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A CERTAIN FIXED POINT THEOREM AND ITS APPLICATIONS
TO INTEGRAL-FUNCTIONAL EQUATIONS

M. ZlMA

In this paper a variant of Banach's contraction principle is established. By using
the properties of the spectral radius of a bounded linear operator A defined in a
suitable Banach space, we conclude that another operator A has exactly one fixed
point in this space. In the second part of this paper some applications are given.

I. A CERTAIN VARIANT OF BANACH'S CONTRACTION PRINCIPLE

1. BANACH SPACE WITH QUASIMODULUS. Let (X, | | | | , -<, m) denote a Banach space
of elements x G X, with a binary relation -< and a mapping m: X —> X. We shall
assume that:

1 ° the relation -< is transitive,
2° 0 -<m(z) and ||m(x)|| = ||z|| for all x £ X,
3° the norm ||-|| is monotonic, that is, if 0 -< x -< y then ||x|| ^ ||y|| for all

x, y eX.

2. FIXED POINT THEOREM. NOW we can formulate the following:

THEOREM 1 . In the Banach space considered above, let the operators A: X —»
X, A: X —> X be given with the following properties:

4° A is a linear bounded operator with the spectral radius p(A) less than

1,
5° A is increasing, that is, if 0 -< x -< y then Ax -< Ay for all x, y £ X,
6° m(Ax - Ay) -< Am(x - y) for all x, y e X.

Then the equation

(1) Ax = x

has a unique solution in the set X.
PROOF: In the sequel we need the following well known lemma.

LEMMA. Lex X be an arbitrary non-empty set and f: X —> X. If there exists

k € N such that XQ £ X is the unique solution of the equation fk{x) — x, where fk
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denotes kth iteration of the mapping f, then xo is the unique solution of the equation

/(*) = *.

Now, returning to the proof of our theorem, we shall show that there exists a
natural number A; such that the operator A is a strict contraction with respect to the
norm ||-|| of the space (X, \\-\\, -<, m). Indeed, from 5° and 6° we get for all x, y G X:

m(A2x - A2y) -< Am(Ax - Ay) -< A2m(x - y)

and generally

(2) m(Anx - Any) -< Anm(x - y ) , x,yeX,nE N.

On the other hand, p(A) — lim "•v/||J4
n|| < 1, which means that there exists k e N

n—»oo

such that ||-4k|| < 1. For this number k, in view of (2), we have:

(3) m(Akx - Aky) -< Akm{x - y)

and consequently, in virtue of 2 c and 3 °:

\\m(Akx - Aky) || = \\Akx - Aky\\ ^ \\Akm(x - y)\\

^| |A*| | | |m(x-2/) | | = | |A k | | | | x -y | | .

Finally we get

(4) | | . A * * - ^ * y | | < | | A * | | | | x - y | | for each x, y G X.

Since ||-i4.*|| < 1> the operator Ak is a strict contraction in the space
(X, \\-\\, -<, m) and, by Banach's contraction principle, the equation

(5) Akx = x

has a unique solution in the set X. In virtue of the lemma the equation Ax — x has a
unique solution in the set X too. This completes the proof of Theorem 1.

II. SOME APPLICATIONS OF THEOREM 1

1. THE INTEGRAL-FUNCTIONAL EQUATION. Let X denote a set of real continuous
functions on the interval [0, T]. We shall define a relation -< as follows: x -< y if and
only if x{t) ^ y(t) for each t E [0, T]. Moreover, let m(x) — \x\, that is, (m(z))(t) =
|s;(t)| for t £ [0, T] and ||x|| = max|x(t)|.

It is easy to see that the conditions 1° — 3° are satisfied in this case.
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We shall consider the following operator:

(6) (Ax)(t) = /(<) + / * F(s, x(h(s)))d3, t e [0, T)

Jo

assuming that:

7° F: [0, T] x R —> R is continuous and satisfies the inequality

\F(t,x)-F(t,y)\^L(t)\x-y\,

where the function L is positive and continuous on [0, T];
8° / : [0, T] -> R and h: [0, T] -> [0, T] are continuous too.

The condition 4° of Theorem 1 becomes

(7)

F(s, x(h(s)))ds - f F(a,
Jo

^ ftL(s)\x{h(s))-y(h(s))\ds
Jo

and, in virtue of 7°, is satisfied.
The operator A assumes the form:

(8) (Ax)(t) = f L(s)x(h(s))da, t e [0, T).
Jo

Now we can formulate the following:

THEOREM 2 . If the conditions 7° — 8° are satisfied and the spectral radius of
operator (8) is less than 1, tien tie equation

(9) x[t) = f{t) + f F(s, x(h(s)))da, t e [0, T]
Jo

has exactly one solution in the set of continuous functions on [0, T].

