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Abstract

Lipids are essential for child development. Nutritional recommendations are numerous,
evolving over time and are often based on expert opinions more than evidence-based
medicine. The objective of this review is to critically analyse the evolution of current
nutritional recommendations, identify existing knowledge gaps, and propose avenues for
improvement to optimize infant nutrition and development. A narrative literature review on
Pubmed, EMBASE and Cochrane (2001-2022) has been conducted with keywords: “alpha-
linolenic acid, arachidonic acid, children, cholesterol, docosahexaenoic acid, eicosapentaenoic
acid, guidelines, infant, LC-PUFA, linoleic acid, lipids and dietary intakes, newborn, palmitic
acid, toddler”. Among 861 articles identified, 133 were selected. The main current
recommendations are issued by AFSSA, ANSES and FAO-WHO. In infants from 0 to 3 years
of age the main challenge is to increase lipid intake while maintaining an optimal omega 6 /
omega 3 ratio. Current recommendations are focused on polyunsaturated fatty acids,
emphasising the intake of linoleic, eicosapentaenoic and docosahexaenoic acids without any
specific recommendation for arachidonic acid before the age of 6 months. Points of interest,
but without any recommendation, are the incorporation of milk fat, cholesterol,
monounsaturated fatty acids, and saturated fatty acids for infants under 6 months. In
conclusion, this article identifies knowledge gaps regarding the structural aspect of lipids and
the integration of new categories of lipids in future recommendations to promote the quality
of infant formulas.
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1- Introduction

Lipids constitute about 50% of energy intake (EI) in exclusively breast-fed infants. Exclusive
breastfeeding for the first 6 months of life is a strong and consensual recommendation (1) (2)
and human milk is used as a model to define fat and fatty acid (FA) intakes in early life for

healthy infants.

Despite breastfeeding promotion campaigns, the rate of breastfeeding initiation remains low
in France which has one of the lowest rate in Europe (around 66%), and has even tended to
decline in recent years (3). In addition, to enhance breastfeeding support, it is therefore also
important to define as accurately as possible the nutritional framework for infant formulas

offered in the absence of breastfeeding.

Recent clinical studies have underlined the essential contribution of fats consumed by
children to metabolic programming, and their involvement in the development of neuronal
and immune functions in children under 3 years old (4). Thus, infant formulas currently
available have a FA profile, which more or less faithfully reproduces the natural composition
of human milk (5). However, regulations for infant formulas only define a limited number of
parameters for lipids (6) (7) in terms of quantity, while leaving other criteria (such as the
addition of arachidonic acid (ARA), and the source of fat, etc.) to the discretion of the

manufacturer.

Finally, the public health messages may appear contradictory to the parents. Indeed, while
prevention messages aimed at the lay public advise to reduce fat intake, young children need
significantly higher proportion of El from fat than adults (3 to 5 times higher for children
younger than 3 vyears vs adults) (8) (9). It is therefore essential to establish clear
recommendations to guide parents during the first 1000 days of life. Providing such
recommendations is challenging because clinical trials are often not ethically feasible in
nutrition, particularly in children, and in the absence of a strong meta-analysis, child nutrition

remains a subject of debate among experts.

This literature review aims to provide a comprehensive analysis of current lipid intake
recommendations for infants from birth to 3 years of age. By highlighting inconsistencies,
contradictions, and gaps in existing guidelines, the study seeks to propose evidence-based
pathways for enhancing nutritional strategies, particularly in the formulation of infant
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formulas, to better align with the physiological needs of young children during this critical

developmental period.

2 Methods

This article is a narrative literature review on the topic of lipid recommendations for young
children aged from birth to 3 years old. Review based on literature identified through
searching on PubMed, Embase and Cochrane (2001-2022) conducted using the keywords:
“alpha-linolenic acid (ALA), Arachidonic Acid (ARA), children, cholesterol,
docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), guidelines, infant, LC-PUFA,

linoleic acid (LA), lipids and dietary intakes, newborn, palmitic acid, toddler”.

The selection of relevant literature included articles in English and French and identified 861
articles in the following search engines: Pubmed (n= 620), Embase (n=60) and Cochrane (n=
181). Articles were excluded if they did not provide the information sought, if they had an
insufficient number of cited references (< 2), if they presented redundant content or were
deemed irrelevant, or published in a journal of insufficient importance (classified as

“predator journal”, without peer reviewed, low classification rank in the speciality (< D)).

After deduplication, there were 422 articles left and 104 were withdrawn after reviewing
citations eligibility. After removing redundant citations, non-accessible and/or missing the

information sought, 133 different articles were included (Figure 1).

3) Total lipids

3-1) Definition

Lipids are water-insoluble substances found in plant and animal tissues, essential for
structural and energy needs (10). They exist in various forms, including triglycerides, which
are the primary nutritional form; fatty acids are an important constituent of many of these
lipids including triglycerides.

3-2) Energetic function

The body's physiological needs change with age and require specific nutrient intakes. Indeed,
from birth to 3 years, the energy needs derived from total lipids are particularly important, as
energy expenditure is high due to rapid growth during this stage of life. In the first months,

lipids represent about 35% of weight gain, or 80-90% of the energy value of new tissues (11).
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3-3) Current recommendations

Current recommendations on the proportion of EI derived from lipids are not consensual and
have varied over the years and between different scientific organisations, with an upward
trend in recent years (Table 1).

Currently, the French Agency for Food, Environmental and Occupational Health and Safety
(ANSES) recommends 50 to 55% of EI from lipids in infants under 6 months similar to the
lipid content of human breast milk and then 45 to 50% for children from 6 months to 3 years
of age (12). In fact, epidemiological studies suggest adequate growth as long as lipids are
above 30% of the EI (13) and below this, there is a risk of inadequate intake of energy and
fat-soluble vitamins. However, the ANSES recommendation derives from the fact that lipid
consumption lower than 50% of total EI (TEI) does not ensure the minimum requirements for
certain essential FAs, such as omega 3, and fat-soluble vitamins for infants under 6 months.
The 2014 recommendation from the (European Food Safety Authority) EFSA at around 40%
for infants aged 6-12 months (14) is very similar to that of ANSES (45%).

4- Long-chain polyunsaturated fatty acids (PUFA)

4-1) Generalities

4-1-1) Definition

Polyunsaturated fatty acids (PUFA) are fatty acids with at least two double bonds, classified
as long-chain when containing more than 12 carbon atoms. Essential PUFA, such as linoleic
acid (LA) C18:2 (n-6) and alpha-linolenic acid (ALA) C18:3 (n-3), cannot be synthesized by
the body and must be obtained through diet (15) (16). Omega-6 (LA, ARA) and omega-3
(ALA, DHA, EPA) families (Table 2) play critical roles in structural functions, inflammation

modulation, and neurodevelopment.

4-1-2) Metabolism

Endogenous synthesis of DHA and ARA is influenced by the genetic polymorphism of the
fatty acids desaturases (FADS) FADS1 and FADS2 genes, which encode for the desaturase 1
and 2 respectively and limit their synthesis; and by elongases 2/5 Furthermore, the activities
of these enzymes is depending on the organ (eg liver, brain, testicle, kidney) in relation to
their protein concentration levels and substrate availability (17). The synthesis of PUFA is
dependent on various factors, such as diet, nutrients, age, nutritional status, and certain
pathologies, particularly those associated with insulin resistance, as insulin induces the
enzymatic activity involved in PUFA synthesis (18). Nutritional intake of DHA and ARA
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during infancy is important to ensure their availability for growth and development. There is a
competition phenomenon between these PUFA since the essential fatty acids (EFA)
conversion pathways use the same set of enzymes (desaturases and elongases) for the
synthesis from their precursors ALA and LA (Figure 2) (19). A high intake of LA induces
excessive synthesis of ARA, which in turn limits DHA and EPA synthesis from ALA,
resulting in reduced local availability of LC n-3 PUFA (notably DHA) into membranes. An
excessively high LA/ALA ratio in early in life is likely to have negative short- and long-term
health effects by reducing cerebral DHA availability and uptake through competition with
ALA in the conversion stages (20). In addition, high levels of circulating ARA compete with
DHA for incorporation into neuronal membranes. Conversely, high levels of ALA improve
the infant's DHA status (20) (21). Thus, dietary intakes of LA and ALA, and the balance
between them, have the potential to affect LC PUFA status, also to affect numerous
physiological functions such as neuro-cognitive development (22). Moreover, circulating
DHA levels depend not only on the ratio of LA to ALA, but also on the amount of dietary
preformed PUFA supplied (23); and in the opposite way, DHA plays a fundamental role in
PUFA synthesis because it downregulates its own liver synthesis by inhibiting EPA
elongation (24) (25).

