. This immediately establishes all
statements about (Y, S, T, l) including the one about the invertibility and the rows
of Y . Also it is clear that p(i) = ordM (v(i) + Wi−1).

Next we show that
∏k

i=1 p(i) = χM,V . This follows by considering the matrix
Y MY −1, which has the same characteristic polynomial as M . Considering the
action of M with respect to the ordered basis of F

n given by the rows of Y , it
follows from the construction that Y MY −1 (written with respect to the standard
basis) is equal to ⎡

⎢⎢⎢⎢⎣
C1 0 · · · 0

B
(2)
1 C2

. . .
...

...
. . .

. . . 0
B

(k)
1 · · · B

(k)
k−1 Ck

⎤
⎥⎥⎥⎥⎦

where the matrix Ci is the companion matrix of the polynomial p(i), and the B
(i)
j ,

for 2 � i � k and 1 � j � i − 1, are matrices in F
di×dj with one non-zero row

at the bottom and all other rows zero. If b(i) = (b(i)
1 , . . . , b

(i)
n), then the bottom

row of B
(i)
j is (b(i)

sj−1+1, . . . , b
(i)
sj). With this format at hand it is clear that the

characteristic polynomial of Y MY −1 is equal to the product
∏k

i=1 p(i) because the
Ci are companion matrices.

Finally we derive the statement about the number of elementary field operations
needed by Algorithm 3. In the ith run of the while loop, the cost of constructing
the random vectors a and c is at most

ξn−length(Y(i−1)) + ξlength(Y(i−1)) � ξn,

(see Subsection 5.1). The cost to compute v(i) is at most 2si−1n elementary field
operations, where s0 = 0, and for i � 1, si =

∑i
j=1 dj with dj = deg p(j). The cost

of applying Algorithm RelativeOrdPoly is, by Proposition 4.9, at most

2din
2+(n+2)di+2sin+2(n+1)s(1)(si−1, si−1−1)+s(2)(si−1, si−1−1)+2s(1)(si, 0)

elementary field operations, noting that the value of ‘d’ is di, the value of ‘m’ is
si−1, si−1 + di = si, and s(1), s(2) are the functions defined in (1).

We consider the different terms one by one, summing each over i from 1 to k.
The total cost of constructing the random vectors is at most kξn. Summing the
terms 2si−1n gives 2n

∑k
i=1 si−1, and summing the terms 2din

2 gives 2n3 since∑k
i=1 di = n. Similarly, summing the terms (n + 2)di gives (n + 2)n. From the

terms 2sin we get a contribution of 2n
∑k

i=1 si. The next two expressions involving
the functions s(1) and s(2) sum to 2(n + 1)s(1)(n − 1, 0) = n(n + 1)(n − 1) and

263https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

s(2)(n−1, 0) = (n−1)n(2n−1)
6 respectively, using (2) and (3) and the properties noted

above it. Finally, the terms 2s(1)(si, 0) sum to 2
∑k

i=1 s(1)(si, 0) =
∑k

i=1 si(si + 1).
Thus in total we obtain kξn plus

2n3 + n(n + 1)(n − 1) +
(n − 1)n(2n − 1)

6
+ n(n + 2) + 2n

k∑
i=1

si−1

+ 2n

k∑
i=1

si +
k∑

i=1

si(si + 1)

elementary field operations. The first four of these terms sum to 10
3 n3 + 3

2n2 + 7
6n.

Using Lemma 2.1,

2n

k∑
i=1

si−1 + 2n

k∑
i=1

si +
k∑

i=1

si(si + 1) � 2n2(n + 1) +
n(n + 1)(n + 2)

6

so the total cost is at most
33
6

n3 + 4n2 +
3
2
n + kξn.

For sufficiently large n this is less than 6n3 + kξn.

6. Probability estimates using the structure theory for modules

The basic idea of our minimal polynomial Algorithm 5 is to compute the order
polynomials of a few random vectors under the action of a given matrix M and
to prove that, with high probability, their least common multiple is equal to the
minimal polynomial of M . The purpose of this section is to use the structure theory
of V = F

n as an F[x]-module to derive probability estimates to be used in that proof.
First suppose that the characteristic polynomial of M is written as a product

χM,V =
∏t

i=1 qei

i with pairwise distinct irreducible polynomials qi ∈ F[x] and posi-
tive integer multiplicities ei.

Using [7, Theorem 3.12] we can then write the F[x]-module V as a direct sum
of primary cyclic modules

V ∼=
t⊕

i=1

mi⊕
j=1

wi,jF[x] (4)

such that ordM (wi,j) = q
fi,j

i with ei � fi,1 � fi,2 � · · · � fi,mi � 1 and
∑mi

j=1 fi,j =
ei for 1 � i � t.

The minimal polynomial μM,V is the least common multiple of the order poly-
nomials of the vectors (wi,j)1�i�t,1�j�mi , and hence is μM,V =

∏t
i=1(qi)fi,1 .

We use this structural description to derive the first probability bound for the
case where F = Fq is a finite field with q elements.

Proposition 6.1 (Probability that a qi has equal mult. in μM,V and ordM (v)).
Let F = Fq be a finite field with q elements, let V = F

n, let U be a (possibly zero)
M -invariant subspace such that the multiplicity of qi in μM,U is strictly smaller than
in μM,V , and let v be a uniformly distributed random element of V \ U . Then the

264https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

multiplicity of qi is the same in ordM (v) and μM,V with probability greater than
1 − q− deg qi .

Proof. By assumption the multiplicity of qi in μM,U is less that its multiplicity
f := fi,1 in μM,V . Let w := wi,1, with wi,1 as in (4), so that V = X ⊕ Y with X, Y

invariant under M and X = 〈w〉M . Then μM,X = qf
i . We may identify the primary

cyclic F[x]-module X with wF[x], which is isomorphic to the module F[x]/(qf
i F[x]),

and in turn this is uniserial with composition series

0 <
qf−1
i F[x]

qf
i F[x]

<
qf−2
i F[x]

qf
i F[x]

< · · · <
qiF[x]

qf
i F[x]

<
F[x]

qf
i F[x]

.

