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Infinitely Divisible Laws Associated
with Hyperbolic Functions

Jim Pitman and Marc Yor

Abstract. The infinitely divisible distributions on R
+ of random variables Ct , St and Tt with Laplace

transforms
(

1

cosh
√

2λ

)t

,

( √
2λ

sinh
√

2λ

)t

, and

(

tanh
√

2λ√
2λ

)t

respectively are characterized for various t > 0 in a number of different ways: by simple relations be-

tween their moments and cumulants, by corresponding relations between the distributions and their

Lévy measures, by recursions for their Mellin transforms, and by differential equations satisfied by

their Laplace transforms. Some of these results are interpreted probabilistically via known appearances

of these distributions for t = 1 or 2 in the description of the laws of various functionals of Brownian

motion and Bessel processes, such as the heights and lengths of excursions of a one-dimensional Brow-

nian motion. The distributions of C1 and S2 are also known to appear in the Mellin representations

of two important functions in analytic number theory, the Riemann zeta function and the Dirichlet

L-function associated with the quadratic character modulo 4. Related families of infinitely divisible

laws, including the gamma, logistic and generalized hyperbolic secant distributions, are derived from

St and Ct by operations such as Brownian subordination, exponential tilting, and weak limits, and

characterized in various ways.

1 Introduction

This paper is concerned with the infinitely divisible distributions generated by some

particular processes with stationary independent increments (Lévy processes [6], [62])

associated with the hyperbolic functions cosh, sinh and tanh. In particular, we are in-

terested in the laws of the processes Ĉ , C , Ŝ, S, T̂ and T characterized by the following

formulae: for t ≥ 0 and θ ∈ R

E[exp(iθĈt )] = E[exp(− 1
2
θ2Ct )] =

(

1

cosh θ

)t

(1)

E[exp(iθŜt )] = E[exp(− 1
2
θ2St )] =

(

θ

sinh θ

)t

(2)

E[exp(iθT̂t )] = E[exp(− 1
2
θ2Tt )] =

(

tanh θ

θ

)t

(3)
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Infinitely Divisible Laws Associated with Hyperbolic Functions 293

according to the mnemonic C for cosh, S for sinh and T for tanh. These formulae

show how the processes Ĉ , Ŝ and T̂ can be constructed from C , S and T by Brownian

subordination: for X = C , S or T

(4) X̂t = βXt

where β := (βu, u ≥ 0) is a standard Brownian motion, that is, the Lévy process such

that βu has Gaussian distribution with E(βu) = 0 and E(β2
u) = u, and β is assumed

independent of the increasing Lévy process (subordinator) X. Both Ĉ and Ŝ belong to

the class of generalized z-processes [32], whose definition is recalled in Section 4. The

distributions of Ĉ1, Ŝ1 and T̂1 arise in connection with Lévy’s stochastic area formula

[43] and in the study of the Hilbert transform of the local time of a symmetric Lévy

process [9], [27]. As we discuss in Section 6.5, the distributions of Ŝ1 and Ŝ2 arise also

in a completely different context, which is the work of Aldous [2] on asymptotics of

the random assignment problem.

The laws of Ct and St arise naturally in many contexts, especially in the study of

Brownian motion and Bessel processes [76, §18.6]. For instance, the distribution of

C1 is that of the hitting time of ±1 by the one-dimensional Brownian motion β. The

distribution of S1 is that of the hitting time of the unit sphere by a Brownian motion

in R
3 started at the origin [17], while (π/2)

√
S2 has the same distribution as the

maximum of a standard Brownian excursion [15], [9]. This distribution also appears

as an asymptotic distribution in the study of conditioned random walks and random

trees [66], [1]. The distributions of Ct and St for t = 1, 2 are also of significance in

analytic number theory, due to the Mellin representations of the entire function

(5) ξ(s) := 1
2
s(s − 1)

(

1

π

)
s
2

Γ

( s

2

)

ζ(s), where ζ(s) :=

∞
∑

n=1

n−s (<s > 1)

is Riemann’s zeta function, and the entire function

(6) ξ4(s) :=

(

4

π

)
s+1

2

Γ

(

s + 1

2

)

Lχ4
(s), where Lχ4

(s) :=

∞
∑

n=0

(−1)n

(2n + 1)s
(<s > 0)

is the Dirichlet series associated with the quadratic character modulo 4. The func-

tions 2ξ(2s) and ξ4(2s + 1) appear as the Mellin transforms of π
2

S2 and π
2
C1 respec-

tively, and the Mellin transforms of S1, C2, T1 and T2 are also simply related to ξ.

These results are presented in Table 1, where θ ∈ R, s ∈ C (with <s > −t/2 for

T̂t ), and n = 1, 2, . . . . The discussion around (8) and (9) below recalls the classical

definitions of the numbers Am and B2n appearing in Table 1.

See [8] for a recent review of these and other properties of the laws of Ct and St

with emphasis on the special cases when t = 1 or 2. The formulae in the table for Tt

are derived in Section 6.4 of this paper. As shown in [9] and [8, §3.3], the classical

functional equations ξ(s) = ξ(1 − s) and ξ4(s) = ξ4(1 − s) translate into symmetry

properties of the laws of S2 and C1, and there is a reciprocal relation between the laws
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X E(e−
1
2
θ2X) E[( π

2
X)s] (2n)!

2nn!
E(Xn) = E(X̂2n)

C1
1

cosh θ ξ4(2s + 1) A2n

C2 ( 1
cosh θ )2 (4s+1−1)

(s+1)
2
π ξ(2s + 2) A2n+1

S1
θ

sinh θ
(21−2s−1)

(1−2s)
2ξ(2s) (22n − 2)|B2n|

S2 ( θ
sinh θ )2 2ξ(2s) (2n − 1)22n|B2n|

T1 ( tanh θ
θ ) (4s+1−1)

(2s+1)(s+1)
2
π ξ(2s + 2) A2n+1

2n+1

T2 ( tanh θ
θ )2 (4s+2−1)

(s+1)(s+2)
2
π2 ξ(2s + 4) A2n+3

2n+2

Table 1: The Mellin transforms of C1, C2, S1, S2, T1 and T2.

of C2 and S1. The formulae for positive integer moments in the table are read by

comparison of the expansions

(7) E(e−
1
2
θ2X) =

∞
∑

n=0

E(Xn)
(− 1

2
θ2)n

n!
=

∞
∑

n=0

(−1)nE(X̂2n)
θ2n

(2n)!
(|θ| < ε),

for some ε > 0, with classical expansions of the hyperbolic functions (see [30, p. 35],

or (83) and (96) below). The formulae for moments of Ct and Tt for t = 1 or 2

involve the numbers Am of alternating permutations of {1, 2, . . . ,m}, that is permu-

tations (a1, . . . , am) with a1 > a2 < a3 > · · · . The A2n are called Euler or secant

numbers, and the A2n+1 are called tangent numbers, due to the expansions [19, p. 259]

(8)
1

cos θ
=

∞
∑

n=0

A2n
θ2n

(2n)!
; tan θ =

∞
∑

n=0

A2n+1
θ2n+1

(2n + 1)!
.

The formulae for moments of S1 and S2 involve the rational Bernoulli numbers B2n,

due to the expansion

(9) θ coth θ − 1 =

∞
∑

n=1

B2n
(2θ)2n

(2n)!

and the elementary identity 1/ sinh θ = coth(θ/2)− coth θ. Because tan θ = cot θ−
2 cot 2θ the tangent and Bernoulli numbers are related by

(10) A2n+1 = (−1)n (22n+2 − 1)22n+1

n + 1
B2n+2.

The first few Am and B2n are shown in Table 2. See [21] for a bibliography of the

Bernoulli numbers and their applications.
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n 1 2 3 4 5 6

A2n 1 5 61 1385 50521 2702765

A2n+1 2 16 272 7936 353792 22368256

B2n
1
6

−1
30

1
42

−1
30

5
66

−691
2730

Table 2: Secant, tangent and Bernoulli numbers.

Implicit in Table 1 is Euler’s famous evaluation [71] of ζ(2n), and so is the com-

panion evaluation of Lχ4
(2n − 1) given in [22, 1.14 (14)]: for n = 1, 2, . . .

(11) ζ(2n) =
22n−1π2n

(2n)!
|B2n| and Lχ4

(2n − 1) =
π2n−1

22n(2n − 2)!
A2n−2.

Our interest in these results led us to investigate the Mellin transforms of St , Ct and

Tt for arbitrary t > 0, and to provide some characterizations of the various infinitely

divisible laws involved. These characterizations are related to various special features

of these laws: special recurrences satisfied by their moments and Mellin transforms,

simple relations between their moments and cumulants, corresponding relations be-

tween the laws and their Lévy measures, and differential equations satisfied by their

Laplace or Fourier transforms. These analytic results are related to various represen-

tations of the laws in terms of Brownian motion and Bessel processes, in particular

the heights and lengths of excursions of a one-dimensional Brownian motion.

The rest of this paper is organized as follows. Section 2 recalls some background

for the discussion of Lévy processes. Section 3 presents some special recurrences sat-

isfied by the moments and Mellin transforms of the laws of St and Ct . We also show

in this section how various processes involved can be characterized by such moment

recurrences. In Section 4, we briefly review some properties of the gamma process,

and the construction of both S and C as weighted sums of independent gamma pro-

cesses. Section 6 presents a number of characterizations of the infinitely divisible

laws under study. Some of these characterizations were presented without proof in

[8, Proposition 2]. Section 7 presents several constructions of functionals X of a

Brownian motion or Bessel process such that X has the distribution of either St or

Ct for some t > 0. There is some overlap between that section and Section 4 of [8].

There we reviewed the large number of different Brownian and Bessel functionals

whose laws are related to St and Ct . Here we focus attention on constructions where

the structure of the underlying stochastic process brings out interesting properties of

the distributions of S2 and C2, in particular several of those properties involved in the

characterizations of Section 6.