4-1-3) Main functions

EFA, but especially their LC-PUFA derivatives, are esterified mainly in the phospholipids of
cell membranes, where they have a structural and functional role from foetal life onwards.
While PUFA can be used as an energy source, they have above all nhumerous physiological
roles such as inflammation modulation, immunity and regulation of lipid metabolism, and
they play an essential role in the functioning of the brain and vision. EFA deficiency impairs
lipid and energetic metabolism, cell membrane structures, and intracellular signalling
pathways. A deep and prolonged deficiency can be detrimental, hence there is a dependence
to a diet containing both LA and ALA (22).

Structural and modulation of gene expression

In the form of phospholipids, these FAs are universal constituents of biological membranes;
modulating their fluidity and the activity of the proteins they contain (enzymes, receptors,
transporters, etc.). They are important for lipid synthesis in physiological barriers such as

epidermis. They are also involved in the regulation of inflammation through the activation of
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transcription factors (26) (27): it is well documented that n-6 PUFA demonstrate a higher pro-
inflammatory effect than the n-3 PUFA.

Immunity
FAs are precursors of oxygenated mediators that specifically modulate a wide range of
cellular functions and can produce multiple effects: haemostasis, platelet aggregation,

immune system activity, etc. (26).

A number of clinical studies have shown that LC PUFA can modulate a child's immune
status, thereby potentially preventing allergy development. These studies show a positive
association between n-6 PUFA levels in breast milk and the risk of developing asthma, while

high levels of total n-3 FA are associated with a reduced risk of atopy (28).

The impact of high ARA intake in the evolution or triggering of common childhood
inflammatory diseases such as asthma, eczema, atopic dermatitis and food allergies is
specifically a topic of interest with ARA intake often inversely related to these allergic
diseases (29) (30).

Neurological and ophthalmic

Furthermore some LC PUFA are involved from the foetal stage onwards in body growth,
central nervous system development and, consequently, cognitive development and retinal
function in children (20) (31).

Especially, DHA is central to foetal and infant growth, as well as retinal and visual
development. It is a major lipid constituent of photoreceptor membranes, where it plays a
crucial role in maintaining their structural and functional integrity (32). It has been shown, for
example, that the intake of DHA from algae in infant formulas improves visual acuity in
children as young as 12 months (33). This beneficial effect could be explained by the fact that
DHA increases mitochondrial activity and has antioxidant, anti-inflammatory, anti-apoptotic
and anti-angiogenic effects at retinal level. Since the continuous renewal of retinal membranes
requires a constant supply of n-3 PUFA, DHA-rich diets may even improve retinal function,
particularly where damage has already occurred. In particular, DHA is a precursor of
oxygenated derivatives, giving it specific properties in the brain: anti-inflammatory effects

and involvement in the apoptosis process (34).
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4-2) importance of PUFAs during pregnancy and breastfeeding

Polyunsaturated fatty acids (PUFAs), particularly DHA and ARA, are essential during
pregnancy and breastfeeding due to their critical roles in fetal and infant development (35).
DHA supports neurodevelopment, visual function, and cognitive growth, while ARA
contributes to immune function and cellular signalling. Maternal diet significantly influences
the PUFA composition of breast milk, as dietary intake of n-3 and n-6 fatty acids directly
affects their levels in milk (36). For example, diets rich in DHA, such as those including fatty
fish or DHA supplements, enhance DHA levels in breast milk, promoting optimal infant brain
and retinal development (36). Conversely, high intake of LA can increase ARA levels but
may reduce DHA synthesis due to competition for shared enzymatic pathways (ref 16).
Gestational obesity further alters the lipid profile, often increasing n-6 PUFA levels while
reducing n-3 PUFA concentrations, which may impact infant health (37). Therefore, balanced
maternal dietary intake of n-3 and n-6 PUFAs during pregnancy and lactation is crucial for
ensuring adequate PUFA transfer to the infant, supporting growth, immune function, and

long-term health outcomes (38).

4-3) Long-term effect of PUFA intakes in children

Preclinical evidence underlines the deleterious short- and long-term role of excess LA, and it
has been shown that an increase in dietary intake of LA in Western societies over the last few
decades coincides with higher incidences of obesity (39) and immune diseases (40) at

population level.

Projections for lipid intake from birth to 3 years emphasize the importance of maintaining a
balanced lipid profile to support optimal growth and development while mitigating obesity
risks. Lipid availability, particularly essential fatty acids like DHA and ARA, is critical during
infancy, as these contribute to neurodevelopment, immune function, and metabolic
programming (26). Maternal diet during pregnancy and lactation directly influences the lipid
composition of breast milk, with high n-6 PUFA intake potentially reducing DHA levels due
to enzymatic competition (36). This imbalance may predispose infants to inflammatory
profiles and metabolic dysregulation. Maternal obesity further exacerbates these effects,
altering breast milk lipid profiles by increasing n-6 PUFA and saturated fatty acids while
reducing n-3 PUFA levels (41). In childhood, excessive lipid intake, particularly from diets

high in SFA and trans fats, can contribute to adiposity and long-term obesity risks (42).
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Therefore, ensuring adequate intake of balanced lipids, particularly n-3 PUFAs, during early

life is essential for preventing obesity and promoting lifelong health.

4-4) Current recommendations
LC-PUFA requirements vary from one child to another even within a population of healthy
term infants, so the LC-PUFA composition of infant formulas is described as a range rather

than as a single precise value.

4-4-1) Essential fatty acids
Table 3 summarises the main official recommendations for EFA intake and their evolution

over the past three decades.

The current recommendations’ evolution reflects the difficulty of setting a maximum limit for
LA intake besides the experimental data available, showing possible adverse effects of high
LA intakes as described before. Unlike the Recommended Dietary Allowance (RDA)
proposed by AFSSA in 2001 (8), the ANSES 2011 report does not give a maximum value for
LA and ALA (9). The 2010 the Food and Agriculture Organization and World Health
Organization (FAO-WHO) report gives a range for ALA intakes between 0.2 and 0.3% EI
(43), but no recommendation is given for LA.

Scientific societies and organisations worldwide have mainly specified the minimum
physiological requirement for LA in order to limit the imbalance between the two PUFA
families when n-3 PUFA consumption is low. In the 1970s, supplementation studies proposed
a recommended minimum intake of LA representing 2.7% EI, based on the levels observed at
that time in human milk. As for ALA, a minimum intake of 0.45% EI is recommended to
obtain an optimal DHA status for nerve and visual functions (7). These values are currently
recommended by ANSES (12), whereas FAO-WHO recommend slightly lower ALA intakes
of 0.3% EI (43). It is of importance to note that only EFSA recommends both lower and upper
limits for LA and ALA. Then, the 2016 European regulation based on EFSA’s
recommendations sets LA levels at between 500 and 1200 mg/100kcal and ALA levels at
between 50 and 100 mg/100kcal (44).