Thus, X has a unique maximal F[x]-submodule, namely X ′ := 〈wqi(M)〉M , and X ′

has codimension r := deg(qi) in X .
As discussed above, each vector v ∈ V has a unique expression as v = x+ y with

x ∈ X, y ∈ Y . Moreover ordM (v) is the least common multiple of ordM (x) and
ordM (y). In particular, if x �∈ X ′, then ordM (x) = qf

i and hence the multiplicity of
qi in ordM (v) and μM,V is the same. The number of vectors v = x + y with x �∈ X ′

is

|X \ X ′| · |Y | = (1 − 1
qr

)|X | · |Y | = (1 − 1
qr

)qn.

Each of these vectors v lies in V \U since the multiplicity of qi in μM,U is less than
f . Thus the probability, for a uniformly distributed random v ∈ V \ U , that the
multiplicity of qi in ordM (v) and μM,V is the same is at least

(1 − 1
qr

)
qn

|V \ U | > 1 − 1
qr

.

Remark 6.2. If for some irreducible factor qi we have mi > 1 and fi,1 = fi,2, then
the above probability is even higher, because we can apply the above argument
independently to two or more summands wi,1F[x] and wi,2F[x].

We now give a second probability bound which will be crucial in our Monte
Carlo algorithm to compute the minimal polynomial. In that algorithm we choose
a sequence of vectors v(1), . . . v(u) such that v(1) is a uniformly distributed random
element of V \ {0}, and for i � 2 we choose v(i) as a uniformly distributed random
element of V \U , where U =

〈
v(1), . . . , v(i−1)

〉
M

. We hope to find μM,V as the least
common multiple of the orders of these vectors.

Proposition 6.3 (Probability that an lcm of order polynomials equals μM,V).
Let F = Fq be a finite field with q elements. Suppose a sequence of vectors

v(1), . . . , v(u) ∈ V is chosen as follows: v(1) is a uniformly distributed random ele-
ment of V \ {0}, and for i > 1, v(i) is a uniformly distributed random element of
V \ 〈v(1), . . . , v(i−1)

〉
M

. Let

f := lcm(ordM (v(1)), ordM (v(2)), . . . , ordM (v(u))).

Then the probability that f = μM,V is greater than

1 −
t∑

i=1

q−u deg qi .

265https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

Proof. Consider the random experiment described in the statement. We first ex-
amine one irreducible factor qi. Let Ei denote the event that the multiplicity of qi

in f is strictly smaller than the multiplicity fi,1 of qi in μM,V . Furthermore, for
1 � j � u, let Fj be the event that the multiplicity of qi in ordM (v(j)) is strictly
smaller than fi,1.

Note that the Fj are not stochastically independent since we choose v(j) outside
of
〈
v(1), . . . , v(j−1)

〉
M

. However, Ei = F1∩F2∩· · ·∩Fu because f is the least common
multiple of the order polynomials of the v(j). By Proposition 6.1 applied with
U = {0}, the probability Prob(F1) is less than q− deg qi . Moreover, in the situation
that F1 ∩ · · · ∩ Fj holds and j < u, we apply Proposition 6.1 with the subspace
U :=

〈
v(1), . . . , v(j)

〉
M

to conclude that the conditional probability Prob(Fj+1|F1 ∩
· · · ∩ Fj) is less than q− deg qi . Thus we have

Prob(Ei) = Prob(F1) · Prob(F2|F1) · Prob(F3|F1 ∩ F2) · · · ·
· · · · Prob(Fu|F1 ∩ · · · ∩ Fu−1) < q−u deg qi .

Finally we consider all the different irreducible factors qi.
Even though the events E1, . . . , Et may not be stochastically independent, we

have

Prob(E1 ∪ · · · ∪ Et) �
t∑

i=1

Prob(Ei) <

t∑
i=1

q−u deg qi

as claimed.

7. Computing minimal polynomials

Our minimal polynomial algorithm runs Algorithm 3 as its first step. So as-
sume, from now on, that we have already run Algorithm 3 and obtained all the
output it produces, in particular the basis given by the rows of the matrix Y (as in
Proposition 5.1),

(v(1), v(1)M, . . . , v(1)Md1−1, . . . , v(k), v(k)M, . . . , v(k)Mdk−1)

the relative order polynomials p(i) = ordM (v(i) + Wi−1), and the vectors b(i) for
1 � i � k. Also assume that we have factorised all the polynomials p(i) as products
p(i) =

∏t
j=1 q

ei,j

j of irreducible polynomials (qj)1�j�t.
The matrices M and Y MY −1 have the same characteristic and minimal poly-

nomials. Also the order polynomials ordM (v) and ordY MY −1(vY −1) are equal for
every v ∈ V and thus also the order polynomials ordM (vY) and ordY MY −1(v) are
equal for every v ∈ V .

For the convenience of the reader we display the matrix Y MY −1 in Figure 1.
Note in particular that the matrix is sparse, provided that the degrees di are not
too small. Due to the special form of Y MY −1 it is much more efficient to compute
the images of vectors under Y MY −1, than under M . This is crucial in the analysis
of our algorithms. Therefore we will from now on do all computations of order
polynomials with respect to Y MY −1.

Set M ′ := Y MY −1 and W ′
i := WiY

−1 for 1 � i � k. Note that we have v(i) =
e(si−1+1)Y for 1 � i � k where e(1), . . . , e(n) is the standard basis of F

n. (That is, e(i)

contains exactly one 1 in position i and otherwise zeros. Recall that si =
∑i

j=1 dj

266https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

Figure 1: Overview of the matrix Y MY −1⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
0 1 0

.
0 0 1

0 1
∗ ∗ ∗ ∗ ∗ ∗

0 1
0 1 0

.
0 0 1

0 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

...
...