2 Preliminaries

For a Lévy process (Xt ), with E(X2
t ) <∞ for some (and hence all) t > 0, the charac-

teristic function of Xt admits the well known Kolmogorov representation [10, §28]

(12) E[eiθXt ] = exp[tΨ(θ)] with Ψ(θ) = iθc +

∫

(eiθx − 1 − iθx)x−2K (dx).
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Here c ∈ R, the integrand is interpreted as −θ2/2 at x = 0, and K = KX is the finite

Kolmogorov measure associated with (Xt ),

(13) KX(dx) = σ2δ0(dx) + x2
ΛX(dx)

with σ2 the variance parameter of the Brownian component of (Xt ), with δ0 a unit

mass at 0, and with ΛX the usual Lévy measure of (Xt ). Assuming that the exponent

Ψ in (12) can be expanded as

(14) Ψ(θ) =

∞
∑

m=1

κm
(iθ)m

m!
(|θ| < ε)

for some ε > 0, it follows from (12) that

(15) κ1 = c; κ2 = σ2 +

∫

x2
ΛX (dx); κn =

∫

xn
ΛX (dx) for n ≥ 3.

According to the definition of cumulants of a random variable, recalled later in (91)

the n-th cumulant of Xt is κnt . In particular, if c =
∫

xΛX (dx) and σ2
= 0, as when

X = S,C, Ŝ or Ĉ , the cumulants κn of X1 are just the moments of the Lévy measure

ΛX .

For a Lévy process (Xt ) with all moments finite, it is a well known consequence of

the Kolmogorov representation (12) that the sequence of functions t → E(Xn
t ) is a

sequence of polynomials of binomial type [20]. That is to say, E(Xn
t ) is a polynomial

in t of degree at most n, and

(16) E(Xn
t+u) =

n
∑

k=0

(

n

k

)

E(Xk
t )E(Xn−k

u ).

The coefficients of these moment polynomials are determined combinatorially by

the κn via the consequence of (12) and (14) that for 0 ≤ k ≤ n

(17) k! [tk]E(Xn
t ) = n! [ηn]

( ∞
∑

m=1

κm

m!
ηm

) k

where [y p] f (y) denotes the coefficient of y p in the expansion of f (y) in powers

of y. Equivalently, starting from E(X0
t ) = 1, these polynomials are determined by

the following recursion due to Thiele [33, p. 144, (4.2)] (see also [47, p. 74, Th. 2],

[20, Th. 2.3.6]): for n = 1, 2, . . .

(18) E(Xn
t ) = t

n−1
∑

i=0

(

n − 1

i

)

E(Xi
t )κn−i .

Table 3 displays the first few moment polynomials for five of the Lévy processes

considered in this paper: the standard gamma process Γ defined by

(19) P(Γt ∈ dx) =
1

Γ(t)
xt−1e−x dx (t > 0, x > 0),
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X E(Xt ) E(X2
t ) E(X3

t ) E(X4
t )

Γ t t(t + 1) t(t + 1)(t + 2) t(t + 1)(t + 2)(t + 3)

β 0 t 0 3t2

C t t(2+3t)
3

t(16+30t+15t2)
15

t(272+588t+420t2+105t3)
105

S t
3

t(2+5t)
45

t(16+42t+35t2)
945

t(144+404t+420t2+175t3)
14175

T 2t
3

4t(7+5t)
45

8t(124+147t+35t2)
945

16t(2286+3509t+1470t2+175t3)
14175

Table 3: Some moment polynomials.

Brownian motion β, and the processes C , S and T.

The moment polynomials of Γ and β illustrate some basic formulae, which we

recall here for ease of later reference. First of all,

(20) E(Γs
t ) =

Γ(t + s)

Γ(t)
(<s > −t),

which reduces to t(t + 1) · · · (t + n − 1) for s = n a positive integer. The identity in

distribution β2
t

d
= 2tΓ1/2 and (20) give

(21) E(|βt |2s) = (2t)s Γ( 1
2

+ s)

Γ( 1
2
)

= 2
( t

2

)s Γ(2s)

Γ(s)
(<s > − 1

2
),

where the second equality is the gamma duplication formula. In particular,

(22) E(β2n
1 ) =

(2n)!

2nn!
(n = 0, 1, 2, . . . ).

For X = C , S or T we do not know of any explicit formula or combinatorial

interpretation for the n-th moment polynomial for general n. Table 5 in Section 4

shows that in these cases the cumulants κn, which appear in the descriptions (17) and

(18) of E(Xn
t ), turn out to involve the Bernoulli numbers B2n, which are themselves

recursively defined. The recursive description of the moment polynomials via (17) or

(18) is consequently rather cumbersome. It is therefore remarkable that for X = C, S
and T there are simple recurrences for the moments and Mellin transforms of Xt ,

which make no reference to the Bernoulli numbers. These recurrences are the subject

of the next section.

3 Some Special Recurrences

Theorem 1

(i) The process C is the unique Lévy process satisfying the following moment recurrence

for t ≥ 0 and s = 1, 2, . . . :

(23) (t2 + t)E[C s
t+2] = t2E[C s

t ] + (2s + 1)E[C s+1
t ].
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Moreover, the recurrence continues to hold for all t ≥ 0 and s ∈ C, with E(C s
t ) an

entire function of s for each t.

(ii) The process S is the unique Lévy process satisfying the following moment recurrence

for t ≥ 0 and s = 1, 2, . . . :

(24) (t2 + t)E[Ss
t+2] = (t − 2s)(t − 2s + 1)E[Ss

t ] + 2st2E[Ss−1
t ].

Moreover, the recurrence continues to hold for all t ≥ 0 and s ∈ C, with E(Ss
t ) an

entire function of s for each t.

(iii) The process T is the unique Lévy process satisfying the following moment recurrence

for t ≥ 1 and s = 1, 2, . . . :

(25) (2s + t)E[Ts
t ] = tE[Ts

t−1] + 2stE[Ts−1
t+1 ].

Moreover, the recurrence continues to hold for all t ≥ 1 and s ∈ C with <s >
(1 − t)/2.

Here and in similar assertions below, unique means of course unique in law. The

fact that E(C s
t ) and E(Ss

t ) are entire functions of s for each t is easily seen. The random

variables Ct and St have all positive moments finite, because they have moment gen-

erating functions which converge in a neighbourhood of 0, and they have all negative

moments finite by application to X = Ct or X = St of the following general formula:

for X a non-negative random variable with ϕX(λ) := E(e−λX),

(26) E[X−p] =
21−p

Γ(p)

∫ ∞

0

θ2p−1ϕX( 1
2
θ2) dθ (p > 0).

This holds for a positive constant X by definition of Γ(p), hence for every positive

random variable X by Fubini’s theorem. Similarly, consideration of (26) shows that

E[Ts
t ] <∞ for real s iff s > −t/2. See also [75] and Yor [76, Exercise 11.1] for other

applications of (26) to St . Another application of (26) shows that E(T s
t ) < ∞ iff

s > −t/2. For X̂t = βXt
as in (4), where X may be C , S or T, Brownian scaling gives

X̂t
d
= β1

√
Xt , hence

(27) E(|X̂t |2s) = E(|β1|2s)E(Xs
t ) (<s > − 1

2
).

Using (21) and Γ(x + 1) = xΓ(x) we see that

(28) E[|β1|2(s+1)] = (2s + 1)E[|β1|2s] (<s > − 1
2
).

The recurrences in Theorem 1 are equivalent via (27) and (28) to the following re-

currences for Ĉ , Ŝ and T̂: for all t > 0 and <(s) > − 1
2

(t2 + t)E[|Ĉt+2|2s] = t2E[|Ĉt |2s] + E[|Ĉt |2s+2],(29)

(t2 + t)E[|Ŝt+2|2s] = (t − 2s)(t − 2s + 1)E[|Ŝt |2s] + 2s(2s − 1)t2E[|Ŝt |2s−2],(30)
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and for all t ≥ 1 and s with <(2s) > −1 and <(2s) > 1 − t

(31) (2s + t)E[|T̂t |2s] = tE[|T̂t−1|2s] + 2s(2s − 1)tE[|T̂t+1|2s−2].

The following lemma presents some recurrences for probability density functions.

The formulae (29) and (30) for s > 0 are obtained by multiplying both sides of

(33) and (35) by |x|2s and integrating, using integration by parts, which presents no

difficulty since the functions φt (x) and ψt (x) are Fourier transforms of functions in

the Schwartz space, hence also members of the Schwartz space. This establishes the

recurrences of the theorem for all real s > 0, hence all s ∈ C by analytic continuation.

A similar argument allows (31) to be derived from (37). More care is required to

justify the integrations by parts, but this can be done using the fact that E(|T̂t |2s) <∞
for all s > 0, which is used in the proof for large s. Theorem 1 follows, apart from the

uniqueness claims, which we establish in Section 3.1.

Lemma 2 The density

(32) ψt (x) :=
P(Ĉt ∈ dx)

dx
=

1

2π

∫ ∞

−∞

(

1

cosh y

)t

ei yx dy

satisfies the recurrence

(33) t(t + 1)ψt+2(x) = (t2 + x2)ψt (x)

while

(34) φt (x) :=
P(Ŝt ∈ dx)

dx
=

1

2π

∫ ∞

−∞

(

y

sinh y

)t

ei yx dy

satisfies the recurrence

(35) t(t + 1)φt+2(x) = (x2 + t2)φ ′ ′
t (x) + (2t + 4)xφ ′

t (x) + (1 + t)(2 + t)φt (x)

and

(36) ηt (x) :=
P(T̂t ∈ dx)

dx
=

1

2π

∫ ∞

−∞

(

tanh y

y

)t

ei yx dy

satisfies the recurrence

(37) −xη ′
t (x) + (t − 1)ηt (x) = tηt−1(x) + tη ′ ′

t+1(x)

for x 6= 0 and t ≥ 1.

https://doi.org/10.4153/CJM-2003-014-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-014-x


300 Jim Pitman and Marc Yor

Remarks Formula (33) for t = 1, 2, . . . was given by Morris [47, (5.3)]. As noted

there, this recursion and known formulae for ψt (x) for t = 1 or 2 (displayed in

Table 6) show that ψt (x) is a polynomial of degree t divided by cosh(πx/2) if t is

an odd integer, and divided by sinh(πx/2) if t is even. It is known that the classical

integral representations of the beta function

(38)

∫ ∞

−∞

ce−qcydy

(1 + e−cy)p+q
=

∫ 1

0

up−1(1 − u)q−1 du =: B(p, q) =
Γ(p)Γ(q)

Γ(p + q)

where c > 0, <p > 0, <q > 0, yield the formula [23, 1.9.5], [34]

(39) ψt (x) =
2t−2

π
B

(

t + ix

2
,

t − ix

2

)

=
2t−2

πΓ(t)

∣

∣

∣

∣

Γ

(

t + ix

2

)
∣

∣

∣

∣

2

.