EFSA’s most recent evolution of EFA RDAs raises the lower limit of LA from 300 to 500
mg/100kcal and lowers the upper limit of ALA to 100 mg/100kcal due to the mandatory
addition of DHA to infant formula, thus lowering the required level of its precursor ALA in
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the presence of the preformed dietary DHA provided to adequately cover the physiological
needs of infants (14).

Regarding the LA/ALA ratio, the 2006 European directive on infant formulas and follow-on
formulas states that it should be between 5 and 15 (44). As seen before, this ratio is important
for the composition of cell membranes, brain and neurosensory development, and the child's
overall health considering the competition phenomenon in EFA conversion pathways. Thus,
any imbalance between these two PUFA families could have harmful consequences.
However, the rate of conversion of ALA to DHA depends on the absolute amounts of intake
of LA and ALA, and not only on their ratio (13). Therefore this ratio seems to be of less
interest today and the ANSES and FAO-WHO reports in 2010, unlike their predecessors, no
longer mention limits for this LA/ALA ratio (45). Nevertheless, this ratio can remain a
practical benchmark in the context of an overall diet, and remains important in the event of

excessive intakes of LA or inadequate intakes of DHA and EPA.

4-4-2) Long-chain polyunsaturated fatty acids

FAO-WHO and ANSES currently recommend providing preformed ARA and DHA for all
children aged 0 to 6 months, i.e. 0.5% and 0.32% of total FAs for ARA and DHA respectively
(Table 4). These values are based on average values from global surveys of human breast
milk (46). For DHA, EFSA's recommendations focus in particular on the effect of DHA on
children’'s visual functions: a level of DHA equal to 0.3% of total FAs in infant formulas is
recommended to ensure good visual development in children (47).

For EFSA, ARA is optional even before 6-month-old. As for DHA derived from ALA (21),
ARA indispensability, linked to its low formation by conversion of LA, has led to the
definition of a minimum physiological requirement of 70 mg/d, ensuring sufficient
accumulation of this PUFA in cerebral membranes (9). For infant formulas, this DHA intake

should be between 20 and 50 mg/100 kcal, with no specific recommendation for ARA (44).

For EPA, only an EPA/DHA ratio < 1 was previously recommended for newborns and infants
up to 6 months of age (9), but the current data available is insufficient to define a
physiological requirement and a RDA for EPA. Table 4 shows the main changes in LC PUFA
recommendations over time for children aged 0 to 3, according to the various scientific

societies and organisations.
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5- Monounsaturated fatty acids

Monounsaturated fatty acids (MUFAS) are FAs that have a single unsaturated double bond in
their carbon chain. They typically have between 16 and 18 carbon atoms in their carbon chain,
although variations can exist. In quantitative terms, oleic acid is the major component of
MUFAs, actively synthesised by cells and very abundant in all plant and animal foods. It

therefore accounts for almost all the MUFAS in human nutrition.

Oleic acid C18:1 (n-9) is used as a source of energy and is a constituent of all types of lipids,
particularly reserve triglycerides (adipose tissue) (1). Increasing the percentage of intakes of
MUFASs, mainly oleic acid, at the expense of saturated fatty acids (SFAS), leads to a reduction
in total cholesterol and LDL-C, without reducing HDL-C in adults (48).

According to the latest ANSES recommendations, the MUFAs RDAs are the same for
children, adolescents and adults (9). Oleic acid intakes recommended by AFSSA (9) are
between 15 and 20% TEI. This intake was set at 20% TEI in the agency's official report in
2011 (9).

MUFAs are constituent of human milk lipids (1.7g/100g). To date, there are no specific
recommendations on MUFAs for infants (0-3 years). The only exception is that European
directives recommend a maximum level of erucic acid C22:1 (n-9), equal to 1% of total fats
for the preparation of infant formulas because of potential adverse effects of this specific
minor MUFA (49) (50). As MUFAs, mainly oleic acid, are very well represented in both the
plant and animal world, a varied and balanced diet provides adequate quantities.

6- Saturated fatty acids

6-1) Generalities

SFAs are fully hydrogen-saturated carbon chains, classified by chain length. This different
SFA families have very different origins, metabolism and functions, and that it is therefore
essential to distinguish between them (Table 2). Short-chain SFAs, like butyric acid, are
synthesized by the body and support energy regulation. Medium-chain SFAs, found in
coconut oil, are rapidly absorbed independently of chylomicrons and the lymphatic system,
and used for energy. Long-chain SFAs, such as palmitic acid, are abundant in the diet and

essential for cell membranes and protein acylation. (Table 2)
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Human milk contains about 2g of SFA per 100 g milk, and they account for almost half of
total FAs. Palmitic acid is the main SFA in human milk comprising around 25% (51). SFA
have several functions in the body, beyond being a source of energy; they are important
constituents of membranes (52) and needed for the FA acylation of proteins. FA acylation
regulates intracellular trafficking, protein-protein and protein lipid interactions and each FA
confers different biochemical properties. SFAs can also regulate gene transcription such as

recruitment of transcription factors (52) (53).

6-2) Short- and long-term effects of a low SFA diet in children

Questions have been raised about the appropriateness of recommending a reduction in SFA
intake for children, as excessive restriction could lead to inadequate nutritional intake and
subsequently have a negative impact on the child's normal growth and development.
However, there was no evidence of adverse effects of reduced SFA intake on anthropometric
measures of growth, cognitive development, or micronutrient intake in children (54) (55). In
addition, clinical studies show that diets low in SFA are associated with statistically
significant reductions in total and LDL cholesterol and diastolic blood pressure in children
and adolescents aged between 2 and 19 years (56).

The Finnish STRIP study assessed the long-term effects of a low-SFA diet started early in
infancy. Over a thousand healthy infants were included and randomised at the age of seven
months. At the end of the follow-up, at the age of ten, it was shown that dietary current
recommendations targeting SFA restriction could be initiated in young children without
deleterious consequences for growth, with beneficial effects on atherosclerosis risk factors

and arterial function in boys (57).

To our knowledge, there is no specifically paediatric study about the deleterious effect of

long-chain SFA on cholesterolemia.

6-3) Current recommendations

The ANSES and WHO/FAO reports do not include any recommendations on SFAs for infants
under 6 months of age, even though human milk provides 20 to 25% of energy in the form of
SFAs (54). However, for infants and young children aged between 6 months and 3 years,
ANSES recommends a total SFA intake of less than 12% TEI and 8% for lauric, myristic and
palmitic acids (9). There are no recommended minimum intakes for short- and medium-chain

SFAs, which are present in breast milk. Furthermore, the FAO-WHO report recommends a
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reduction in SFAs, without a reduction in lipids, in children aged over 2 years from families
with hypercholesterolaemia. Regarding the composition of infant formulas, European
regulations impose a maximum level of lauric and myristic acid of 20% of total fats, due to a
possible atherogenic effect, while imposing no restrictions on other SFAs, such as palmitic
acid (44).

7 Trans fatty acids

7-1) Generalities

Trans fatty acids (TFAS) have a trans configuration of hydrogen atoms around their double
bonds. They can be naturally produced by ruminants or industrially synthesized through
hydrogenation. Industrial TFAs, found in processed foods, are linked to cardiovascular risks,
while natural TFAs in dairy and meat are less harmful (Table 2) (58) (59).