. . .
0 1

0 1 0
.

0 0 1
0 1

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with s0 = 0.) Furthermore, for 1 � i � k, the space Wi =
〈
v(1), . . . , v(i)

〉
M

is equal
to the space {vY | v ∈ F

n with vj = 0 for j > si}. Thus, the space W ′
i is the

F-linear span
〈
e(1), e(2), . . . , e(si)

〉
F

and we have a filtration

0 = W ′
0 < W ′

1 < W ′
2 < · · · < W ′

k = V

such that each quotient W ′
i/W ′

i−1 is an M ′-cyclic space generated by the coset
represented by the standard basis vector e(si−1+1).

We begin by presenting Algorithm 4 which computes the absolute order polyno-
mial of a vector with respect to the matrix Y MY −1, using all the data acquired
during Algorithm 3. We will apply this later in the minimal polynomial algorithm
to the first few of the vectors e(si−1+1) produced during a run of Algorithm 3. Note
that for the analysis it is crucial that a number z such that the vector v lies in W ′

z

is given as input to the algorithm.

Proposition 7.1 (Correctness and complexity of Algorithm 4: OrdPoly).
Let F = Fq be a field with q elements. The output of Algorithm 4 satisfies the

Output specifications. Moreover, Algorithm 4 requires at most
z∑

j=1

(
4d2

j + 3djsj + 2dj

j∑
r=1

sr

)
� (

z

2
+ 9)s2

z

elementary field operations, where dj = deg p(j), sj =
∑j

r=1 dj for j � 1 and s0 = 0;
and this is less than n3 for n sufficiently large.

267https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

Algorithm 4 OrdPoly

Input: M , k, (Y, S, T, l), (p(j))1�j�k, (b(j))1�j�k as returned by CharPoly, an
integer z with 1 � z � k, v ∈ W ′

z, and the factorisation p(j) =
∏t

r=1 q
ej,r
r for all

j � k
Output: A list of factorised polynomials, the product of which is ordY MY −1(v)

i := z {will run down to 1}
f := [] {empty list}
repeat

h :=
∑di

j=1 vsi−1+jx
j−1

if h �= 0 then
ĝ := p(i)/ gcd(h, p(i)) {factorised}
add ĝ to list f
compute product g of factors in ĝ
if i > 1 then

v := v · g(Y MY −1) {see Proposition 7.1 for this computation}
end if

end if
i := i − 1

until i = 0
return f

Proof. Since we are computing an order polynomial with respect to the matrix
M ′ = Y MY −1 we can always use the form of this matrix as displayed in Figure 1.

The basic idea of Algorithm 4 is to use Lemmas 4.11 and 4.12 applied to the
filtration

0 = W ′
0 < W ′

1 < W ′
2 < · · · < W ′

k = V.

Starting with i := z and the original v lying in the space W ′
z , the variable i

runs downwards until 1. In each step, Algorithm 4 computes the relative order
polynomial g := ordM ′(v + W ′

i−1) for the then current value of v ∈ W ′
i . This

assertion follows from Lemma 4.11 noting that, by our discussion above, p(i) =
ordM (v(i) + Wi) = ordM ′(e(si−1+1) + W ′

i−1). Next vg(M ′) is evaluated, which lies
in W ′

i−1 by Lemma 4.3, and the induction can go on with i replaced by i − 1. The
product of the polynomials in the list f returned is the product of all the relative
order polynomials computed in the repeat loop, and this is equal to ordM ′(v), by
Lemma 4.12.

To count the number of elementary field operations is a bit complicated here.
Note first that by assumption we already know a factorisation of all the p(i) =∏t

j=1 q
ei,j

j into irreducible factors. Now gcd(h, p(i)) is equal to the product of the
greatest common divisors gcd(h, q

ei,j

j), for j � t. Since the degrees of the polyno-
mials q

ei,j

j sum up to the degree di of p(i), finding these gcd’s, by Proposition 3.1,
requires at most

2(deg(h) + 1) ·
t∑

j=1

(deg(qj)ei,j + 1)

268https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

field operations, which is at most 4d2
i since deg(qj)ei,j + 1 � 2 deg(qj)ei,j . Note

that this is a rather crude estimate. At this stage we know all multiplicities of the
qj in gcd(h, p(i)) and thus in g := p(i)/ gcd(h, p(i)). Thus we have computed g in
factorised form, which is denoted by ĝ in Algorithm 4.

Now we discuss the number of operations needed to evaluate vg(M ′). Due to the
sparseness of M ′, a multiplication of a vector w of W ′

i from the right by M ′ needs
only a shift (which we neglect here) and an addition of a multiple of the non-zero
part of b(r) for 1 � r � i requiring 2sr operations for each r. Thus computing
wM ′ requires at most

∑i
r=1 2sr elementary operations. Note that wM ′ lies in W ′

i

still. If f(x) ∈ Fq[x] of degree d, say f(x) =
∑d

r=0 crx
r, then we can compute

wf(M ′) =
∑d

r=0 crw(M ′)r by first computing w(M ′)r ∈ W ′
i for 1 � r � d at a cost

of at most 2d
∑i

r=1 sr, next computing crw(M ′)r for 0 � r � d at a cost of at most
(d + 1)si, and then adding these vectors at a further cost of at most dsi, making a
total cost to compute wf(M ′) of at most (2d + 1)si + 2d

∑i
r=1 sr elementary field

operations.
The polynomial g(x) is available in factorised form, say g(x) =

∏u
s=1 fs(x) with

deg fs = ms, where
∑u

s=1 ms = deg g = di. From the previous paragraph we see
that vg(M ′) can be computed at a cost of at most

u∑
s=1

(
(2ms + 1)si + 2ms

i∑
r=1

sr

)
= (2di + u)si + 2di

i∑
r=1

sr � 3disi + 2di

i∑
r=1

sr.