As shown in [9] and [8] the Laplace transforms of Ct and St can be inverted to give

series formulae for the corresponding densities for a general t > 0.

Proof The recurrence (33) follows from (39) using Γ(x + 1) = xΓ(x). In the case

of φt we do not know of any explicit formula like (39) for general t > 0. So we

proceed by the following method, which can also be used to derive the recurrence for

ψt without appeal to (39). By differentiating (34) with respect to x, then integrating

by parts, we obtain

(40) x

(

φ ′
t (x) +

t + 1

x
φt (x)

)

= t

∫ ∞

−∞

cosh y

(

y

sinh y

)t+1

ei yx dy.

Differentiating again with respect to x, and integrating by parts again, leads to (35).

Lastly, by standard formulae for Fourier transforms, the recurrence (37) is equivalent

to the fact that gt(θ) := (tanh θ/θ)t solves the following differential equation:

(41)
d

dθ

(

θgt (θ)
)

+ (t − 1)gt (θ) = tgt−1(θ) − tθ2gt+1(θ).

Examples To illustrate (35), from the known results recalled in Table 6, we have

φ1(x) = (π/4)/ cosh2(πx/2), so deduce from (35) that

φ3(x) =
π
[

6 − 2π2(1 + x2) − 6πx sinh(πx) +
(

6 + π2(1 + x2)
)

cosh(πx)
]

16 cosh4( πx
2

)

and φ4(x) can be derived similarly from φ2(x), but the result is quite messy. We note

in passing that the density φn(x) of Ŝn appears for n = 1, 2, . . . in the formula of

Gaveau [29] for the fundamental solution of the heat equation on the Heisenberg

group of real dimension 2n + 1. As shown by Gaveau, this is closely related to the

appearance of the distribution of Ŝ1 in connection with Lévy’s stochastic area formula

[43].
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From the Mellin transform E[( π
2

S2)s] = 2ξ(2s) in Table 1 we deduce with (24)

that

(42) E[( π
2

S4)s] =
2

3
[(s − 1)(2s − 3)ξ(2s) + 2πsξ(2s − 2)] (s ∈ C).

Using ξ(s) = ξ(1 − s) and the duplication formula for the gamma function, for-

mula (42) can also be deduced by analytic continuation of the series for E(S−m
4 ) for

m > 0 derived from (26) in [76, Exercise 11.1] (which should be corrected by replac-

ing 23m−2 by 23m). In particular, (42) implies

(43)

(

θ

sinh θ

)4

= 1 +

∞
∑

n=1

22n

3(2n)!
(2n − 1)(2n − 3)

(

nB2n−2 − (n − 1)B2n

)

θ2n

where the series converges for |θ| < π, and the coefficient of θ2n is (−1)nE(Sn
4)/(2nn!).

Formula (43) can also be checked using (96) and (52) below.

As a generalization of (42), we deduce using (24) that for n = 1, 2, . . .

(44) E[( π
2

S2n)s] =

n−1
∑

j=0

bn, j(s)ξ(2s − 2 j) (s ∈ C)

where the bn, j(s) for 0 ≤ j ≤ n − 1 are polynomials in s with real coefficients, of

degree at most 2(n − 1), which are determined by b1,0(s) = 2 and the following

recurrence: for n = 1, 2, . . .

2n(2n + 1)bn+1, j(s) = (2n − 2s)(2n + 1 − 2s)bn, j(s)1( j < n) + (2n)2πbn, j(s)1( j > 0).

By combining Theorem 1 and the results of Table 1, similar descriptions can be given

for E[( π
2
C2n)s] and E[( π

2
S2n−1)s] involving ξ, and for E[( π

2
C2n−1)s] involving ξ4.

3.1 Uniqueness in Theorem 1

By consideration of moment generating functions, to establish the uniqueness claims

in Theorem 1 it is enough to show that the recursions in Theorem 1 determine the

positive integer moments of Ct , St and Tt for all t > 0. We complete the proof of The-

orem 1 by establishing the following corollary, which presents the desired conclusion

in more combinatorial language.

Corollary 3 Each one of the following three recursions (45), (46) and (47), with

p0(t) = 1, defines a unique sequence of polynomials pn(t), n = 0, 1, 2, . . . of bino-

mial type:

(t + t2)pn(t + 2) = t2 pn(t) + (2n + 1)pn+1(t);(45)

(t + t2)pn(t + 2) = (t − 2n)(t − 2n + 1)pn(t) + 2nt2 pn−1(t);(46)

(2n + t)pn(t) = t pn(t − 1) + 2nt pn−1(t + 1).(47)

https://doi.org/10.4153/CJM-2003-014-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-014-x


302 Jim Pitman and Marc Yor

The corresponding generating functions

(48) Gt (θ) :=

∞
∑

n=0

pn(t)
( 1

2
θ2)n

n!
(|θ| < π/2).

are (1/ cos θ)t for (45), (θ/ sin θ)t for (46), and (θ−1 tan θ)t for (47).

Proof That the polynomials defined by the generating functions satisfy the recur-

sions follows from the result established in the previous section that the moments of

the associated Lévy processes satisfy these recursions. Or see the remarks below. For

(45) the uniqueness is obvious. To deal with uniqueness for (46), we consider this

recurrence with

(49) (t − 2n)(t − 2n + 1) = 2n(2n − 1) + (1 − 4n)t + t 2

replaced by αn +βnt + t2, and argue that the solution will be unique provided αn 6= 0

and

(50) βn /∈ {3, 5, . . . , 2n + 1}

for all n, as is the case in (49) with βn = 1 − 4n. Suppose that pn(t) solves the

recurrence. Take t = 0 and use αn 6= 0 to see that pn(0) = 0 for all n. For n = 1 the

recurrence amounts to

α1 = 2 and p1(t) = 2t/(3 − β1).

So any solution of the recurrence must be of the form pn(t) =
∑n

j=1 an, jt
j for some

array of coefficients (an, j). Assume inductively that suitable coefficients an−1, j exist

for some n ≥ 2. The recurrence amounts to a system of n + 3 coefficient identities

obtained by equating coefficients of t k for 0 ≤ k ≤ n + 2. These coefficient identities

are trivial for k = 0 and k = n + 2, leaving a system of n + 1 linear equations in

n unkowns an, j , 1 ≤ j ≤ n. The identity of coefficients of tn+1 reduces easily to

an,n(2n + 1 − βn) = δnan−1,n−1 which determines an,n by (50). For 2 ≤ k ≤ n it is

easily checked that the identity of coefficients of t k involves only an, j for j ≥ k − 1

and an−1,k−2, and that the coefficient of an,k−1 in this identity is 2(k−1) + 1−βn 6= 0

by (50). Thus for each 2 ≤ k ≤ n the coefficient an,k−1 can be expressed in terms of

the an, j for j ≥ k and an−1,k−2. This completes the inductive proof of uniqueness for

(46). A similar argument establishes uniqueness for (47).

Remarks For the recurrence (46), with (t −2n)(t −2n + 1) replaced by αn +βnt + t2,

the identity of coefficients of t reads

(51) pn(2) = αn p ′
n(0) or

n
∑

j=1

an, j2
j
= αnan,1.

In general, this identity provides a constraint on αn and βn which is necessary for the

generalized recurrence to admit a solution. That (51) holds for the pn(t) generated
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by Gt (θ) = (θ/ sin θ)t with αn = 2n(2n− 1) can be checked using formula (17) with

k = 1 and the expressions for the moments and cumulants of Ŝ2 displayed in Table 6.

We show later in Theorem 8 how this identity (51) provides simple characterizations

of the laws of S2 and Ŝ2.

The recursions can also be checked by showing that the corresponding generat-

ing function Gt (θ) satisfies a suitable differential equation. For instance, by routine

manipulations, the recursion (46) is equivalent to the differential equation

(52) (t + t2)Gt+2(θ) = (t + t2 + t2θ2)Gt (θ) − 2θtG ′
t (θ) + θ2G ′′

t (θ)

where the primes denote differentiation with respect to θ. But if Gt (θ) =
(

G(θ)
) t

,

then after dividing both sides by
(

G(θ)
) t

, the equation (52) reduces to an equality of

coefficients of t and an equality of coefficients of t 2, which read respectively

(53) −1 + G2 + θ2

(

G ′

G

)2

− θ
G ′ ′

G
= 0

and

(54) −1 − θ2 + G2 + 2θ
G ′

G
− θ2 G ′ ′

G
= 0.

For G(θ) = θ/ sin θ we have

(55)
G ′

G
=

1

θ
− cot θ and

G ′ ′

G
=

−2 cot θ

θ
+ cot2 θ +

1

sin2 θ

which imply (53) and (54), hence (52). The corresponding differential equation for

Gt (θ) = (θ−1 tan θ)t appeared in (41), expressed in terms of gt (θ) := Gt (iθ). The

recursion (47) for this case is a generalization of the recursion

T(n + 1, k) = T(n, k − 1) + k(k + 1)T(n, k + 1)

found by Comtet [19, p. 259] for the array of positive integers T(n, k) defined by

(tan θ)k/k! =
∑

n≥k T(n, k)θn/n!. The differential equation for Gt (θ) = (1/ cos θ)t

appears below, again in terms of gt(θ) := Gt (iθ), in the argument leading to (69).

In this case, the polynomials pn(t) evaluated for t a positive integer are related to the

numbers E(n, k) defined by (1/ cosh θ)k
=
∑

n E(n, k)θn/n!. These Euler numbers of

order k were studied by Carlitz [14].

3.2 Some Special Moments

For X = Ct we find that (26) for p = 1/2 reduces using (38) to the simple formula

(56) E[C
−1/2
t ] =

Γ(t/2)√
2Γ
(

(t + 1)/2
) .

As a check, the recursion (23) for s = − 1
2

simplifies to (t + 1)E[C
−1/2
t+2 ] = tE[C

−1/2
t ],

which is also implied by (56) and Γ(x + 1) = xΓ(x). The following proposition

presents some explicit formulae for E[Ss
t ] in particular cases which correspond to a

simplification in the recursion (23) for this function of s and t .
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Proposition 4 For all t > 0

(57) E[S
(t−1)/2
t ] =

2(t−1)/2
Γ(t/2)√
π

and

(58) E[S
(t−2)/2
t ] =

√
π2(t−4)/2

(

Γ(t/2)
) 2

Γ
(

(t + 1)/2
) .