7-2) Long-term effects of trans fatty acids intakes in children

The harmful effects of industrial TFAs include an increase in LDL cholesterol and a drop in
HDL cholesterol (60). Clinical studies and meta-analyses in adults have shown that an
excessive intake of TFAs is associated with an increased risk of cardiovascular disease (CVD)
in a dose-response manner (61). One study on Spanish children aged 4-5 years old found that
the highest quartile of industrial, but not natural TFA intake was associated to overweight.
Another study carried out by Greek researchers on a hundred or so mothers and their 3-
month-old infants showed that mothers who consumed at least 4.59 of TFAs a day were
almost 6 times more likely to have a body fat percentage 30% higher. In this case, the risk of
the infant having a fat mass greater than 24% is more than doubled. This study showed an
association between high consumption of TFAs and an increase in body fat in both mother

and baby, raising the hypothesis that TFAs are an early determinant of obesity (62).

7-3) Current recommendations

In 2005, the ANSES set a maximum intake threshold for total TFAs at 2% TEI (63) and at
1.5% TEI for TFAs of technelogical industrial origin, whereas the WHO currently
recommends limiting their consumption to less than 1% TEI (64) , an indication of the
increase in the negative effects linked to CVD of this class of lipids in the diet of the general
population. For infant formulas and follow-on formulas, the European legislation authorises a
maximum level of TFAs of 3% of the total fat content, to allow milk fat to be used in infant
formulas (49).
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8 Cholesterol

8-1) Generalities

Cholesterol is crucial for neurological development, cell membrane formation, and hormone
synthesis. It is abundant in human milk ranging between 90 and 150 mg/L (10 times higher
than that of vegetable oil-based formulas and 6 times higher than that of cow's milk-based
formulas) (65), regulating endogenous cholesterol synthesis in infants. Breastfed infants have
higher cholesterol levels than formula-fed infants, which may positively influence long-term
cholesterol metabolism and cardiovascular health (Table 2) (66).

8-2) Long-term effects of a high cholesterol diet in children

8-2-1) Lipid profile in adulthood

The hypothesis of the long-term impact of a diet rich in cholesterol during childhood emerged
in the 1980s with the epigenetic notion that a diet rich in cholesterol early in life could

favourably regulate the metabolism of cholesterol and lipoproteins in adulthood (67) (68).

Animal studies in baboons suggest that the amount of cholesterol in the diet of the first few
months of life (formula or breastfeeding) can affect adult cholesterol metabolism, but in a
non-linear way (69). The potential impact of early life nutrition in CVD incidence has been
calculated by the following model: if 30% of infants were exclusively breastfed, the reduction
in endogenous cholesterol synthesis would result in a 0.15 mmol/l drop in adult cholesterol

levels, and therefore a reduction in the prevalence of CVD of up to 5% in the population (70)-

8-2-2) Cardiovascular risk

The role of dietary cholesterol in cardiovascular risk is still a matter of debate, and
epidemiological or long-term follow-up studies do not allow us to conclude with certainty
about the role of early exposure to cholesterol in childhood in relation to cardiovascular risk
in adulthood, apart from pathologies such as familial hypercholesterolaemia (71) (72) (73). In
fact, there is no evidence to support its role or lack of effect on cardiovascular risk, as it is not
possible to separate its role from that of other nutrients such as TFAs, with which it is co-

ingested.

Recent epidemiological studies comparing breastfeeding with milk formula show a higher risk
of CVD in adulthood in infants fed with infant formulas containing no or low amounts of
cholesterol. In a population of 109 young adults who died prematurely and were autopsied,

atherosclerosis occurred in 60% of cases in individuals initially fed on artificial milk,
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compared with 25% of subjects fed on breast milk (74). In another study, it was shown that
mortality rates from ischaemic heart disease were higher in a formula-fed population than in a
breast-fed population, and that these mortality rates were associated with higher adult total
and LDL cholesterol values in the formula-fed population (70). Of note, a major bias in
human studies is the comparison of breast-fed newborns versus those fed artificial formula,
without considering the cholesterol content of the formula and the proportion of

breastfeeding, if any, and its duration.

8-3) Current recommendations
Besides the studies published on early exposure of cholesterol impact on long-term
cardiovascular risk, to date, there is no recommendation for the addition of cholesterol to

infant formula.

9 Molecular species carrying FA: glycerolipids, glycerophospholipids, sphingolipids,
glycosphingolipids.

9-1) Generalities

Even if TG are the main lipids providing dietary FA, breast milk and dairy products contain
also many other bioactive lipids such as polar lipids. Their properties depend on the quality of
the FAs (75).

Polar lipids include mainly glycerophospholipids and sphingolipids. These molecules are
amphiphilic, which means they have surface-active properties and can be used as emulsifiers
of lipids (TAG) in a water medium (micelles), and can auto assemble to form liposomes or be
part of mixed lipid micelles. They have two different parts: a hydrophilic "head" (phosphate
group) and a hydrophobic "tail" constituted by two FAs in glycerophospholipids; the junction
between these two parts is a glycerol molecule. They constitute the main part of the cell
membranes (cell, mitochondria, endoplasmic reticulum, nucleus...) forming lipid bilayers and
they influence the membrane’s biophysical properties depending on the composition of their
different components (FA unsaturation level, organic molecules attached to the phosphate
group, etc). This large family of lipids has also many other roles: cellular signalling,
inflammation pathway, neurological transmission, and intestinal mucosal integrity among
others (76).

Saccharolipids are complex molecules containing FAs or a sphingosine branched on a sugar

molecule. They are amphipathic and then incorporated in the cell membranes such as the
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phospholipids. They are involved in a large panel of physiological pathways such as
immunological response, cell interaction (apoptosis, tissue repair), brain functions, or

cholesterol regulation (77).

9-2) Current recommendations
To our knowledge, it is of interest to note that there is no formal recommendation about their

level of supplementation in glycerophospholipids and sphingolipids in infant formula.

10 Discussion: gaps, controversies and paths of improvement for the recommendations
on the lipid profile of infant formulas

The evolution of the current recommendations we have just detailed well demonstrates the
progress in our understanding of the lipid requirements of infants and young children.
Maintaining significant calorie intake while achieving an optimal omega 6 / omega 3 ratio is
at the core of all recommendations put forth by various scientific organisations. The
composition of breast milk stands as the gold standard for determining the infant's nutritional
intake. Our literature analysis identifies several potential avenues for improvement based on
the disparities between the composition of breast milk and the current recommendations
regarding the composition of infant and follow-on formulas. These differences can be
attributed either to technical difficulties in modifying infant formula or to the lack of studies

providing answers to the raised questions.

10-1) Quantitative characterization of infant formulas’ lipid profile

10-1-1) Quantitative differences in lipid profile between breast milk and infant formulas
Unlike infant formulas, breast milk mainly provides MUFAs (45-50%) such as oleic acid (n-
9) and palmitoleic acid (n-7) in higher quantities than PUFA (15%), and also a large
proportion of SFA (35-40%) like palmitic acid and myristic acid (table 5) (78). However, the
precise quantity of MUFA and SFA reported in the literature may vary depending on the
studies publications. Indeed, the composition of these FA in milk depends mainly on the
nature of the mother's lipid reserves and her dietary intake during pregnancy and lactation.

These FA come from both endogenous synthesis and the diet (9).
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10-1-2) SFA supplementation

Palm oil

The composition of infant formulas aims to be as close as possible to that of breast milk, in
which palmitic acid represents about 25% of total FAs (51) . Palm oil constitutes a widely
available source of palmitic acid, and consumption of formulas with palm oil is associated
with an increase in weight-for-length (WLZ) in infants under 6 months, but a decrease in
weight-for-age (WAZ) and WLZ in infants aged 6-12 months (79). Because of eco-
responsibility, the use of palm oil is a concern for many parents, but currently there is no
evidence suggesting that palmitic acid at the levels observed in infant formulas, or the
presence of palm oil have a deleterious effect on child health. Still, current research suggests
that other SFA sources, namely dairy lipids, can be more optimal than palm oil regarding
global FA profile and TAG structure (see below). There are now infant milks made from
other vegetable oils, such as coconut (80) but their intensive production may also have an
ecological impact and their FA profile is also quite different from the human milk, notably a

high proportion of C12 in coconut fat.