Subsequent runs of the repeat loop require similar numbers of elementary oper-
ations, with i replaced by j where i − 1 � j � 1. Thus Algorithm 4 needs at
most

z∑
j=1

(
4d2

j + 3djsj + 2dj

j∑
r=1

sr

)

elementary field operations, as claimed in the proposition.
To find a simpler upper bound we look at the terms one by one. The last and

most important term can be bounded by

2
z∑

j=1

(
dj

j∑
r=1

sr

)
= 2

z∑
r=1

sr

⎛
⎝ z∑

j=r

dj

⎞
⎠ = 2

z∑
r=1

sr(sz − sr−1)

= 2
z∑

r=1

sr(sz − sr) + 2
z∑

r=1

srdr � (
z

2
+ 2) · s2

z

since the function t(sz − t) has maximum value s2
z/4 for t in the interval [0, sz].

The second term 3
∑z

j=1 djsj is at most 3s2
z, and the term 4

∑z
j=1 d2

j is at most
4sz

∑z
j=1 dj = 4s2

z.

Altogether this amounts to a bound of (z
2 +9)s2

z as claimed. Asymptotically, this
is bounded above by n3 in the worst case as n → ∞.

Now we present our main procedure, Algorithm 5.

269https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

Algorithm 5 MinPolyMC

Input: M ∈ F
n×n
q , ε with 0 < ε < 1/2.

Output: A tuple (b, f) where b is either True or Uncertain and f ∈ Fq[x]
(see Proposition 7.2 for details).

((p(j))1�j�k, (Y, S, T, l), (b(j))1�j�k) := CharPoly(M)
Factorise all p(j) =

∏t
r=1 q

ej,r
r

Determine the least u ∈ N such that
∑t

r=1 q−u deg qr � ε
u := min{u, k}
f := lcm(p(1), . . . , p(k))
for i = 2 to u do

f := lcm(f,OrdPoly(M, k, (Y, S, T, l), (p(j))1�j�k, (b(j))1�j�k, i, e(si−1+1)))
end for
if u = k or deg f = n then

return (True, f)
else

return (Uncertain, f)
end if

Proposition 7.2 (Correctness and complexity of Algorithm 5: MinPolyMC).
Given a matrix M ∈ F

n×n
q and a number ε with 0 < ε < 1/2, Algorithm 5 returns

a tuple (b, f), where b is either True or Uncertain and f ∈ Fq[x] is a polynomial.
With probability at least 1 − ε the polynomial f = μM,Fn

q
, and if b = True then

f = μM,Fn
q

is guaranteed. Moreover, if f �= μM,Fn
q
, then f is a proper divisor of

μM,Fn
q

and every irreducible factor of μM,Fn
q

divides f .
The number of elementary field operations needed by Algorithm 5 is bounded

above by

char(n, q) + fact(n, q) +
u∑

i=1

(
i

2
+ 9)s2

i

where char(n, q) is an upper bound for the number of elementary field operations
needed to compute the characteristic polynomial (see Proposition 5.1), fact(n, q) is
an upper bound for the number of elementary field operations needed to factorise
each of a set of polynomials over Fq whose degrees sum to n (see Subsection 3.1).
Moreover either u = k, or u < k and

∑t
j=1 q−u deg qj � ε.

For n sufficiently large and fixed ε, this is less than

6n3 + fact(n, q) +
1
3
� log n − log ε

log q
�2 · n2

which is less than 7n3 + fact(n, q) (plus the cost of computing at most n random
vectors in Algorithm 3).

Remark 7.3. Note that if we use a randomised polynomial factorisation algorithm
(necessary for large q), then the algorithm can be modified to allow for a possible
failure of factorisation of the ‘Factorise’ step (line 2). Thus Theorem 1.1 follows
from Proposition 5. An upper bound for the term fact(n, q) in the complexity
bound is given in Remark 3.3, and this yields an upper bound in Proposition 7.2
of O(n3 log3 q) for n sufficiently large and fixed ε.

270https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

Remark 7.4. Algorithm 5 can be changed into a deterministic one by running the
‘i-loop’ for i up to k, instead of u. An upper bound of the cost is then given by
replacing u by k in the formula for the cost in Proposition 7.2.

If k > u, then these additional k − u runs of the ‘i-loop’ may be viewed as a
‘verification algorithm’. By Proposition 5, the additional cost of these extra runs is

k∑
i=u+1

(
i

2
+ 9)s2

i � s2
k

(
(k + u + 1)(k − u)

4
+ 9(k − u)

)
= s2

k

(k − u)(k + u + 37)
4

and for sufficiently large n this cost is less than n4/4 field operations.

Proof of Proposition 7.2. Algorithm 5 first computes the characteristic polynomial
of M in its action on F

n
q and its factorisation. This computation provides firstly

the irreducible factors qj of the minimal polynomial that allow us to determine
u, and secondly the input needed for running Algorithm 4 to compute the order
polynomials of v(2), . . . , v(u). Thirdly, it also yields a nice base change matrix Y such
that these order polynomials with respect to the matrix M can in fact be determined
using Algorithm 2 for the vectors e(s1+1), . . . , e(su−1+1) since we have ordM (v(i)) =
ordY MY −1(e(si−1+1) for 1 � i � k. Note that p(1) = ordY MY −1(e(1)) = ordM (v(1)).
By Proposition 5.1, the vector v(j) is a uniformly distributed random element of
V \ {0} if j = 1, or V \ 〈v(1), . . . , v(j−1)

〉
M

if j > 1. Hence, by Propositions 6.3
and 7.1, the probability that f after termination of Algorithm 5 is equal to μM,Fn

q

is at least 1 − ε.
From the discussion at the beginning of Section 6, μM,Fn

q
is the least common

multiple of the k polynomials ordM (v(1)), . . . , ordM (v(k)), and hence if u = k then
f = μM,Fn

q
. This also implies, since the initial value of f is lcm(p(1), . . . , p(k)),

that the returned polynomial f divides μM,Fn
q

and every irreducible factor of μM,Fn
q

divides f . In particular, if deg f = n then we must have f = χM,Fn
q

= μM,Fn
q
. Thus

if (True, f) is returned then f = μM,Fn
q

is guaranteed.
The number of elementary field operations needed follows from Propositions 5.1

and 7.1 and summing. Note that, after the factorisations computed in line 2 of
the algorithm, we neglect the forming of least common multiples and the products
here, because all results from Algorithm 4 come already factorised into irreducible
factors. We can thus compute the least common multiples by taking maximums of
multiplicities. Hence the first displayed upper bound is proved.