Remarks Comparing formulae (56), (57) and (58), we observe the remarkable iden-

tity

(59) 2E[S
(t−2)/2
t ] = πE[C

−1/2
t ]E[S

(t−1)/2
t ]

for all t > 0, but we have no good explanation for this. We also note that the ex-

pectations in (56), (57) and (58) are closely related to the moments of |β1| and
√

A,

where A has the arc sine law on [0, 1]. Specifically the expectations in (56), (57)

and (58) are equal to (π/2)1/2E[(
√

A)t−1], E[|β1|t−1] and (π/2)3/2E[(|β1|
√

A)t−1]

respectively, where β1 and A are assumed independent. But we do not see any good

explanation of these coincidences either. As a check, the case t = 2 of (57) can also

be read from Table 1 using ξ(1) = 1/2.

Proof Observe from (24) that

(60) (1 + t)E[Ss
t+2] = 2stE[Ss−1

t ] if t = 2s − 1 or 2s.

Use these recurrences on one side, and Γ(x + 1) = xΓ(x) on the other side, to see

that it suffices to verify (57) and (58) for 0 < t ≤ 2. Formula (57) for t ∈ (0, 1) is

established by use of (26) with p = (1 − t)/2, so 2p + t − 1 = 0 and the right hand

side of (26) reduces to a beta integral. The case t = 1 is trivial, and the formula is

obtained for t ∈ (2, 3], by the recurrence argument. The case t ∈ (1, 2] is filled in

by analytic continuation, using the following variant of (26) to show that E[S
(t−1)/2
t ]

is an analytic function of t for <t ∈ (1, 3): for any non-negative random variable X

and 0 < p < 1

(61) E(X p) =
p21+p

Γ(1 − p)

∫ ∞

0

dθ

θ2p+1

(

1 − ϕX( 1
2
θ2)
)

.

This formula, which appears in [67, p. 325], is easily verified using Fubini’s theorem.

In the case of (58), for 0 < t < 2 we can apply (26) with p = (2 − t)/2, so

2p + t − 1 = 1. The integral in (26) for X = St can then be evaluated using the result

of differentiation of (38) with respect to p, which is [30, p. 538, 4.253.1]

(62)

∫ 1

0

up−1(1 − u)q−1 log u du = B(p, q)[ψ(p) − ψ(p + q)]
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for <p > 0, <q > 0, where ψ(x) := Γ
′(x)/Γ(x) is the digamma function. For

p = t/2 and q = 1 − t we find using the reflection formulae for ψ and Γ that

ψ(t/2) − ψ(1 − t/2) = π cotπt/2 = π
Γ(t/2)Γ(1 − t/2)

Γ
(

(1 − t)/2
)

Γ
(

(1 + t)/2
)

and the right hand expression in (58) is finally obtained after simplification using the

gamma duplication formula.

Comparison of the formulae (57) and (58) with those obtained from (61) yields

the following two evaluations of integrals involving (1/ sinh θ)t :

(63)

∫ ∞

0

dθ

(

1

θt
− 1

(sinh θ)t

)

=
Γ
(

(3 − t)/2
)

Γ(t/2)√
π(t − 1)

(1 < t < 3)

and

(64)

∫ ∞

0

θ dθ

(

1

θt
− 1

(sinh θ)t

)

=

√
πΓ
(

(4 − t)/2
)(

Γ(t/2)
) 2

2(t − 2)Γ
(

(t + 1)/2
) (2 < t < 4).

As a check, (63) for t = 2 can be obtained by Fourier inversion of (88), using

the expression for ρŜ in Table 5. We also confirmed these evaluations for various

t by numerical integration using Mathematica. But we do not know how to prove

them analytically without the Fourier argument involved in the recursion (35), which

yielded (24) and (60). For X a positive random variable with E(Xn) < ∞ for some

n = 0, 1, 2, . . . , and n < s < n + 1 there is the formula [67, (14)]

(65) E(Xs) =
1

Γ(−s)

∫ ∞

0

dλ

λs+1

(

ϕX(λ) −
n
∑

k=0

(−λ)k

k!
E(Xk)

)

.

With ϕX( 1
2
θ2) replaced by (1/ cosh θ)t or (θ/ sinh θ)t , these formulae (26), (61) and

(65) give expressions for E(C s
t ) and E(Ss

t ) for all real s except s = 1, 2, 3, . . . , when

the moments can be obtained from the moment polynomials discussed in Section 3.

Comparison of (65) with (57) and (58) then gives two sequences of integral identities.

3.3 Variants of Theorem 1

We start by writing (29) in the functional form

(66) (t2 + t)E[ f (Ĉt+2)] = t2E[ f (Ĉt )] + E[Ĉ2
t f (Ĉt )]

where f is an arbitrary bounded Borel function. This follows from (29) first for

symmetric f by uniqueness of Mellin transforms, then for general f using

E[ f (Ĉt )] = E[ f (−Ĉt )] = E[ f̃ (|Ĉt |)] where f̃ (x) :=
(

f (x) + f (−x)
)

/2.
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Consider now the Meixner process M(a), that is the Lévy process whose marginal

laws are derived by exponential tilting from those of Ĉ , according to the formula

(67) E[ f (M(a)
t )] = (cos a)t E[ f (Ĉt ) exp(aĈt )] (t ≥ 0,−π/2 < a < π/2).

The functional recursion (66) for Ĉ generalizes immediately to show that X = M(a)

satisfies the functional recursion (68) presented in the following theorem. There is a

similar variant for M(a) of the moment recursion (29) for Ĉ . These observations lead

us to the following characterizations:

Theorem 5 A Lévy process X satisfies the functional recursion

(68) c(t2 + t)E[ f (Xt+2)] = t2E[ f (Xt )] + E[X2
t f (Xt )]

for all bounded Borel f and all t ≥ 0, for some constant c, if and only if X is a Meixner

process M(a) for some a ∈ (−π/2, π/2); then c = 1/ cos2 a ≥ 1 and (68) holds for all

Borel f such that the expectations involved are well defined and finite.

Before the proof, we note the following immediate corollary of this theorem and

the discussion leading to (66):

Corollary 6 The process X = Ĉ is the unique Lévy process such that either

(i) the moment recursion (29) holds all s = 0, 1, 2, . . . and the distribution of X1 is

symmetric about 0, or

(ii) the functional recursion (68) holds with c = 1 for all bounded Borel f .

Proof of Theorem 5 That X = M(a) satisfies (68) has already been established via

the moment recursion (23) for Ĉ . (This can also be seen by reversing the steps in

the following proof of the converse, which parallels the analysis around (52).) Sup-

pose that X satisfies (68). By consideration of (68) for f constant, it is obvious that

E(X2
1 ) < ∞ and c = 1 +

(

E(X1)
) 2

. Thus c ≥ 1 and X1 has characteristic function g

with two continuous derivatives g ′ and g ′ ′. Now take f (x) = eiθx in (68) to obtain

the following identity of functions of θ:

c(t2 + t)gt+2
= t2gt − (gt ) ′ ′ = t2gt − (t2 − t)gt−2(g ′)2 − tgt−1g ′′

where all differentiations are with respect to θ, and for instance g t (θ) =
(

g(θ)
) t

.

Cancelling the common factor of gt and equating coefficients of t2 and t , this amounts

to the pair of equalities

(69)

(

g ′

g

) ′

= −cg2
=

(

g ′

g

)2

− 1.

The argument is completed by the following elementary result: the unique solution g

of the differential equation

(70)

(

g ′

g

) ′

=

(

g ′

g

)2

− 1 with g(0) = 1 and g ′(0) = i tanφ for φ ∈ (− π
2
, π

2
)
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is g(θ) = (cosφ)/ cosh(θ + iφ).

For Ŝ instead of Ĉ the following functional recursion can be derived from (24).

For f with two continuous derivatives, and t ≥ 0, let

Lt f (x) := 1
2
(x2 + t2) f ′′(x) − tx f ′(x).

Then for all t ≥ 0

(71) t(t + 1)E[ f (Ŝt+2)] = t(t + 1)E[ f (Ŝt )] + 2E[Lt f (Ŝt )].

As a check, for f (x) = eθx this relation reduces to the previous equation (52). There

is also a variant for the family of processes derived from Ŝ by exponential tilting. Pre-

sumably this could be used to characterize these processes, by a uniqueness argument

for the appropriate variation of the differential equation (52). Similar remarks can

be made for T̂ instead of Ŝ.

To give another application of these recurrences, for any Lévy process X subject to

appropriate moment conditions, the formula

Pn(y, t) := E[(y + Xt )
n] =

n
∑

k=0

(

n

k

)

E[Xk
t ]yn−k

defines a polynomial in two variables y and t . Using E(Xn
u | Xt ) = Pn(Xt , u − t) for

0 ≤ t ≤ u, there is the well known result [42], [24], [25] that for each u ∈ R, in

particular for u = 0, the process
(

Pn(Xt , u − t), t ≥ 0
)

is a martingale. In other terms, Pn(y,−t) is a space-time harmonic function for X. The

formulae (68) and (71) yield recurrences for these space-time harmonic polynomials

Pn(y,−t) in the particular cases when X is a Meixner process, or when X = S. These

space-time harmonic polynomials are not the same as those considered by Schoutens

and Teugels [64], because for fixed t the Pn(y,−t) are not orthogonal with respect

to P(Xt ∈ dy). In particular, for X a Meixner process the polynomials Pn(y,−t) are

not the Meixner polynomials, and their expression in terms of Meixner polynomials

appears to involve complicated connection coefficients. Thus there does not seem to

be any easy way to relate the recurrence for the Pn(y, t) deduced from (68), which

involves evaluations with t replaced by t + 2, to the classical two-term recurrence for

the Meixner polynomials [3, p. 348], in which t is fixed.

4 Connections with the Gamma Process

The following proposition presents some elementary characterizations of the gamma

process (Γt ) in the same vein as the characterizations of (Ct ), (St ) and related pro-

cesses provided elsewhere in this paper. Recall that the distribution of Γt can be

characterized by the density (19), by the moments (20), or by the Laplace transform

(72) E
(

exp(−λΓt )
)

=

(

1

1 + λ

)t

.
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Proposition 7 The gamma process (Γt , t ≥ 0) is the unique subordinator with any

one of the following four properties:

(i) for all m = 0, 1, . . .