Dairy lipids

Dairy fats are rich in SFAs (60-65% of FAs including 30% of palmitic acid) and low in EFA
(52). The varied profile of cow’s milk (>400 different FA species) is a richness that vegetable
oils lack, including palm oil. That means that infant formula with milk fat provides a greater
variety of SFAs, and this complex profile is closer to breast milk that what can be achieved

with vegetable oils alone (table 5).

Dairy lipids are often considered to be potentially deleterious for CV health in case of
excessive intake, as they are rich in SFAs. However, many studies suggest that, when present
in a balanced diet, in particular because of the short and medium chain SFAs and the presence
of myristic acid, dairy milk fat optimizes cellular and tissue availability of the EFA and LC
PUFA. In other words, dairy milk fat’s SFAs could help the body to synthesize and/or
maintain very long-chain, highly unsaturated FAs, particularly those of the omega-3 family
such as Eicosapentaenoic acid (EPA) and DHA, provided of course that there is a sufficient
intake of the precursor ALA. For example in primates, compared with a diet low in myristic
acid (0.6%), a richer diet containing twice as much myristic acid (1.2%) is associated with an
increase in EPA and DHA levels in phospholipids and DHA levels in cholesterol esters (81).

This raise the hypothesis that in humans a diet with moderate myristic acid intakes (1.2% of
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El), compared to a lower diet (0.6%), increases DHA and EPA levels in some plasma lipid

classes, despite equivalent intakes of ALA.

These results suggest that higher dietary SFA of dairy origin contributes at least in part to the
maintenance of long-chain n-3 PUFA (82).

At present, regulations do not specify the fat source to be used in infant formulas. It is up to
the manufacturer's choice to either use only vegetable fats, such as palm oil or coconut oil, or

to incorporate dairy lipids in form of milk cream or milk fat.

10-1-3) LC PUFA supplementation
Long-chain polyunsaturated fatty acids

Intake of LC PUFA in children have been correlated to neurological and immune benefits.

Numerous studies have examined the effect of LC PUFA supplementation on psychomotor
and neurosensory development in childhood, particularly in premature infants due to the
increased needs associated with their rapid growth. Better cognitive performance has been
demonstrated when infant formulas enriched with LC-PUFA and milk fat globule membrane
(MFGM) are consumed for more than 6 months (83). Paediatric nutritionists agree that it is
important for children to receive sufficient and balanced quantities of LC PUFA from the
foetal stage and for at least the first 6 months of their post-natal life; that any serious
deficiency in EFA and LC-PUFA could have deleterious and irreversible consequences for
the brain, hence the importance of supplementing infant milks and ensuring that the diet of

pregnant or breast-feeding women is adequately covered in these FAs (84).

Moreover, the antenatal and neonatal periods should be favoured to influence the maturation
of the immune system. Supplementing hydrolysates with n-3 PUFA could prevent allergies in
at-risk populations (85)—Fish oil supplementation during pregnancy leads to an increase in n-3
LC PUFA in breast milk and a decrease in n-6, more marked than in control mothers. Thus, n-
3 PUFA levels are associated with IgA, IL10, IL6 and CD14 levels in breast milk on day 3,
which could have a preventive effect on allergy risk (86). The number of studies is still
limited and the evidence inconclusive so n-3 PUFAs supplementation is not the subject of
official recommendations for allergy prevention. Further studies are needed to determine
whether n-3 PUFA have an anti-allergy protective effect, and to determine the optimal dose

and type of supplementation to ensure this putative anti-allergy effect.
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LC PUFA also appear to have an epigenetic programming effect during the period of early
ante- and neonatal development in animals and humans (87). Thus, recent studies show that
LC PUFA (DHA such as ARA) could have a long-term effect on children's body growth as
they regulate the expression of genes responsible for the development of adipocytes (22).

ARA and DHA
To date, the European Commission has made it compulsory to add DHA to infant formula

manufactured from February 2020 onwards, but the addition of ARA remains optional (88).

This decision comes from several arguments, mainly that no additional benefit for infants has
been demonstrated after the addition of ARA and DHA to formulas. In terms of growth,
compared to supplemented formulas, the absence of added ARA and DHA does not alter the
growth of infants (weight, height, etc.) (89). In neurological terms, since a large proportion of
DHA is found in the cerebral cortex, optimal cerebral development seems to be possible with
DHA alone (90) (91). It should be remembered that DHA levels increase with age and depend
mainly on diet, unlike ARA whose levels depend on age and very little on diet (92). The
beneficial effect on visual acuity is associated only with DHA. In fact, supplementation
during the first 4 months of life with DHA alone, without ARA, resulted in visual maturation
at the age of 4 years that was identical to that of breast-fed children and superior to that of
infants receiving a formula not enriched with DHA. From this study including 16 and 17
children in DHA alone and DHA + ARA supplemented groups respectively, the use of milk
enriched with ARA and DHA seems not provide any benefit compared with formula enriched
only with DHA (93). It should be noted that according to the Diamond study, DHA intakes
higher than the DHA levels measured in breast milk are not associated with additional visual

improvement (33).

However, the latest official recommendations from the European Commission and most
learned organisations making the addition of ARA to infant formulas optional are the subject
of real debate in the field of paediatric nutrition. Several groups of experts suggest that these 2
LC PUFA should be added simultaneously to infant formulas (88). They support this position
because human milk, considered the gold standard in infant nutrition, contains more ARA
than DHA (94). In addition, in the absence of adequate dietary intake, endogenous synthesis
of ARA is insufficient to ensure the non-neurological biological functions in which it is
involved (95). Specifically genetic variants of desaturases present in 30% of children reduce

the endogenous synthesis of ARA (96), so a higher dietary intake of ARA is necessary in
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carriers of these variants. In fact, the 30% reduction in ARA and EPA is observed in the case
of minor alleles of FADS, whereas DHA levels are less affected by this genetic variant than
by dietary intake. FADS is a gene that appears to modulate the effect of nutrition on cognition
and immune development (83). Miklavcic et al. suggest that increasing the supplementation
of infant formulas to 34 mg/100kcal of ARA and 17 mg/100kcal of DHA prevents the
reduction in ARA due to minor alleles (97). Without the addition of ARA, anti-inflammatory
and immunosuppressive effects can be obtained and are undesirable in the post-natal period
when there is a significant risk of infection.

For all these reasons, the addition of ARA to infant formulas, in addition to the mandatory
addition of DHA, seems desirable. According to the Diamond study, the ARA/DHA ratio in
infant formula could influence neurological development, and the respective proportions of
ARA and DHA should also be taken into consideration, highlighting an important and
relevant effect of the ARA/DHA ratio (98). Similarly, it has been shown that when infants
receive both ARA and DHA supplementation, they perform better in terms of cognitive
performance than when they receive DHA alone (99). The controversy mainly comes from
the heterogeneous results of neurodevelopmental studies on DHA and ARA supplementation.
It can be explained by several confounding factors: heterogeneity between studies, a wide
variety of judgement criteria and methodological approaches, the impact of genetic variability
modulating the rate of endogenous LC PUFA synthesis, the interaction of breastfeeding,
which provides preformed LC PUFA, lifestyle, smoking and socio-economic status (1).

Therefore, the need for high-quality clinical trials is of the utmost importance to answer to
these questions. The size of the samples chosen is a central parameter for assessing complex
intellectual performance, identifying sex differences and the effect of different
polymorphisms known to influence FA metabolism. The results of these trials will be
important in forming the basis of evidence-based guidelines for LC PUFA formula

supplementation for infants and young children.