For the asymptotic complexity bound we have to consider the initial value of the
number u, namely the least integer u such that

∑t
j=1 q−u deg qj � ε. The largest

value of this sum occurs when all the qj have degree 1, and as there are then at most
n such polynomials,

∑t
j=1 q−u deg qj � nq−u. Thus u is at most the least integer

such that nq−u � ε, namely

u0 := � log n + log(ε−1)
log q

�

and the value of u used in the algorithm is at most min{u0, k} � u0. By Proposi-
tion 5.1, the asymptotic value of char(n, q) is less than 6n3 for n sufficiently large,
(plus the cost kξn of making k random selections of vectors). By Proposition 7.1,
the number of elementary field operations used for the computation of the u � u0

271https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

order polynomials is at most
u∑

i=1

(
i

2
+ 9)s2

i � u(u + 1)
4

s2
u + 9us2

u � u0

(
u0 + 37

4

)
n2.

which, for sufficiently large n and fixed ε, is less than 1
3u2

0n
2 < n3.

8. Deterministic verification

In this section we explain how the probabilistic result of our Monte Carlo algo-
rithm can be verified deterministically. We begin by discussing cases that can be
handled rather cheaply, before we present several general verification procedures,
all of which, unfortunately, have a worst-case cost of O(n4) field operations.

All notation from previous sections remains in force. The first result follows
immediately from Proposition 7.2.

Proposition 8.1 (Cases, in which the result is already proven to be correct). If
the output polynomial of Algorithm 5 is χM,Fn

q
, then the output is (True, χM,Fn

q
)

and is correct.

For the next result observe that, if Algorithm 5 is modified so that the for loop is
run k times, then the resulting polynomial f is guaranteed to be the minimal poly-
nomial, giving a deterministic algorithm with proven result. (Proof of correctness
is given in the proof of Proposition 7.2.)

Proposition 8.2 (Case of few random vectors chosen during comp. of χM,Fn
q
).

If k � √
n, and the for loop in Algorithm 5 is run k times, then the output

polynomial is μM,Fn
q
. The overall cost of this modification of Algorithm 5 is at most

char(n, q) + fact(n, q) +
1
4
n3 +

37
4

n5/2

elementary field operations.

Proof. The only change to the complexity estimate is for the number of elementary
field operations in the second last line of the proof of Proposition 7.2:

k∑
i=1

(
i

2
+ 9)s2

i � k(k + 1)
4

s2
k + 9ks2

k � k(k + 1)
4

n2 + 9kn2 � 1
4
n3 +

37
4

n5/2.

The rest follows from Proposition 7.2.

For the case of large k, we may use the procedure suggested in Remark7.4 as
a verification algorithm, at a cost of O(k2n2) field operations. Two alternative
verification procedures are given below. The first involving evaluation on vectors is
given in Proposition 8.3, and the second using null space computations is given in
Proposition 8.7.

Proposition 8.3 (Verification by evaluation on vectors).
For the output (Uncertain, f) of Algorithm 5 one can verify f = μM,Fn

q
using

at most dn(k − u)(k + u + 4) elementary field operations where u and k are as in
Proposition 7.2 and d = deg f .

272https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

Proof. The idea here is to check whether e(si−1+1)f(Y MY −1) is equal to zero, for
u + 1 � i � k, by direct evaluation using the techniques described in the proof
of Propostion 7.1. Recall first that the result f comes in factorised form. Since
e(si−1+1) lies in W ′

i the arguments in the proof of Proposition 7.1 show that this
evaluation can be done using at most 3dsi+2d

∑i
r=1 sr elementary field operations.

Thus, an upper bound for the total cost for all these evaluations is

3d
k∑

i=u+1

si + 2d
k∑

i=u+1

i∑
r=1

sr.

The first term is bounded above by 3dn(k − u). As to the second term, for 1 � j �
u + 1, the value sj occurs in this expression with coefficient 2d(k − u), while for
u + 2 � j � k, it occurs with coefficient 2d(k − j + 1). Thus the second term is at
most

2dn(u + 1)(k − u) + 2dn(k − u)(k − u − 1)/2 = dn(k − u)(k + u + 1).

Adding this to the upper bound for the first term we get at most dn(k−u)(k+u+4)
as claimed.

For the following discussion we need a lemma:

Lemma 8.4 (Cost of evaluation of a polynomial at a matrix). Let M ∈ F
n×n be

a matrix and f ∈ F[x] a polynomial with degree d < n. Then the evaluation f(M)
can be computed using at most 2dn3 elementary field operations.

Proof. We take 2n3 elementary field operations as an upper bound for a matrix
multiplication. The computation of the powers M2, M3, . . . , Md needs at most 2(d−
1)n3 elementary field operations. The multiplication, for each i = 1, . . . , d, of M i

by a coefficient of f and addition of the result to the already computed matrix (the
sum of previous terms) needs another 2dn2 elementary field operations. Finally,
the constant term of f has to be added along the diagonal, which is yet another n
elementary field operations. Since d + 1 � n � 2n2, this is altogether at most 2dn3

as claimed.