(73) tE[Γm
t+1] = E[Γm+1

t ];

(ii) for all bounded Borel f

(74) tE[ f (Γt+1)] = E[ f (Γt )Γt ];

(iii) ϕ(λ) := E[e−λΓ1 ] solves the differential equation

(75)
ϕ ′(λ)

ϕ(λ)
= −ϕ(λ);

(iv) the Lévy measure ΛΓ of (Γt ) is such that

(76) P(Γ1 ∈ dx) = xΛΓ(dx).

Proof From (74) we deduce

tϕt+1(λ) = −ϕ ′(λ)ϕt−1(λ)t

and hence the differential equation (75), whose unique solution with ϕ(0) = 1 is

obviously ϕ(λ) = 1/(1 + λ). It is elementary and well known that Γ satisfies (76),

with both sides equal to e−xdx, and (75) is the Laplace transform equivalent of (76).

Following [16], [5] and [8], let (Γn,t , t ≥ 0) be a sequence of independent gamma

processes, and consider for α > 0 the subordinator (Σα,t , t ≥ 0) which is the follow-

ing weighted sum of these processes

(77) Σα,t :=
2

π2

∞
∑

n=0

Γn,t

(α + n)2
, t ≥ 0.

The weights are chosen so by (72)

(78) E[e−
1
2
θ2

Σα,t ] =

∞
∏

n=0

(

1 +
θ2

π2(α + n)2

)−t

=

{

(1/ cosh θ)t if α =
1
2

(θ/ sinh θ)t if α = 1

where the second equality expresses Euler’s infinite products for cosh θ and sinh θ.

Thus

(79) (Ct )
d
= (Σ 1

2
,t

) and (St )
d
= (Σ1,t ).
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Consider now the subordinated process (βΣα,t
, t ≥ 0) derived from Brownian motion

β and the subordinator (Σα,t , t ≥ 0) as in (77). As shown in [5],

(80) βΣα,1

d
= π−1 log(Γα/Γ

′
α)

where Γα and Γ
′
α are independent, with Γ

′
α

d
= Γα. By (79), formula (80) for α =

1
2

and α = 1 describes the distributions of Ĉ1 and Ŝ1 respectively. Thus Ĉ and Ŝ are

instances of Lévy processes X such that for some a > 0, b > 0 and c ∈ R there is

the equality in distribution (Xa − c)/b
d
= log(Γα/Γ

′
β) for some α, β > 0 where Γα

and Γ
′
β are independent with Γ

′
β

d
= Γβ . These are the generalized z-processes studied

by Grigelionis [32]. The distribution of log(Γα/Γ
′
β), known as a z-distribution, has

found applications in the theory of statistics [5], and in the study of Bessel processes

[56].

5 Lévy Measures

For a Lévy process X whose Lévy measure ΛX has a density, let ρX(x) := ΛX(dx)/dx

be this Lévy density. Directly from (76) and (77), the subordinator Σα has Lévy den-

sity at x > 0 given by

(81) ρΣα
(x) =

1

x

∞
∑

n=0

e−π
2(α+n)2x/2

=

{

ρC (x) if α =
1
2

ρS(x) if α = 1.

Integrating term by term gives

(82)

∫ ∞

0

xsρΣα
(x) dx =

(

2

π2

)s

Γ(s)

∞
∑

n=0

1

(α + n)2s
(<s > 1

2
)

which for α =
1
2

or 1 involves Riemann’s zeta function. On the other hand, from (2)

and (12) we can compute for 0 6= |θ| < π

(83)

∫ ∞

0

θxe−
1
2
θ2xρS(x) dx = − d

dθ

(

log

(

θ

sinh θ

))

= coth θ − 1

θ
.

By expanding the leftmost expression of (83) in powers of θ, and comparing with (82)

and the expansion (9) of θ coth θ−1, we deduce the descriptions of the Lévy measure

of S given in the following table, along with Euler’s formula for ζ(2n) displayed in

(11). In this table, x > 0, <s > 1
2
, and n = 1, 2,. . . .

The formulae for moments of the Lévy measure of C follow immediately from

those for S and the formula

(84)
1

4
ρS

(x

4

)

= ρS(x) + ρC (x)
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X ρX(x) =
ΛX (dx)

dx

∫∞

0
xsρX(x) dx κn(X1) =

∫∞

0
xnρX(x) dx

S x−1
∑∞

n=1 e−π
2n2x/2 2s

π2s Γ(s)ζ(2s) 23n−1 (n−1)!
(2n)!

|B2n|

C x−1
∑∞

n=1 e−π
2(n−

1
2

)2x/2 (4s − 1) 2s

π2s Γ(s)ζ(2s) (4n − 1)23n−1 (n−1)!
(2n)!

|B2n|
T ρC (x) − ρS(x) (4s − 2) 2s

π2s Γ(s)ζ(2s) (4n − 2)23n−1 (n−1)!
(2n)!

|B2n|

Table 4: The Lévy densities of C , S and T.

X̂ ρX̂(x) :=
ΛX̂ (dx)

dx

∫∞

−∞
|x|2sρX̂(x) dx κ2n(X̂1) =

∫∞

−∞
x2nρX̂(x) dx

Ŝ
coth(

π|x|
2

)−1

2|x|
2Γ(2s)
π2s ζ(2s) 22n−1

n
|B2n|

Ĉ 1
2x sinh(πx/2)

(4s − 1) 2Γ(2s)
π2s ζ(2s) (4n − 1) 4n

2n
|B2n|

T̂ ρĈ(x) − ρŜ(x) (4s − 2) 2Γ(2s)
π2s ζ(2s) (4n − 2) 4n

2n
|B2n|

Table 5: The Lévy densities of Ĉ , Ŝ and T̂.

which is easily checked using the series for ρS(x) and ρC (x). Put another way, (84)

amounts to

(85) 4St
d
= St + Ct

where St and Ct are assumed independent. By the Laplace transforms (78), this is

just a probabilistic expression of the duplication identity sinh 2θ = 2 sinh θ cosh θ.

Similarly, the formula

ρC (x) = ρS(x) + ρT(x)

corresponds to the identity in distribution

(86) Ct
d
= St + Tt

where St and Tt are independent. By the Laplace transforms (78), this is a prob-

abilistic expression of the identity 1/ cosh θ = (θ/ sinh θ)(tanh θ)/θ. Knight [40]

discovered the decomposition (86) of C1 using a representation of S1, T1 and C1 in

terms of Brownian motion, which we recall in Section 7.

From Table 4 we deduce the formulae presented in the next table, where x ∈ R,

<s > 1
2

and n = 1, 2, . . . :
The formulae for Mellin transforms and integer moments of ΛX̂ are read from

those of X in the previous table using the following fact: if X is a subordinator without

drift, then by [62, (30.8)]

(87)

∫ ∞

−∞

|x|2s
ΛX̂ (dx) = E[|β1|2s]

∫ ∞

0

xs
ΛX (dx) (s > − 1

2
).
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where E[|β1|2s] is given by (27). The formulae for ρŜ(x) and ρĈ (x) can also be checked

by inverting the following Fourier transforms, obtained from the Kolmogorov repre-

sentation (12):

∫ ∞

−∞

x2eiθxρŜ(x) dx = − d2

dθ2

(

log

(

θ

sinh θ

))

=
1

θ2
− 1

sinh2 θ
,(88)

∫ ∞

−∞

x2eiθxρĈ (x) dx = − d2

dθ2

(

log

(

1

cosh θ

))

=
1

cosh2 θ
.(89)

See [18, p. 261], [32] for variations and applications of (88). By an obvious variation

of (85), there is the identity 2Ŝt
d
= Ŝt + Ĉt , so

(90) ρĈ (x) =
1

2
ρŜ

(x

2

)

− ρŜ(x).

This allows each of the formulae in the table for ρĈ (x) and ρŜ(x) to be deduced from

the other using the elementary identity coth z/2−coth z = 1/ sinh z. Similar remarks

apply to the formulae for T̂, using (86).

6 Characterizations

Recall that for a random variable X with E[|X|m] < ∞ the cumulants κn(X) for

1 ≤ n ≤ m are defined by the formula

(91) log E[eiθX] =

m
∑

n=1

κn(X)
(iθ)n

n!
+ o(θm) as θ −→ 0 with θ ∈ R.

The following table collects together formulae for the characteristic functions,

probability densities, even moments and even cumulants of Ĉt , Ŝt and T̂t for t = 1

or 2. Except perhaps for T̂2, these formulae are all known. As indicated in the

table, for X̂ := βX , as in (4), for n = 1, 2, . . . the n-th moment or cumulant

of X is obtained from the 2n-th moment or cumulant of X̂ by simply dividing by

E(β2n
1 ) = (2n)!/(2nn!). For moments this is just (27), and the companion result for

cumulants is easily verified. Thus the moments and cumulants of Ct , St and Tt for

t = 1 or 2 can also be read from the table. The cumulants in particular are already de-

termined by Table 5 and the sentence following (15). There is no such simple recipe

for recovering the density of X from that of X̂ := βX , because the elementary formula

(92) P(X̂ ∈ dx) = dx

∫ ∞

0

P(X ∈ dt)√
2πt

exp

(

−x2

2t

)

(x ∈ R)

shows that recovering the density of X from that of X̂ amounts to inverting a Laplace

transform. As indicated in [8, Table 1], the densities of Ct and St for t = 1, 2 are

known to be given by infinite series related to derivatives of Jacobi’s theta function.

But we shall not make use of these formulae here. The distributions of T1 and T2 are

described in Section 6.4.
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X̂ E(eiθX̂) P(X̂ ∈ dx)/dx E(X̂2n) =
(2n)!
2nn!

E(Xn) κ2n(X̂) =
(2n)!
2nn!

κn(X)

Ĉ1
1

cosh θ
1

2 cosh( π
2

x)
A2n A2n−1

Ĉ2 ( 1
cosh θ )2 x

2 sinh( π
2

x)
A2n+1 2A2n−1

Ŝ1
θ

sinh θ
π

4 cosh2( π
2

x)
(4n − 2)|B2n| 4n

2n
|B2n|

Ŝ2 ( θ
sinh θ )2

π
2

( π
2

x coth( π
2

x)−1)

sinh2( π
2

x)
(2n − 1)4n|B2n| 4n

n
|B2n|

T̂1
tanh θ
θ

1
π log coth( π

4
|x|) A2n+1

2n+1
(4n−2)4n

2n
|B2n|

T̂2 ( tanh θ
θ )2

∫∞

|x|
y(y−|x|)dy
2 sinh(πy/2)

A2n+3

2n+2
(4n−2)4n

n
|B2n|

Table 6: Features of the laws of Ĉ1, Ĉ2, Ŝ1, Ŝ2, T̂1 and T̂2.