10-1-4) Cholesterol supplementation

Human milk contains higher cholesterol content compared with commercial infant formulas
containing only vegetable fats (table 5). While conclusive evidence from randomized clinical
trials still lacking, the arguments supporting the addition of cholesterol to infant formula are
based on its physiological functions; cholesterol is crucial for neurological development, cell

membrane formation, and hormone synthesis. Because cholesterol is a key component of the
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developing brain, its addition to infant formulas may support the growth and functioning of

the central nervous system.

A potential impact on lipid metabolism has been suggested by epidemiological studies.
Breast-fed infants have higher plasma concentrations of total and LDL cholesterol (LDL-Ch)
than formula-fed infants; however in the long term, studies have shown lower LDL-
cholesterol in individuals who were breastfed. This difference is attributed to cholesterol in
breast milk (15mg/100ml) which is absent in infant formula. Oral ingestion of cholesterol
early in life may play a part in the hepatic development of lipid degradation enzymes or
hepatic receptors for LDL-cholesterol. However, other studies have reported conflicting data
regarding the assumed protective effect on the cardiovascular level, with similar cholesterol
levels after the age of 1 year. (100) (101) (102).

Of note, the addition of cholesterol to infant formulas presents technological and economic
challenges that currently limit its widespread implementation. However, the incorporation of
milk fat globule membrane (naturally containing cholesterol) in infant formula is a possibility
to achieve higher cholesterol content (cf below). Although the presence of significant amounts
of cholesterol in human breast milk and epidemiological data suggesting its nutritional value,
the current lack of recent and rigorous studies makes it challenging to formulate a

recommendation on adding cholesterol to infant preparations.

10-2) Qualitative characterization of infant formulas’ lipid profile

10-2-1) Triglycerides structure

Triglycerides (TG) are esters composed by one glycerol and three FAs. The main sources of
TG are dairy products, vegetable oil and animal fats. Their primary role is energy-related:

serving as reserves in adipose tissue and contributing to ATP production.

The position of some FAs in the triglyceride structure (sn-1 and sn-3 for the outer positions
and sn-2 for the central position) can influence their digestion and absorption in the intestine.
In this respect, TG structure is different in human, bovine or vegetable fat. Human and bovine
milk fat contain a wide variety of FAs, whereas vegetable fat variety is poorer and depends on
the vegetable specie used (blends are used to improve the variety). In human milk, the main
TG structures are palmitic acid (C16) at the sn-2 position (see next paragraph) and oleic acid
(18:1) at the sn-1 or sn-3 position. In bovine milk fat, palmitic acid (C16) at the sn-2 position

is also the main TG structure (40-45% of the total amount of palmitic acid is branched at the
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sn-2) (103), with oleic acid (18:1) at the sn-1 or sn-3 position (104). Of note, butyrate is at the
sn-3 and stearic (18:0) acid at the sn-1 position. In vegetable fat used for infant formula,
palmitic acid at the sn-2 position is less frequent (10-20% only) (103), whereas higher level of
SFA are present at the sn-1 and sn-3 position (105) compared to human and bovine milk
(106).

sn-2 palmitate level optimisation

Palmitic acid (C16) is the most abundant SFA in breast milk and between 60-70% is esterified
in the sn-2 position. During digestion, the action of lipases produces 2 free fatty acids (FFAS)
(positions sn-1 and sn-3) and one monoacylglycerol. If palmitic acid is released as FFA
because it was on sn-1/3 position, it can bind calcium and form insoluble calcium soaps which
are not absorbed and can be associated to increased constipation and infant colic(107). Studies
have shown a positive correlation between the sn-2 central position of palmitic acid on
triglycerides and improved digestive comfort in children. This beneficial effect is linked to an
increase in the number of Lactobacillus and Bifidobacteria in the intestine (105) (108), and
secondly with the lower amount of calcium soaps in faeces, which favours the formation of
softer stools (109) (103).

Recent studies also show that increasing the level of sn-2 palmitate in infant formula,using
milk fat instead of palm oil, is associated with better development of motor skills in children
at the age of 16 months and that the beneficial effects on neuronal development in children
are associated with an increase in the level of bifidobacteria in the intestinal microbiota (110).

The optimisation of sn-2 palmitate level in infant milk formulas can be achieved either by
industrial restructuring of vegetable fats (palm oil) or addition of milk fat instead of regular
palm oil. This is because in dairy lipids, palmitic acid (C16:0) accounts for approximately
25% of total FAs and is mostly found in the sn-2 position (Figure 3). However, despite the
importance of the positioning of FAs on the TG molecule for FAs bioavailability and the
associated benefits on digestion and neuronal development, no recommendation has been
formulated so far. Therefore, specific consideration on this point appears necessary for future

recommendations.
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10-2-2) Fat emulsion ultrastructure

Differences in fat emulsion ultrastructure between breast milk and infant formulas

In terms of quality, the fat emulsion in human milk and infant formula differs significantly in
both structural and biochemical terms.

The fat globules in human breast milk are distinguished from those in infant formula by their
larger size and the presence of a phospholipid membrane that modifies intestinal absorption
and may confer beneficial properties in terms of body composition and subsequent cardio-
metabolic prevention (111). Phospholipids are also essential components of the neurological
system and supplementation in animal diet improve brain myelinisation (112). In human
clinical studies, supplementation of milk with phospholipids, including sphingomyelin, is
associated with improvement of neurological development, mainly the cognitive efficiency
(113).

In more details, in its native form, women's milk fat is organized into dispersed globules
enveloped by a triple phospholipid membrane known as the MFGM, which originates from
the fat-secreting epithelial cells of the mammary gland (114). These MFGMs comprise
proteins inserted in the phospholipid’s membranes mainly at the inner layer, an intermediate
layer composed of the phospholipid triple membrane, and an outer layer consisting mainly of
high-molecular-weight glycoproteins and sphingomyelin/cholesterol complexes (figure 4).
Milk fat globules have an average diameter of around 3 to 5 um, but show a wide size
distribution (from 0.1 to 15 pum) in both women's and cow's milk (115). In infant formulas, on
the other hand, the fat is dispersed as a result of the homogenization of vegetable oils in the
presence of milk proteins. This process produces a stable micro-emulsion of plant lipids,
mainly stabilized by caseins and potentially added stabilizers like lecithins, in the form of
small lipid droplets with an average diameter of less than 0.5 um and no membrane coating
(figure 4).

Size of milk fat globules optimisation

Recent experimental data suggest that the size of milk fat globules is key parameter in the
long-term beneficial effects of breastfeeding, particularly in protecting against metabolic
syndrome and obesity (116). During the developmental period in mice, from weaning to
young adulthood, consumption of a milk diet composed of large (10 pum) fat globules
surrounded by a phospholipid membrane reduced total adipose tissue mass and circulating

leptin levels by 25% in adulthood, compared to a diet with a droplet structure characteristic of
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infant milks (117). This beneficial effect on body composition is also accompanied by an
improvement in the animal’s metabolic status and, more specifically, insulin sensitivity, with a
reduction in the HOMA index, fasting glycemia and circulating resistin levels. The authors
hypothesize that changes in lipid absorption and digestion kinetics may in turn alter their
metabolic utilization - the balance between catabolism by beta oxidation and lipogenesis. In
rats, the absorption of small fat globules (0.4 um) formed with adsorbed casein causes a
marked reduction in postprandial beta oxidation of FAs, compared with large native globules.
This difference is thought to result from a delay in the kinetics of triglyceride appearance in
plasma, linked to slower gastric emptying and lipolysis when small fat globules are ingested
(115) (118).