Of course, this immediately implies:

Corollary 8.5 (Small degree minimal polynomial). If deg μM,Fn
q

< n, then the
output of Algorithm 5 can be verified by evaluation using at most

2 · n3 · deg μM,Fn
q

elementary field operations.

Remark 8.6. Note that using [1, Theorem 2] we could lower the complexity in
Lemma 8.4 to O(

√
dn3) provided we stored O(

√
d) matrices in memory at the

same time. However, since storing a matrix in F
n×n needs O(n2) of memory, this

approach would often become impractical before a concrete problem would become
intractable because of time constraints. We use our estimates in Lemma 8.4 because
of these practical considerations. However, in some practical situations, an improved
polynomial evaluation algorithm using more memory may be suitable.

We now present Algorithm 6 that can be run after Algorithm 5 to verify the
correctness of the resulting polynomial deterministically.

273https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

Algorithm 6 MinPoly verification

Input: M ∈ F
n×n, χM,V =

∏t
i=1 qei

i (factorised), and a candidate
∏t

i=1 qfi

i for
μM,Fn

q
(factorised), all data from Algorithm 5

Output: True or a positive number j (see Proposition 8.7 for details).

for i = 1 to t do
if fi < ei then

M ′ := qi(Y MY −1)fi

d := dimF(ker(M ′))
if d < deg(qi) · ei then

return i
end if

end if
end for
return True

Proposition 8.7 (Deterministic minimal polynomial verification).
If Algorithm 6 is called with candidate minimal polynomial

∏t
i=1 qfi

i from Algo-
rithm 5, then it either returns True or a positive integer j. In the former case,
μM,Fn

q
=
∏t

i=1 qfi

i , while in the latter case the multiplicity of qj in μM,Fn
q

is greater
than fj. The number of elementary field operations required by Algorithm 6 is at
most

n3 ·
t∑

i=1

(2 deg qi + 2�log fi� + 1) .

Proof. Let ri := deg qi for i = 1, . . . , t. We again view F
n as F[x]-module as in

Section 6 by letting x act as right multiplication by M . By [7, Theorem 3.12], it is
isomorphic to a direct sum of primary cyclic F[x]-modules

F
n ∼=

t⊕
i=1

mi⊕
j=1

wi,jF[x],

such that ordM (wi,j) = qfi,j
i with ei � fi,1 � fi,2 � · · · � fi,mi � 1 and

∑mi

j=1 fi,j =
ei. Thus, for each i, qi occurs in μM,Fn

q
with multiplicity fi,1, and so in particular

fi � fi,1. The element qfi

i acts invertibly on all direct summands wi′,jF[x] with
i′ �= i since qi is irreducible and every order polynomial of a non-zero vector in
such a direct summand is a power of qi′ , by Lemma 4.11. For i′ = i however, the
dimension of the kernel of the action of qfi

i on wi,jF[x] is ri ·min{fi, fi,j}. Thus the
dimension of the kernel of the action of qfi

i on the whole of F
n is equal to

ri

mi∑
j=1

min{fi, fi,j} � ri

mi∑
j=1

fi,j = riei

with equality if and only if fi � fi,1. Since fi � fi,1, equality holds above if and
only if fi is equal to the multiplicity fi,1 of qi in μM,Fn

q
. Therefore, Algorithm 6

always returns the result as stated in the Proposition.
As to the cost, Algorithm 6 evaluates qi at Y MY −1 which needs at most 2rin

3

elementary field operations by Lemma 8.4. It then takes the result to the fith power,

274https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

which can be done by repeated squaring with at most 2n3�log fi� elementary field
operations, and finally computes the dimension of a null space, which can be done
with at most n3 elementary field operations (compute a semi echelon basis of the
row space of the matrix). Note that we are not using the sparseness of Y MY −1

here.

Remark 8.8. The cost in Proposition 8.7 is much smaller than n4 in many cases.
One of the worst cases occurs when χM,Fn contains lots of different factors of degree
1 each occurring with multiplicity 3, and all the fi are equal to 2. Then Algorithm 6
has to square about n/3 matrices and compute the null spaces of the results. This
amounts to about 2n4/3 elementary field operations, which is only about twice as
fast as directly evaluating the minimal polynomial at M . Note that even in this
case only about every sixth entry of Y MY −1 is different from zero.

Remark 8.9. As in each of our procedures there are some simplifications we could
make in practice which do not reduce the worst case complexity estimates. For
example, in Algorithm 6, there is no need to compute the kernel of qi(Y MY −1)fi

if the irreducible qi does not divide any of the relative order polynomials p(j) for
u < j � k.

9. Performance in practice

In this section we give some experimental evidence concerning the performance
of Algorithm 5 in comparison with that of algorithms currently implemented in the
GAP library (see [4]).

All computations were done on a machine with an Intel Core 2 Quad CPU Q6600
running at 2.40 GHz with 8 GB of main memory and two times 4 MB of second
level cache.

We were unable to confirm that Magma [2] uses an algorithm based on the
canonical forms algorithm of Alan Steel presented in [12] for computing mini-
mal polynomials, although this is indicated in [12, Abstract] and on the web (see
http://magma.maths.usyd.edu.au/magma/htmlhelp/text347.htm).

Our colleague Colva Roney-Dougal kindly ran the Baby Monster example matrix
M2 on Magma and the resulting times were roughly equivalent to the timing in the
column “Lib” of Figure 2, suggesting that this is indeed the case. Since the minimal
polynomial algorithm in the GAP library is also based on the algorithm in [12], we
did not conduct extensive comparison tests of our algorithm on Magma.