The formulae for the densities of Ĉ1, Ĉ2, Ŝ1 and T̂1 are well known Fourier trans-

forms [43], [23, 1.9], [34], [9]. The Fourier transform expressed by the density of Ŝ2

was found in [9]. The density η2 of T̂2 is derived from the density η1 of T̂1 using (37)

for t = 1, which reduces to

(93) η ′ ′
2 (x) = −xη ′

1(x) = P(Ĉ2 ∈ dx)/dx

where the second equality is read from the formulae in the table for the densities of

T̂1 and Ĉ2. Thus

(94) η ′ ′
2 (x) = E[(Ĉ2 − |x|)+].

In particular

(95) η2(0) =
1

π

∫ ∞

0

(

tanh θ

θ

)2

dθ =

∫ ∞

0

y2dy

2 sinhπy/2
=

14ζ(3)

π3
.

The formulae for moments and cumulants are equivalent to classical series expan-

sions of the hyperbolic functions [30, p. 35] involving the secant and tangent num-

bers Am and Bernoulli numbers Bn. For instance, by differentiation of the expansion

of coth θ displayed in (83),

(96)

(

θ

sinh θ

)2

=

∞
∑

n=0

(2n − 1)(−1)n+1B2n22n θ2n

(2n)!
(0 < |θ| < π)

from which we read the moments of Ŝ2. Table 6 reveals some remarkable similarities

between moments and cumulants, especially for Ĉ2 and Ŝ2. These observations lead

to the following:
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Theorem 8

(i) Let X be a random variable with all moments finite and all odd moments equal to

0. Then

(97) X
d
= Ĉ2 ⇐⇒ κ2n+2(X) = 2E(X2n) (n = 0, 1, 2, . . . )

while

(98) X
d
= Ŝ2 ⇐⇒ E(X2) =

2

3
and κ2n(X) =

E(X2n)

n(2n − 1)
(n = 1, 2, . . . ).

(ii) Let X be a random variable with all moments finite. Then

(99) X
d
= C2 ⇐⇒ κn+1(X) =

E(Xn)

n + 1
2

(n = 0, 1, 2, . . . )

while

(100) X
d
= S2 ⇐⇒ E(X) =

2

3
and κn(X) =

E(Xn)

n(2n − 1)
(n = 1, 2, . . . ).

Remarks Similar but less pleasing characterizations could be formulated for other

variables featured in Table 6. For instance, the results for Ĉ1 and C1 would involve

the ratio A2n/A2n−1 for which there is no simple expression. In Section 7 we interpret

the identities (99) and (100) in terms of Brownian motion. Later in this section we

give several variations of these identities.

Proof Each of the four implications =⇒ is found by inspection of Table 6. These

properties determine the moments of these four distributions uniquely because for

any random variable X1 with all moments finite, the moments E(Xn
1 ), n = 1, 2, . . .

and cumulants κn := κn(X1), n = 1, 2, . . . determine each other via the recur-

sion (18) with t = 1. Since each of the four distributions involved has a convergent

moment generating function, each of these distributions is uniquely determined by

its moments.

In the previous theorem the four distributions involved were characterized with-

out assuming infinite divisibility, but assuming all moments finite. The following

corollary presents corresponding results assuming infinite divisibility, but with only

a second moment assumption for most parts.

Corollary 9 Let (Xt , t ≥ 0) be the Lévy process associated with a finite Kolmogorov

measure KX via the Kolmogorov representation (12), and let U be a random variable

with uniform distribution on [0, 1], with U independent of X2. Then
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(i) For each fixed t > 0, assuming that the distribution of Xt is symmetric,

(101) Xt
d
= Ĉt ⇐⇒ KX(dx) = P(X2 ∈ dx)

while

(102) Xt
d
= Ŝt ⇐⇒ d2

dx2

(

KX(dx)

dx

)

=
P(X2 ∈ dx)

dx

where for the implication ⇐= in (102) it is assumed that KX has a density k(x) :=

KX(dx)/dx with two continuous derivatives, and that both k(x) and k ′(x) tend to

0 as |x| → ∞.

(ii) For each fixed t > 0, without the symmetry assumption,

(103) Xt
d
= Ct ⇐⇒ KX(dx) = xP(U 2X2 ∈ dx)

while

(104)

Xt
d
= St ⇐⇒ E(X2) =

2

3
and KX(dx) = xE[(1 −U )X21(U 2X2 ∈ dx)]1(x > 0).

Proof Each of the implications =⇒ follows easily from corresponding results in the

previous theorem, using (15). So do the converse implications, provided it is assumed

that X2 has all moments finite. That a second moment assumption is adequate for

the converse parts of (101), (103) and (104) is a consequence of results proved later

in the paper. We refer to Theorem 10 for (101), to Proposition 11 for 103, and to

Proposition 12 for (104).

6.1 Self-Generating Lévy Processes

Morris [47] pointed out the implication =⇒ in (97), and coined the term self-gener-

ating for a Lévy process (Xt ) whose Kolmogorov measure KX is a scalar multiple of

the distribution of Xu for some u ≥ 0:

(105)
KX(dx)

KX(R)
= P(Xu ∈ dx).

To indicate the value of u and to abbreviate, say X is SG(u). In particular, X is SG(0)

iff Ψ(θ) = iθc + σ2θ2/2, which is to say X is a Brownian motion with drift and

variance parameters c and σ2. We see from the Kolmogorov representation (12) that

(Xt ) is SG(u) iff

(106)
Ψ

′ ′(θ)

Ψ ′ ′(0)
= exp

(

uΨ(θ)
)

.

Written in terms of g(θ) = exp
(

Ψ(θ)
)

for u = 2, this is just the first differential

equation for g in (69). To restate either Corollary 6 or (101), the process X = Ĉ is the

unique symmetric SG(2) Lévy process with E(X2
1) = 1.
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It is easily seen that for u > 0, a > 0, b 6= 0,

(107) (Xt , t ≥ 0) is SG(u) iff (aXbt , t ≥ 0) is SG(u/b).

Also, if X is SG(u) and the moment generating function M(ξ) := E[exp(ξX1)] =

g(−iξ) is finite for some ξ ∈ R, then the exponentially tilted process (X
(ξ)
t , t ≥ 0)

with

P(X
(ξ)
t ∈ dx) = M−t (ξ)eξxP(Xt ∈ dx)

is easily seen to be SG(ξ). The self-generating Lévy processes obtained from Ĉ by

these operations of scaling and exponential tilting have been called generalized ex-

ponential hyperbolic secant processes [34], [47], [45]. But we prefer the briefer term

Meixner processes proposed in [64], which indicates the relationship between these

processes and the Meixner-Pollaczek polynomials, analogous to the well known re-

lationship between Brownian motion and the Hermite polynomials [64], [63]. See

also Grigelionis [31]. Another self-generating family, which is a weak limit of the

Meixner family [47], is the family of gamma processes (bΓat , t ≥ 0) for 0 6= b ∈ R

and a > 0. Then, the orthogonal polynomials involved are the Laguerre polynomials

[63]. Morris [47, p. 74, Theorem 1] states that the Poisson and negative binomial

processes are self-generating, but this is clearly not the case. Rather, the collection of

examples mentioned above is exhaustive:

Theorem 10 The only Lévy processes (Xt ) with the self-generating property (105) for

some u ≥ 0 are Brownian motions (with u = 0), and Meixner and Gamma processes

(with u > 0).

Proof The characterization for u = 0 is elementary, so consider X which is SG(u)

for some u > 0. Observe first that X cannot have a Gaussian component, or equiv-

alently that KX has no mass at 0. For a Gaussian component would make Xu have

a density, implying P(Xu = 0) = 0 in contradiction to (105). Similarly, X cannot

have a finite Lévy measure (in particular X cannot have a lattice distribution) be-

cause then P(Xu = 0) > 0 which would force KX to have an atom at 0. By use of the

scaling transformation (107), the problem of characterizing all Lévy processes X that

are SG(u) for arbitrary u > 0 is reduced to the problem of characterizing all Lévy

processes X that are SG(u) for some particular u, and the choice u = 2 is most con-

venient. Also, by suitable choice of a in (107) we reduce to (106) with Ψ
′ ′(0) = −1.

So it is enough to find all characteristic exponents Ψ(θ) such that

(108) −Ψ
′ ′(θ) = exp

(

2Ψ(θ)
)

with Ψ(0) = 0.

Set

(109) D(θ) := 1/E[exp(iθX1)] = exp[−Ψ(θ)]

so (108) is equivalent to

(110) DD ′′ − (D ′)2
= 1 with D(0) = 1.
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According to Kamke [38, p. 571, 6.111] the general solution of (110) is

Db(θ) =
cosh(θ cosh b + b)

cosh b

for some b ∈ C, including the limit case when cosh b = 0. In particular, for b = ia

with a ∈ (−π/2, π/2) we find

(111) Dia(θ) =
cosh(θ cos a + ia)

cos a

corresponding to a Meixner process, and the limit case a = ±π/2 corresponds to ±Γ

for Γ the standard gamma process. Other choices of a ∈ R yield the same examples,

by symmetries of cosh and cos. To complete the argument, it suffices to show that

1/Dia(θ) is not an infinitely divisible characteristic function if a /∈ R. For D derived

by (109) from a Lévy process X we have

D ′(0) = −iµ where µ = E(X1) ∈ R

whereas

D ′
ia(0) = sinh(ia) = i sin a.

This eliminates the case when sin a /∈ R, and it remains to deal with the case sin a ∈
R \ [−1, 1]. In that case cos2 a = 1 − sin2 a < 0 implying that cos a = iv for

some real v 6= 0. But then, since cosh is periodic with period 2πi, the function

Dia(θ) in (111) is periodic with period 2π/v, hence so is 1/Dia(θ). If 1/Dia(θ) were

the characteristic function of X1, the distribution of X1 would be concentrated on a

lattice, hence the Lévy measure of X would be finite. But then X could not be self-

generating, as remarked at the beginning of the proof.