Recent studies show that the interfacial coating of breast milk fat globules with MFGM
facilitates lipolysis by digestive lipases and bile salts naturally present in breast milk (114).
Lipolysis being an interfacial process, gastric and pancreatic lipases hydrolyse fats at the oil-
water interface. Thus, the composition and structure of the oil-water interface are likely to
affect lipolysis in the gastrointestinal tract. In infants, levels of pancreatic lipase and bile salts
are low compared to adults, so the products of gastric lipolysis play an important role in the
digestion of milk lipids, compensating for the low levels of pancreatic lipase and emulsifying
lipids, respectively. Today's infant formulas contain much smaller thick protein-coated fat
droplets than the MFGM-coated fat globules of breast milk. Thus, infant formulas containing
bigger fat droplets resulting from MFGM enable a digestion process closer to that of human
milk (111).

Milk fat globule membrane supplementation
In humans, clinical studies have reported the beneficial effects of MFGM supplementation of
infant formulas on neurocognitive development and protection against infectious agents, with

no deleterious impact on growth (119) (120).

The COGNIS study is a prospective, randomized double-blind, nutritional intervention study.
This study compared during their first 18 months of life 70 children fed with either a standard
infant formula (SF, n = 29) or a bioactive compounds enriched-infant formula (EF, n = 41),
and 33 breastfed (BF) children (reference group). The results suggest that enriched infant
formula fed infants seem to show fewer behavioural problems up to 2.5 years compared to a

standard infant formula-fed infants (121).
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In Indonesian infants aged under 8 weeks to 6 months and supplemented with MFGM
complex lipids, a higher general intelligence quotient (IQ) and better hand-eye coordination
and Griffiths scale performance 1Q were found at 24 weeks of intervention compared to those
fed without MFGM (122). Another trial in Swedish infants aged 2-6 months supplemented
with MFGMs (Lacprodan MFGM-10) showed a higher Bayley-11l cognitive score at 12
months compared with the unsupplemented group (123) (124).

In a Swedish double-blind randomized controlled trial including 160 formula-fed healthy term
infants and 80 breastfed reference children, formula supplemented with a protein-rich MFGM
concentrate given between 2 and 6 month, decreased infectious morbidity until 6 month of
age (significantly lower incidence of acute otitis , lower antipyretic use, and lower serum

concentrations of 1gG against pneumococci after vaccination) (119) (125).

A Franco-Italian study in infants aged 14 days to 4 months, comparing supplementation with
either MFGM-L (lipid-rich MFGM fraction) or MFGM-P (Lacprodan MFGM-10: the first
MFGM ingredient to enter the global infant formula market, rich in phospholipids and
gangliosides), showed no difference in weight gain for the 2 groups (126).

The use of MFGM in children nutrition can be provided from specific added products such as

buttermilk-based ingredients or directly from milk cream.

These results call into question the historical choice of not including milk fat as part of infant
formula, and may serve as a basis for new strategies to evolve the nutritional formulations of
infant milks. Recently, some formulas have begun to add dairy lipids, whereas the majority of
current infant formulas contain lipids of exclusively vegetable origin. This addition of dairy
lipids positively impacts both triglycerides structure with increased sn-2 palmitate level and
fat emulsion composition / ultrastructure with MFGM supplementation. By playing on the
complementarity of plant and dairy lipids, rather than eliminating the latter, it seems possible
to optimize the composition of infant formulas to make them more similar to breast milk.
Preserving dairy lipids would thus have beneficial effects on child development, while

retaining interesting taste properties.
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11 Conclusion

This narrative review highlights the consensus and changes in current recommendations for
the lipid intake of young children under 3 years of age. The contribution of lipids to El
appears to be the most consensual recommendation at the international level. At present, the
benefits of a diet rich in omega 3 and 6 are widely recognized in lipid recommendations for

young children aged 0-3.

On the other hand, this work raises persistent questions about current recommendations such
as the absence of regulations on the addition of ARA in infant formulas despite clinical
evidence showing that concomitant supplementation of ARA and DHA can mimic the effects
of breastfeeding and ensure good brain and retinal development in children. It also points out
that the evolution of official recommendations mainly concerns the quantitative aspect of LC-
PUFA while, other lipids present in breast milk such as SFAs MUFAs, cholesterol, EPA and

the structure of lipids for infants under 6 months, remain without recommendations.

The introduction of milk fat, including sn-2 palmitate and MFGM, seems to be a relevant way
to improve the quality of infant formula. However, further randomized controlled trials
evaluating the nature and function of lipid matrices are needed to increase scientific
knowledge, specifically studies assessing the impact of the structure of lipids ingested during
the neonatal period in metabolism programming in adulthood. Recent animal studies have
also reported promising results on the supplementation of cholesterol in infant formulas, but
the underlying mechanisms still need to be better understood and could help in designing
improved nutritional strategies. We are confident that these aspects will lead to future
improvements in infant formula, and possibly to better preventive nutrition for future adults

who cannot be initially breastfed.
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Table 1: Evolution of the recommendations on proportion of Energy Intake derived from

lipids in children aged 0 to 3 years.

Year 2006 2010 2011 2014 2016
Organisation | FAOMHO | ESPGHAN | FAO | EFSA ANSES | SFP EFSA | ANSES
(ref) 1) (127) (43) (45) &) (13) (14) (12)
0-6 m 40-60% 39.6%-54% gg% ; 45-50% | - 50-55% | 50-55%
612 m - 35% | 40% 4550% | 35-40% 40% 45-50%
12_24m - 35% | 35-40% | 45-50% | 35-40% 45-50%
24-36'm - 25\ 35.40% | 45-50% | 35-40% 45-50%

35%
El: El, ANSES: French Agency for Food, Environmental and Occupational Health and

Safety, EFSA: European Food Safety Authority, ESPGHAN: European Society of Pediatric

Gastroenterology, Hepatology and Nutrition, FAO: Food and Agriculture Organization, mo:

month, m: month, SFP: French Paediatric Society, WHO: World Health Organization.
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Table 2: Main roles of lipids in child development

Fatty Acid Family Fatty Acid Food Sources Specific Actions
Omega-3 (n-3) Alpha-linolenic acid Flaxseed, rapeseed,  Precursor for EPA and
(ALA) walnut oils, Chia DHA,; anti-inflammatory;

Eicosapentaenoic acid
(EPA)

seeds, Walnuts, Hemp
seeds.

Fatty fish (e.g.,
salmon, mackerel,
sardines, herring), fish
oil, krill oil, shellfish

supports brain and retinal
development

Anti-inflammatory;
modulates immune
response; supports
cardiovascular health

(e.g., mussels,
oysters), marine algae.
Docosahexaenoic acid Oily fish, algae Essential for brain and
(DHA) retinal development;
structural role in neuronal
membranes
Omega-6 (n-6) Linoleic acid (LA) Sunflower, Corn, Precursor for ARA;

Arachidonic acid (ARA)

Grapeseed, Safflower,
and walnut oi

Red meat, organ
meats, eggs, dairy
products, fish, poultry,
corn oil

supports cell membrane
structure; pro-
inflammatory effects

Structural role in cell
membranes; regulates
inflammation, immunity,
and bone development

Saturated Fatty Acids (SFA) Butyric acid (C4:0)

Caproic acid (C6:0)

Lauric acid (C12:0)

Myristic acid (C14:0)

Palmitic acid (C16:0)

Dairy products

Dairy products,
coconut oil

Coconut oil, palm oil

Dairy products, meat,
palm oil

Dairy products, palm
oil

Energy source; protects
intestinal barrier;
modulates cell
proliferation

Rapidly absorbed; energy
source for mitochondria

Antimicrobial properties;
energy source

Supports protein
acylation; enhances DHA
and EPA levels in plasma
lipid classes

Structural role in
membranes; energy
source; supports protein
acylation

Monounsaturated Fatty Oleic acid (C18:1 n-9)
Acids (MUFA)