9.1. Guide to the test data
The timing results are in Figure 2, all times are in seconds. The column marked

“n” contains the dimension of the matrix, the column marked “q” the number
of elements of the base field. The columns marked “Lib” and “AS” contain the
times needed for one run of the minimal polynomial algorithm based on [12] as
implemented in the GAP library, and as implemented (by the first author) in the
GAP language, respectively. The column “MC” contains the total time for our
Monte Carlo algorithm as presented in Algorithm 5. The next three columns marked
“Spin”, “Fact” and “OrdP” contain the times for the three phases of this algorithm
respectively, namely the first phase to compute the characteristic polynomial via
relative order polynomials, the second phase to factor all factors of the characteristic
polynomial and count multiplicities, and the third phase to compute some absolute
order polynomials to guess the minimal polynomial. Finally, the last column marked

275https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

http://magma.maths.usyd.edu.au/magma/htmlhelp/text347.htm
https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

“Ver.” contains the time for the deterministic verification via Algorithm 6. The
maximal error probability for our Monte Carlo algorithm was ε = 1/100 for all
runs.

9.2. The test matrices
Next, we describe the matrices M1, . . . , M10 we used.
(a) The matrices M1 and M ′

1 were purely random matrices from F
1000×1000
3 with

all entries chosen with uniform distribution from the field F3. Such matrices are with
very high probability cyclic, that is, their characteristic and minimal polynomials
are equal. Usually, Algorithm 3 only has to pick very few random vectors for such
matrices. The for loop of Algorithm 6 quickly checks whether the least common
multiple of the relative order polynomials (which is the input candidate polynomial)
already has degree n. It turned out that M ′

1 was cyclic but not M1, and this explains
the big differences in the runtimes for these matrices.

(b) The matrix M2 is one coming from actual applications. Namely, it is the
matrix a + b + ab where the two matrices a, b ∈ F

4370×4370
2 describe the action of

two standard generators of the Baby monster sporadic simple group on its smallest
faithful simple module over F2. The matrices a and b were downloaded from the
WWW Atlas of group representations (see [16]). The matrix a+b+ab is interesting
because it is one of the algebra words that is used in the MeatAxe (see [11] and
[6]) to compute composition series of modules and we could very well imagine using
the minimal polynomial instead of the characteristic polynomial in some places in
the MeatAxe.

The reason why the standard algorithm for the minimal polynomial performed
rather badly on this matrix is that its characteristic polynomial has irreducible
factors of degrees 1, 1, 2, 4, 6, 88, 197, 854 and 934 with respective multiplicities
2, 2277, 4, 1, 1, 1, 1, 1 and 1. Therefore the standard algorithm spins up large
subspaces many times.

(c) The matrices M3 – M7 were constructed in the following way: In the lan-
guage of F[x]-modules we chose the order polynomials of the generators of their pri-
mary cyclic submodules, that is we chose the minimal polynomials on the primary
cyclic submodules. For irreducible factors of degree one this amounts to choosing
the sizes and numbers of the Jordan blocks occurring in the Jordan normal form
of the matrix. After writing down the corresponding normal form of the matrix we
conjugated it with a random element of the general linear group to get a dense
matrix with the same normal form.

For M3 ∈ F
600×600
5 we chose one cyclic summand with minimal polynomial

(x − ζ5)300 plus 300 summands with minimal polynomial x − ζ5, where ζ5 ∈ F5

is a primitive root. This is a typical case in which our Monte Carlo algorithm and
the deterministic verification both perform very well in comparison with older tech-
niques. The reason for this is that the high dimensional cyclic subspace is spun up
many times in the standard minimal polynomial algorithm as for the matrix M2.

For M4 ∈ F
1200×1200
3 we chose 400 cyclic summands with minimal polynomial

(x− ζ3)2 plus 400 cyclic summands with minimal polynomial (x− ζ3), where again
ζ3 ∈ F3 is a primitive root. In contrast with the matrix M3, our algorithms per-
formed very well in this case but they were not much faster than the older tech-
niques, since the standard algorithm run on M4 does not spin up many large cyclic
subspaces.

276https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

Figure 2: Timings for minimal polynomial computation

M q n Lib AS MC Spin Fact OrdP Ver. k
M1 3 1000 1.95∗ 0.65 13.7 0.33 13.3 0.05 0 2
M ′

1 3 1000 1.31∗ 0.68 0.32 0.32 0 0 0 2
M2 2 4370 12975 3098 5.74 3.80 1.10 0.83 3.02 2212
M3 5 600 59.5 21.0 0.33 0.16 0.08 0.08 0.19 301
M4 3 1200 2.00∗ 0.45 0.44 0.38 0.06 0.01 0.06 800
M5 251 600 2.9 3.3 3.26 2.82 0.55 0.04 0 2
M6 2 2391 14.6 3.3 2.25 0.91 0.18 1.15 1.02 9
M7 243 220 0.77 0.88 0.36 0.34 0.01 0.01 0.21 7
M8 17 400 0.46 0.20 0.048 0.032 0.012 0.004 0.00 399
M9 17 400 0.26 0.20 0.23 0.23 0 0 0 1
M10 17 400 0.26 0.19 0.22 0.22 0 0 0 1

∗ averaged over 10 runs

For M5 ∈ F
600×600
251 we chose 200 different linear factors x−α and for each added

one cyclic space with minimal polynomial (x−α)2 and one with x−α. This example
originally was a worst case scenario for our deterministic verification. However, since
k = 2 is quite small, a deterministic verification can be done relatively cheaply
as described in Proposition 8.2 and Remark 7.4, even though the integer u in
Algorithm 5 is only 1. The deterministic verification Algorithm 6 ran very slowly
(more than 300 seconds) in this example.

For M6 ∈ F
2391×2391
2 we chose the irreducible polynomial f(x) = x3 + x2 + 1 ∈

F2[x] of degree 3 and added cyclic spaces with respective minimal polynomials f400,
f200, f100, f50, f25, f12, f6, f3 and f .

For M7 ∈ F
220×220
34 we chose an irreducible polynomial f(x) ∈ F10[x] of degree

10 and added cyclic spaces with respective minimal polynomials f10, f , f2, f3, f ,
f2 and f3.