2. CALCULATION OF THE SPECTRAL RADIUS OF OPERATOR (8). Let An denote the
nth iteration of operator (8). Then we get the following formula:

(10) {Anx)(t) = f L(a)(An-*x){h(8))ds, t e [0, T], n = 1, 2, . . . .
Jo

Let K denote a cone of continuous non-negative functions on [0, T] (see for ex-
ample [3, 4]). Since int K ̂  0 and K is normal, we can calculate the spectral radius
of operator (8) by the formula [4]:

= lim
n—•oo
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where Xo is a suitably chosen element of K. In our case we may take xo(t) = 1 on
[0, T]. Hence

(11) m n z 0 | | = / L(s)(An-1x0)(h(s))ds = (An

Jo

If, for every n £ N, ||Ana;o|| > 0 and there exists

n - ^ \\A»X0\\ '

then

(12) P(A) = Jim

In view of (11) and (12) we get:

Particularly, if L{t) = Lta, h{t) = t?, L > 0, a > 0, /3 > 0, T = 1, then

{Ax){t) = L ( sax(s^)d8, t e [0, 1],
Jo

so

= L /
o

and generally

Lntan

(Anx0){t) — , where ai = a + 1, ak = /3ak-i +
a i a 2 . . . an

4 = 2 , 3 , . . . .

Hence

and

• O n

(An+1x0){l) L L
(Anx0)(l) ~1^T1~(a-
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so in the case L(t) — Lta, h(t) — t&, the spectral radius p(A) of operator (8) has the
value

L 1

n=0

If /3 ^ 1, then JZ Pn ls divergent and p{A) = 0. It corresponds to the situation
n=0

when the function h(t) does not advance the variable t on the interval [0, T]. If
0 < /3 < 1 then

REMARK. In the paper [7] for a = 0, /? = 1/2 we obtained the following result:

If L < 4/e then the operator

= / Lx(y/^)d3, t € [0,
Jo

is a strict contraction in the suitable space. It follows from (13) that if only L < 2
then the equation

/ • *

x{t) = f{t) + Lx(y/Z)ds, * € [ 0 , l ]
Jo

has exactly one solution in the space of continuous functions on [0, 1].

3. THE INITIAL VALUE PROBLEM OF NEUTRAL TYPE. NOW we shall consider the
following initial value problem:

(14)
x(0) = 0.

Suppose that:

9° / : [0, T] x Rr+1 —> R is continuous and satisfies the Lipschitz condition:

for all (t, xlt ..., xr+1), (t, m,..., yr+i) € [0, T] x i T + 1

T+l

where the functions Li, i = 1, 2, . . . , r + 1, are continuous and positive
on the interval [0, T];

10° hi-. [0, T] - • [0, T] are continuous, i = 1, 2, . . . , r .
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THEOREM 3 . Let the conditions 9° - 10° be satisfied. If hi(t) < t for t € [0, T],
i = l , 2 , ..., r and max{Zr+i(<)} < 1 (hen the problem (14) has exactly one solution

[0,T]
in the set of continuous functions on [0, T].

PROOF: Let us notice that the problem (13) is equivalent to the functional-integral
equation

-MO /-MO \
z(s)ds,...,Jo z{s)dS,z(t)\, t£[0,T]

where z(t) = x'(t) on [0, T].
To prove our theorem it is sufficient to show that the operator

(15)
M O

z(s)ds,z(t)\,te[0,T}

has a unique fixed point in the set of continuous functions.
From 9° - 10° it follows that

\(Az)(t)-(Aw)(t)\ = z(s)ds,..., J z(s)ds,z{t)

( /•Al(t) ,fcr(t) \

-fit, / w(s)ds, ..., / w(s)ds, w(t)\
\ Jo Jo )

Y, Hi) / \z(s) - w(s)\ ds + Lr+1(t) \z(t) - «

r Lr+1(t) \z(t) -

where L — max I max{£;(0} ) •

Let Lr+i - max{Lr+1(t)}. Since A,-(<) ̂  t on [0, T], i = 1, 2, . . . , r we obtain:

(16)

Let us denote

It is easy to see that

(17)

= Lr f u(s)ds, {A2u)(t) = £P
7o
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is a linear bounded and increasing operator.

We can write (16) as

\(Az)(t)-(Aw)(t)\^(A\z-w\)(t).

It means that the assumption 6° of Theorem 1 is satisfied. Since the operator A\ is of
Volterra type, p{A\) = 0. It is easy to check by elementary calculation that p(A2) =
Zr+i. Moreover the operators Ai, A2 are commutative, that is, A1A2 = A2A\. Thus,
by XI.21 of [5]:

(18) p{A1 + A2) ^ p{Ax) + p(A2).

From (17) and (18) we have:

p(A)
r+1.

Since Lr+i < 1, by virtue of Theorem 1, the operator (15) has exactly one fixed
point in the set of continuous functions on [0, T]. This completes the proof of Theo-
rem 3. D

REMARK. The problem (14) is similar to the initial value problems considered in the
papers [1, 2, 6]. The direct application of the uniqueness condition from [6] to the
problem (14) leads us to the assumption

(19) l-=Y~ + Lr+1 < 1,

where Li = max{.£,•(<)}, i = 1, 2, . . . , r, and / is a positive number.

Thanks to the applied method, the uniqueness condition in our paper is clearly
better than (19). It is noteworthy that the uniqueness of solution of (14) does not
depend on the coefficients £,-(<), i — 1, 2, . . . , r, but on Lr+i(t) only.
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