6.2 The Law of C2

We start by observing from (3), (1) and (12) that

(112) E[e−λT1 ] =
tanh

√
2λ√

2λ
=

d

dλ

(

log(cosh
√

2λ)
)

=

∫ ∞

0

e−λxx−1KC (dx)

where KC is the Kolmogorov measure of (Ct ). Thus we read from Table 4 that

(113)
P(T1 ∈ dx)

dx
=

KC (dx)

x dx
=

∞
∑

n=1

e−π
2(n−

1
2

)2x/2.

According to (113) and the property of C displayed in (103), if U has uniform distri-

bution on [0, 1] and U and C2 are independent, then

(114) T1
d
= U 2C2.
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This also has a Brownian interpretation, indicated in Section 7.2. But in this section

we maintain a more analytic perspective, and use these identities in distribution to

provide some further characterizations of the law of C2. See Section 6.4 for more

about the distribution of T1. For a non-negative random variable X with E(X) < ∞
let X∗ denote a random variable with the size-biased or length-biased distribution of

X, that is

P(X∗ ∈ dx) = xP(X ∈ dx)/E(X).

As discussed in [49], [50], [51], [68], the distribution of X∗ arises naturally both in

renewal theory, and in the theory of infinitely divisible laws. For λ ≥ 0 let ϕX(λ) :=

E[e−λX]. Then the Laplace transform of X∗ is E[e−λX∗

] = −ϕ ′
X(λ)/E(X) where

ϕ ′
X is the derivative of ϕX . According to the Lévy-Khintchine representation, the

distribution of X is infinitely divisible iff

−ϕ
′
X(λ)

ϕX(λ)
= c +

∫ ∞

0

xe−λx
Λ (dx)

for some c ≥ 0 and some Lévy measure Λ, that is iff

E[e−λX∗

] = ϕX(λ)ϕY (λ)

where Y is a random variable with

(115) P(Y ∈ dy) =
(

cδ0(dy) + Λ(dy)
)

/E(X).

Thus, as remarked by van Harn and Steutel [68], for a non-negative random variable

X with E(X) <∞, the equation

X∗ d
= X + Y

is satisfied for some Y independent of X if and only if the law of X is infinitely divis-

ible, in which case the distribution of Y is given by (115) for Λ the Lévy measure of

X. See also [4] for further discussion. In this vein, we find the following characteri-

zations of the law of C2:

Proposition 11 For a non-negative random variable X with Laplace transform

ϕ(λ) := E[exp(−λX)], the following conditions are equivalent:

(i) X
d
= C2, meaning that ϕX(λ) = (1/ cosh

√
2λ)2;

(ii) ϕ = ϕX solves the differential equation

(116) −ϕ
′(λ)

ϕ(λ)
= 2

∫ 1

0

ϕ(λu2) du;

(iii) E(X) = 2 and

(117) X∗ d
= X + U 2X̃

where X, X̃ and U are independent random variables with X̃
d
= X and U uniform

on [0, 1];
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(iv) E(X) = 2 and the function ψ(θ) := 1/
√

ϕX( 1
2
θ2) satisfies the differential equa-

tion

(118) ψ ′ ′ψ − (ψ ′)2
= 1 on (0,∞).

Proof This is quite straightforward, so we leave the details to the reader. For ori-

entation relative to previous results, we note from (114) that ϕ(λ) := ϕC2
(λ) =

(1/ cosh
√

2λ)2 satisfies the differential equation (116), and the equation (118) was

already encountered in (110).

6.3 The Law of S2

The following proposition is a companion of Proposition 11 for S2 instead of C2.

Proposition 12 For a non-negative random variable X with Laplace transform

ϕX(λ) := E[exp(−λX)] and E(X) = 2/3, the following conditions are equivalent:

(i) X
d
= S2, that is ϕX(λ) = (

√
2λ/ sinh

√
2λ)2.

(ii) if X1,X2, . . . are independent random variables with the same distribution as X,

and M1 > M2 > . . . are the points of a Poisson point process on (0, 1) with

intensity measure 2m−2(1 − m)dm, then

(119)
∑

i

M2
i Xi

d
= X;

(iii) the function ϕ = ϕX solves the following differential equation for λ > 0:

(120)
ϕ ′(λ)

ϕ(λ)
= 2

∫ 1

0

(1 − m)ϕ ′(λm2) dm;

(iv) if X,X∗ and H are independent, P(X∗ ∈ dx) = xP(X ∈ dx)/E(X) and

(121) P(H ∈ dh) = (h−1/2 − 1)dh (0 < h < 1)

then

(122) X∗ d
= X + HX∗;

(v) the function ψ(θ) := θ/
√

ϕX( 1
2
θ2) satisfies the differential equation

(123) ψ ′ ′ψ − (ψ ′)2
= −1 on (0,∞).

Proof (i) =⇒ (ii). By a simple computation with Lévy measures, the n-th cumulant

of
∑

i M2
i Xi is E(Xn)/

(

n(2n − 1)
)

. Compare with (98), to see that if X
d
= S2 then

∑

i M2
i Xi and X have the same cumulants, hence also the same distribution.
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(ii) =⇒ (i). By consideration of Lévy measures as in the previous argument, this

is the same implication as ⇐= in (104) whose proof we have deferred until now.

This is easy if all moments of X are assumed finite, by consideration of cumulants.

But without moment assumptions we can only complete the argument by passing via

conditions (iii) to (v), which we now proceed to do.

(ii) =⇒ (iii). The identity (119) implies that the law of X is infinitely divisible,

with probability density f and Lévy density ρ which are related as follows. From

(119), we deduce that the Laplace transform

ϕ(λ) := E[exp(−λX)] = exp

(

−
∫ ∞

0

(1 − e−λx)ρ(x) dx

)

satisfies

ϕ(λ) = exp

(

−
∫ ∞

0

dy f (y)

∫ 1

0

(1 − e−λym2

)
2

m2
(1 − m) dm

)

.

Using Fubini’s theorem, and making the change of variables y = x/m2, this yields

(124) ρ(x) = 2

∫ 1

0

dm

m4
(1 − m) f (x/m2),

and (120) follows using

−ϕ
′(λ)

ϕ(λ)
=

∫ ∞

0

xe−λxρ(x) dx.

(iii) ⇐⇒ (iv). Rewrite (iii) as

(125)
3

2
ϕ ′(λ) = ϕ(λ)

∫ 1

0

dh(h−1/2 − 1)
3

2
ϕ ′(λh)

But since

−3

2
ϕ ′(λ) =

3

2
E(Xe−λX) = E(e−λX∗

)

formula (125) is the Laplace transform equivalent of (iv).

(iii) ⇐⇒ (v). A simple argument using integration by parts shows that (iii) holds

iff ϕ = ϕX solves the following differential equation for λ > 0:

(126) −
√
λ
ϕ ′(λ)

ϕ(λ)
=

1

2

∫ λ

0

dx

x3/2

(

1 − ϕ(x)
)

.

Straightforward but tedious computations show that ϕ with ϕ(0) = 1, ϕ ′(0) =

−2/3 solves (126) if and only if ψ satisfies (123) with ψ(0) = 0, ψ ′(0) = 1.

(v) ⇐⇒ (i). According to Kamke [38, 6.110], the solutions ψ of (123) are deter-

mined by

C1ψ(x) = sinh(C1x + C2)
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for two complex constants C i . Since ψ > 0 with ψ(0+) = 0, ψ ′(0) = 1, it follows

that ψ(x) = sinh x.

Remarks The fact that ϕ(λ) := 2λ/ sinh2
√

2λ is a solution of the differential equa-

tion (126) appears in Yor [76, §11.7, Cor. 11.4.1], with a different probabilistic in-

terpretation. Comparison of formula (83) with formula (11.38) of [76] shows that

if W is a random variable with P(W ∈ dt) = 3tΛS(dt), where ΛS(dt) is the Lévy

measure of the process S with S1
d
= T1(R3), then W has the same distribution as the

total time spent below level 1 by a 5-dimensional Bessel process started at 1. This is

reminiscent of the Ciesielski-Taylor identities relating the distribution of functionals

of Bessel processes of different dimensions [7], [17].

As another remark, note that by iteration of (122) followed by an easy passage to

the limit,

(127) X∗ d
= X + H1X1 + (H1H2)X2 + · · · + (H1H2 · · ·Hn)Xn + · · ·

where X,X1,X2, . . . and H1,H2, . . . are independent, with the Xi distributed like X

and the Hi distributed like H. This is reminiscent of constructions considered in [69]

and [57]. Regarding the stochastic equation X∗ d
= X + HX∗ considered here, given a

distribution of H one may ask whether there exists such a distribution of X. It is easily

shown that if H is uniform on [0, 1], then X must have an exponential distribution.

See Pakes [48] for a closely related result.

6.4 The Laws of T1 and T2

A formula for the density of T1 was given already in (113). Either from (113) and

the partial fraction expansion of θ−1 tanh θ, or from (114), we find that the Mellin

transform of T1 involves the zeta function:

(128) E[Ts
1] =

∫ ∞

0

xs+1
ΛC (dx) = (4s+1 − 1)

2s+1

π2s+2
Γ(s + 1)ζ(2s + 2) (<s > − 1

2
).

We deduce from (3), (1) and tanh2 θ = 1 − 1/ cosh2 θ that the distributions of T2

and C2 are related by the formula

(129) P(T2 ∈ dx)/dx =
1
2
P(C2 > x) (x > 0).

In terms of renewal theory [26, p. 370], if interarrival times are distributed like C2,

the limit distribution of the residual waiting time is the law of T2. Formula (129)

allows the Mellin transform of T2 to be derived from the Mellin transform of C2. The

result appears in Table 1. By inspection of the Mellin transforms of T1 and T2, we

see that if T∗
1 has the size-biased distribution of T1, and U1/3 is a random variable

independent of T∗
1 with 0 ≤ U1/3 ≤ 1 and P(U1/3 ≤ u) = u/3 for 0 ≤ u < 1, then

(130) U1/3T∗
1

d
= T2.
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By consideration of a corresponding differential equation for the Laplace transform,

as in Propositions 11 and 12, we see that the distribution of T1 on (0,∞) is uniquely

characterized by this property (130) (with T2 the sum of two independent random

variables with the same distribution as T1) and E(T1) = 2/3.

6.5 The Laws of Ŝ1 and Ŝ2

We see from the density of Ŝ1 displayed in Table 6 that πŜ1 has the logistic distribution

P(πŜ1 > x) = (1 + ex)−1 (x ∈ R),

which has found numerous applications [41]. Aldous [2] relates both this distribu-

tion and that of πŜ2 to asymptotic distributions in the random assignment problem.