(d) The matrices M8 and M9 were standard generators of GL(400, 17), conju-
gated by the pseudo-random element M10 of the same group. Note that M8 had
order 16 while M9 and M10 had very high order and were cyclic matrices. We chose
these examples because they may be typical of difficult cases in an application of
the minimal polynomial algorithm for computing the projective order of a matrix.

Our algorithm very quickly discovered that the least common multiple of the
relative order polynomials was already equal to the characteristic polynomial.

Acknowledgements. We would like to thank an anonymous referee for invaluable
suggestions that improved and streamlined the exposition and in particular encour-
aged us to think about and improve the deterministic verification procedures.

This research forms part of a Discovery Project and Federation Fellowship Grant
of the second author funded by the Australian Research Council.

277https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

References

1. D. Augot and P. Camion, ‘On the computation of minimal polynomials,
cyclic vectors, and Frobenius forms’, Linear Algebra Appl. 260 (1997) 61–94.
254, 273

2. W. Bosma and J. J. Cannon, Magma, Handbook of Magma Functions, edn
2.14 (2007), http://magma.maths.usyd.edu.au/magma/htmlhelp/MAGMA.
htm. 254, 275

3. W. Eberly, ‘Asymptotically efficient algorithms for the Frobenius
form’, Department of Computer Science, University of Calgary Technical
Report (2000), http://pages.cpsc.ucalgary.ca/∼eberly/Research/publications.
php. 254

4. The GAP Group, GAP – Groups, Algorithms, and Programming, version
4.4.10 (2007), http://www.gap-system.org/. 253, 254, 275

5. M. Giesbrecht, ‘Nearly optimal algorithms for canonical matrix forms’,
SIAM J. Comput. 24 (1995) 948–969. 253, 254

6. D. F. Holt and S. Rees, ‘Testing modules for irreducibility’, J. Austral.
Math. Soc. Ser. A 57 (1994) 1–16. 276

7. N. Jacobson, Basic algebra. I (W. H. Freeman & Co., San Francisco, CA,
1974). 264, 274

8. W. Keller-Gehrig, ‘Fast algorithms for the characteristic polynomial’,
Theoret. Comput. Sci. 36 (1985) 309–317. 253

9. D. E. Knuth, The art of computer programming, vol. 2, Seminumerical
algorithms, 3rd edn, Addison-Wesley Series in Computer Science and Infor-
mation Processing (Addison-Wesley, Reading, MA, 1998). 256

10. E. A. O’Brien, ‘Towards effective algorithms for linear groups’, Finite geom-
etries, groups, and computation (de Gruyter, Berlin, 2006) 163–190. 252

11. R. A. Parker, ‘The computer calculation of modular characters (the Meat-
Axe)’, Computational group theory, Durham, 1982 (Academic Press, London,
1984) 267–274. 276

12. A. Steel, ‘A new algorithm for the computation of canonical forms of ma-
trices over fields’, Computational algebra and number theory, London, 1993,
J. Symbolic Comput. 24 (1997) 409–432. 254, 275

13. A. Storjohann, ‘An O(n3) algorithm for the Frobenius normal form’,
Proceedings of the International Symposium on Symbolic and Algebraic
Computation, Rostock, 1998 (ACM, New York, 1998) 101–104 (electronic).
253, 254

14. A. Storjohann, ‘Deterministic computation of the Frobenius form (ex-
tended abstract)’, 42nd IEEE Symposium on Foundations of Computer
Science, Las Vegas, NV, 2001 (IEEE Computer Society, Los Alamitos, CA,
2001) 368–377. 253, 254

15. J. von zur Gathen and J. Gerhard, Modern computer algebra, 2nd edn
(Cambridge University Press, Cambridge, 2003), ISBN 0-521-82646-2. 256

278https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

http://magma.maths.usyd.edu.au/magma/htmlhelp/MAGMA.htm
http://magma.maths.usyd.edu.au/magma/htmlhelp/MAGMA.htm
http://pages.cpsc.ucalgary.ca/~eberly/Research/publications.php
http://pages.cpsc.ucalgary.ca/~eberly/Research/publications.php
http://www.gap-system.org/
https://doi.org/10.1112/S1461157000000590

Computing Minimal Polynomials of Matrices

16. R. Wilson, P. Walsh, J. Tripp, I. Suleiman, S. Rogers, R. Parker,
S. Norton, S. Nickerson, S. Linton, J. Bray and R. Abbott,
‘The WWW Atlas of Finite Group Representations’ (1999), http://
brauer.maths.qmul.ac.uk/Atlas/. 276

Max Neunhöffer neunhoef@mcs.st-and.ac.uk

University of St Andrews, School of Mathematics and Statistics,
North Haugh, St Andrews, Fife KY16 9SS, Scotland, United Kingdom

Cheryl E. Praeger praeger@maths.uwa.edu.au

University of Western Australia, School of Mathematics and Statistics
(M019), 35 Stirling Highway, Crawley 6009, Western Australia, Australia

279https://doi.org/10.1112/S1461157000000590 Published online by Cambridge University Press

http://brauer.maths.qmul.ac.uk/Atlas/
http://brauer.maths.qmul.ac.uk/Atlas/
mailto:neunhoef@mcs.st-and.ac.uk
mailto:praeger@maths.uwa.edu.au
https://doi.org/10.1112/S1461157000000590

	Introduction
	Other algorithms in the light of our requirements
	Outline of the paper

	Notation
	Complexity bounds for basic algorithms
	Polynomial factorisation

	Order polynomials
	Computing the characteristic polynomial
	Random vectors
	Characteristic polynomial algorithm

	Probability estimates using the structure theory for modules
	Computing minimal polynomials
	Deterministic verification
	Performance in practice
	Guide to the test data
	The test matrices