Olive oil, avocados,
nuts

Reduces LDL cholesterol,
supports cardiovascular
health; energy source

Trans Fatty Acids Industrial trans fats

Natural trans fats

Processed foods
(hydrogenated oils)

Dairy products, meat

Increases LDL
cholesterol; reduces HDL
cholesterol; associated
with cardiovascular risk

Less harmful than
industrial trans fats;
moderate intake may not
impair insulin sensitivity

Cholesterol Cholesterol

Human milk, eggs,
meat, dairy products

Essential for neurological
development; regulates
cell membrane fluidity;
precursor for hormones
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Table 3: ALA and LA recommendations for children aged 0-3

Year 2001 2006 2010 2011 2016

Organisation EU AFSSA EU FAO-WHO ANSES | EU

ref (128) (8) (129) (43) (9) (44)

LA

0-2d > 300 | 2-4.5% El 300 - 1200 no recommendation | >2.7 % El 500 - 1200
mg/100kcal mg/100 kcal mg/100 kcal

1-6m

6m-3y 2-5%El

ALA

0-28d > 50 | 045-15%El | >50 mg/100 | 0.2-0.3 % El > 0.45 % El 50 - 100 mg/100
mg/100kcal kcal kcal

0-6 m

6m-3y 0.4 - 1% El

LA/ALA

0-28 d 5-15 4-10 5-15 Optional

0-6 m

6m-3y

ALA: alpha-linolenic acid, d: day, El: EI, AFSSA: French Agency for Food Safety, LA:
linoleic acid, ANSES: French Agency for Food, Environmental and Occupational Health and
Safety, FAO: Food and Agriculture Organization, m: month, WHO: World Health

Organization, y: year.
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Table 4: ARA and DHA recommendations for children aged 0-3

Year

2001

2006

2010

2011

2016

Society

EU

AFSSA

EU

FAO-OMS

ANSES

EU

Reference

(128)

(8)

(49)

Q)

©)

(44)

ARA

0-28d

0-6m

0.1-0.25% EI

6m-3y

no recommendation

<1% of fat

04 - 06
TFA

%

0.5% TFA

Optional

Optional

DHA

0-28d

0-6m

0.1-0.4% EI

0.2-0.36
% TFA

0.32%
TFA

6m-3y

no recommendation

70 mg/j

20-50
mg/100k
cal

EPA

0-28d

0-6m

0.05-0.15% EI

6m-3y

no recommendation

ARA/DHA

0-28d

0-6m

1.6

6m-3y

EPA/DHA

0-28d

0-6m

6m-3y

<1

<1

DHA/LCPUFA

0-28d

0-6m

6m-3y

<1

AFSSA: French Agency for Food Safety, LC PUFA: long-chain polyunsaturated acids, TFA:
total fatty acids, ANSES: French Agency for Food, Environmental and Occupational Health
and Safety, ARA: arachidonic acid, d: day, DHA: docosahexaenoic acid, EFSA: European
Food Safety Authority, EIl: Energy Intake, EPA: eicosapentaenoic acid, FAO: Food and

Agriculture Organization, m: month, WHO: World Health Organization, y: year.
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Table 5: Comparison of the nutritional lipid composition of breast milk, cow's milk and infant
formulas based on vegetable oils (46) (130) (131) (108).

/100 ml Breast milk Cow's milk | Infant formula Infant
(with vegetable oils as | formula
lipid sources; in this case | (with dairy
palm oil and coconut oil) product as

lipid source)

Fat (g) 3.2-3.6 3.6 2.6-4 2.6-4

Triglycerides % 98.1-98.8 97 N/A 98

Phospholipids % 0.26-0.8 1.5 <7 ou-égal

Cholesterol 9-15 1.0-33 Absent

(mg/100ml)

Fatty acids as % of total fatty acids

SFA

Butyric acid C4 :0 0.1 1.4 Ng 2.4

Caproic acid C6 :0 0.2 2.1 0.1 1.3

Caprylic acid C8 :0 0.3 1.7 1.0-15 1.7

Capric acid C10 :0 2 3.5 0.9-1.3 2.2

Lauric acid C12 :0 6.8 3.9 7.8-11.5 6.3

Myristic acid C14 :0 10.4 12.6 4.0-5.5 7.2

Palmitic acid C16 :0 25 29.5 18.2-25.4 18.9

MUFA

Palmitoleic acid C16 :1 | 3.5 1.7 0.1-0.2 1.1

Stearic acid C18 :0 6.9 13.3 3.5-4.0 6.7

Oleic acid C18 :1 33.6 26.3 28.4-40.8 28.1

PUFA

n-6 PUFA

Linoleic acid C18:2 17 2.9 13.3-18.5 16.7

Arachidonic acid C20:4 | 0.5 Added 0.2-0.6 or not added: | -
nq

n-3 PUFA

Alpha-linolenic  acid | 1.7 1.1 1.6-2.4 15

C18:3

Docosahexaenoic acid | 0.32 Added 0.2-0.3 or not added: | -

C22:6

nq

MUFA monounsaturated fatty acids, PUFA polyunsaturated fatty acids, SFA saturated fatty

acids
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Pub Med R Cochrane Library
(n=620) Embase (n=60) (n=181)

I

Articles after duplicates removed (n=422)

]

Full-text articles assessed for eligibility (n=173)

‘ References excluded for:

Additional references identified by a manual -No access
research in the reference lists from the retrieved
articles (n=69)

-Importance of journal
-Number of references

-Content redundancy

-Lack of information

Total articles included (n=133)

Figure 1: Flow chart showing the methodology used to carry out the narrative literature

review

The search period was between 2001 and 2022. The selection of relevant literature included
articles in English and French and identified 861 articles in the following search engines:
PubMed (n=620), Embase (n=60), and Cochrane (n=181). Articles were excluded if they did
not provide the information sought, had an insufficient number of cited references (<2),
presented redundant content, or were deemed irrelevant. After deduplication, there were 422
articles left, and 104 were withdrawn after reviewing citations' eligibility. After removing
redundant citations, non-accessible articles, and/or those missing the information sought, 133

different articles were included
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Synthesis Synthesis
of omega-6 family of omega-3 family
Linoleic acid (LA) Alpha-linolenic acid
(ALA)

A6 Desaturase ——

Elongase —
A5 Desaturase ——

Arachidonic acid Eicosapentaenoic
(ARA) acid (EPA)

Elongase —

A6 Desaturase ——

Docosapentaenoic Docosahexaenoic
acid (DPA) acid (DHA)

Figure 2: Conversion pathways for linoleic and alpha-linolenic acids

The synthesis of omega-6 and omega-3 FAs from their respective precursors, the EFA linoleic
acid (LA) and alpha-linolenic acid (ALA), is illustrated here. The successive action of
desaturases and elongases, which are common to both metabolic pathways, explains the

competitive phenomenon that can occur with an excessive intake of one of the EFA
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Figure 3: Comparative FAs composition and regiodistribution in Human milk fat A) and
Bovine milk fat B) (% mol of main FAs > 0.5 % total)

This figure compares human versus bovine milk fat in terms of FA composition (expressed as

% mol of main FAs > 0.5% of total) and also the positional distribution of FAs within the
triglyceride molecule (Regio-distribution in the triacylglycerol (TAG) core between the
external positions sn-1 and sn-3, or the middle position sn-2).
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Figure 4: Structural differences in lipid droplets between breast milk containing the native

milk fat globules (A) and the microemulsion of plant lipids in infant formula (B)

The structural differences between fat in mammalian milk and standard infant formula are
presented. Panel A illustrates the structure of the milk fat globule with detailed milk fat
globule membrane structure. Panel B, depicting the fat droplet in standard infant formula,
highlights differences in terms of size (smaller diameter: 0.3-1 pum versus a few nm) and
structure (aggregates of protein and emulsifier versus trilayers).
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