According to [2, Theorem 2 and Lemma 6] the function

h(x) := P(πŜ2 > x) =
e−x(e−x − 1 + x)

(1 − e−x)2
(x > 0)

is the probability density on (0,∞) of the limit distribution as n → ∞ of nε1,πn(1),

where εi, j , i, j = 1, 2, . . . is an array of independent random variables with the stan-

dard exponential distribution P(εi, j > x) = e−x for x ≥ 0, and πn is the permutation

which minimizes
∑n

i=1 εi,π(i) over all permutations π of {1, . . . , n}.

For p > 0 we can compute

2

∫ ∞

0

pxp−1h(x) dx = E(|πŜ2|p)

using (27), (21), and the Mellin transform of Ŝ2 given in Table 1. We deduce that the

density h(x) is characterized by the remarkably simple Mellin transform

(131)

∫ ∞

0

xp−1h(x) dx = (p − 1)Γ(p)ζ(p) (<p > 0)

where the right side is interpreted by continuity at p = 1. Aldous [2, Lemma 6] gave

the special cases of this formula for p = 1 and p = 2.

7 Brownian Interpretations

For a stochastic process X = (Xt , t ≥ 0) let

Ha(X) := inf{t : Xt = a}

denote the hitting time of a by X. We now abbreviate H1 := H1(|β|) where β is a

standard one-dimensional Brownian motion with β0 = 0, and set

(132) G1 := sup{t < H1 : βt = 0},
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so G1 is the time of the last zero of β before time H1. It is well known [17] that

(133) H1
d
= C1

and

H1 − G1
d
= S1

where G1 is independent of H1 − G1 by a last exit decomposition. Hence in view of

(86)

(134) G1
d
= T1.

This Brownian interpretation of the decomposition C1
d
= T1 + S1, where T1 is inde-

pendent of S1, was discovered by Knight [40].

7.1 Brownian Local Times and Squares of Bessel Processes

Let Lx
t , t ≥ 0, x ∈ R be the process of Brownian local times defined by the occupation

density formula

(135)

∫ t

0

f (βs) ds =

∫ ∞

−∞

f (x)Lx
t dx

for all non-negative Borel functions f , and almost sure joint continuity in t and x.

See [59, Ch. VI] for background, and proof of the existence of Brownian local times.

According to results of Ray [58], Knight [39] and Williams [72], [73], [74], there are

the identities in distribution

(La
H1
, 0 ≤ a ≤ 1)

d
= (R2

2,1−a, 0 ≤ a ≤ 1)

and

(La
H1

− La
G1
, 0 ≤ a ≤ 1)

d
= (r2

2,a, 0 ≤ a ≤ 1)

where for δ = 1, 2, . . . the process R2
δ := (R2

δ,t , t ≥ 0) is the square of a δ-dimensional

Bessel process BES(δ),

Rδ,t :=
(

δ
∑

i=1

β2
i,t

) 1/2

where (βi,t , t ≥ 0) for i = 1, 2, . . . is a sequence of independent one-dimensional

Brownian motions, and rδ := (rδ,u, 0 ≤ u ≤ 1) is the δ-dimensional Bessel bridge

defined by conditioning Rδ,u, 0 ≤ u ≤ 1 on Rδ,1 = 0. Put another way, r2
δ is the sum

of squares of δ independent copies of the standard Brownian bridge. As observed in

[65] and [53], the definition of the processes R2
δ and r2

δ can be extended to all positive

real δ in such a way that R2
γ+δ is distributed as the sum of R2

γ and an independent copy

of R2
δ . It then follows from results of Cameron-Martin [13] and Montroll [46, (3.41)]

for δ = 1 that there are the identities in law

(136)

(
∫ 1

0

R2
δ,u du, δ ≥ 0

)

d
= (Cδ/2, δ ≥ 0)
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and

(137)

(
∫ 1

0

r2
δ,u du, δ ≥ 0

)

d
= (Sδ/2, δ ≥ 0).

In particular, for δ = 2, we see from these identities and the Ray-Knight theorems

that
∫ 1

0

R2
2,u du

d
= H1

d
= C1 while

∫ 1

0

r2
2,u du

d
= H1 − G1

d
= S1.

More generally, for an arbitrary positive measure µ on [0, 1], the Laplace transforms

of
∫ 1

0
R2
δ,uµ (du) and

∫ 1

0
r2
δ,uµ (du) can be characterized in terms of the solutions of an

appropriate Sturm-Liouville equation. See [13], [46], [54] or [59, Ch. XI] for details

and further developments.

7.2 Brownian Excursions

Consider now the excursions away from 0 of the reflecting Brownian motion |β| :=

(|βt |, t ≥ 0). For t > 0 let G(t) := sup{s ≤ t : βs = 0} and D(t) := inf{s > t :

βs = 0}. So G(t) is the time of the last zero of β before time t , and D(t) is the time of

the first zero of β after time t . The path fragment

(

βG(t)+v, 0 ≤ v ≤ D(t) − G(t)
)

is then called the Brownian excursion straddling time t. The works of Lévy [44] and

Williams [72] show that the distribution of the Brownian excursion straddling time

t is determined by the identity

(138)

(

|βG(t)+u(D(t)−G(t))|
(

D(t) − G(t)
) 1/2

, 0 ≤ u ≤ 1

)

d
= (r3,u, 0 ≤ u ≤ 1)

and the normalized excursion on the left side of (138) is independent of D(t)−G(t).

See also [15], [59] for further treatment of Brownian excursions, and [28] for a recent

study of the moments of
∫ 1

0
r3,s ds.

Recall from around (86) that H1 is the first hitting time of 1 by the reflecting

Brownian motion |β|, that G1 := G(H1), and that H1
d
= C1 and H1 − G1

d
= S1.

According to Williams [72], [73], the random variable

U := max
0≤t≤G1

|βt |

has uniform distribution on [0, 1], and if T∗ denotes the almost surely unique time

at which |β| attains this maximum value over [0,G1], then the processes

(

U−1|β(tU 2)|, 0 ≤ t ≤ T∗/U 2
)

and
(

U−1
∣

∣β
(

G(H1) − tU 2
)
∣

∣ , 0 ≤ t ≤ (G1 − T∗)/U 2
)
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are two independent copies of (|βt |, 0 ≤ t ≤ H1), independent of U . Thus

G1 = U 2(G1/U 2)

where U is independent of G1/U 2 and G/U 2 is explicitly represented as the sum of

two independent copies of H1
d
= C1, so

(139)
G1

U 2
=

T∗

U 2
+

G1 − T∗

U 2

d
= C2.

This provides a Brownian derivation of the identity (114). Let Hx(R3) be the first

hitting time of x by R3. It is known [17], [40] that

(140) H1 − G1
d
= H1(R3)

d
= S1.

The first identity of laws in (140) is the identity in distribution of lifetimes implied

by the following identity in distribution of processes, due to Williams [72], [73]:

(141) (|βG1+t |, 0 ≤ t ≤ H1 − G1)
d
=
(

R3,t , 0 ≤ t ≤ H1(R3)
)

.

Let D1 := D(H1) be the time of the first return of β to 0 after the time H1 when

|β| first reaches 1. According to the strong Markov property of Brownian motion,

the process (|βH1+u|, 0 ≤ u ≤ D1 − H1) is just a Brownian motion started at 1

and stopped when it first reaches 0, and this process is independent of the process in

(141). Thus the excursion of |β| straddling time H1 is decomposed into two indepen-

dent fragments, a copy of R3 run until it first reaches 1, followed by an unconditioned

Brownian motion for the return trip back to 0. Let

M := max
H1≤t≤D1

|βt |.

As shown by Williams [74] (see also [60]), the identity in distribution (141) together

with a time reversal argument shows that conditionally given M = x, the excursion

of |β| straddling H1 decomposes at its maximum into two independent copies of
(

R3,t , 0 ≤ t ≤ Hx(R3)
)

put back to back. Together with Brownian scaling and (140),

this implies the identity

(142) (M,D1 − G1)
d
= (V−1,V−2S2)

where V is independent of S2 with uniform distribution on [0, 1]. In particular,

(143)
D1 − G1

M2

d
= S2

which should be compared with (139).
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7.3 Poisson Interpretations

By exploiting the strong Markov property of Brownian motion at times when it re-

turns to its starting point, Lévy [44], Itô [36] and Williams [74] have shown how

to decompose the Brownian path into a Poisson point process of excursions, and

to reconstruct the original path from these excursions. See Rogers-Williams [61],

Revuz-Yor [59], Blumenthal [11], Watanabe [70], Ikeda-Watanabe [35] for various

accounts of this theory and its generalizations to other Markov processes. Here we

give some applications of the Poisson processes derived from the heights and lengths

of Brownian excursions.

For β a standard one-dimensional Brownian motion, with past maximum process

βt := max0≤s≤t βs let

Rt := βt − βt (t ≥ 0).

According to a fundamental result of Lévy [44], [59, Ch. VI, Theorem 2.3], there is

the identity in law

(Rt , t ≥ 0)
d
= (|βt |, t ≥ 0)

so the structure of excursions of R and |β| away from zero is identical. As explained in

Williams [74], Lévy’s device of considering R instead of |β| simplifies the construc-

tion of various Poisson point processes because the process (β t , t ≥ 0) serves as a

local time process at 0 for (Rt , t ≥ 0). Consider now the excursions of R away from 0,

corresponding to excursions of β below its continuously increasing past maximum

process β. Each excursion of R away from 0 is associated with some unique level `,
the constant value of β for the duration of the excursion, which equals H`+ − H`

where we now abbreviate H` for H`(β) rather than H`(|β|).

Proposition 13 (Biane-Yor [9]) The random counting measure N on (0,∞)3 defined

by

(144) N(·) :=
∑

`

1
(

(`,H`+ − H`, `− min
H`≤u≤H`+

βu) ∈ ·
)

,

where the sum is over the random countable set of ` with H`+ − H` > 0, is Poisson with

intensity measure d`µ(dv × dm) where (v,m) denotes a generic value of

(H`+ − H`, `− min
H`≤u≤H`+

βu)

and

(145) µ(dv × dm) =
dv√

2πv3/2
P(
√

vr3,1 ∈ dm) =
dm

m2
P(m2S2 ∈ dv)

where r3,1 := max0≤u≤1 r3,u is the maximum of a 3-dimensional Bessel bridge (or stan-

dard Brownian excursion) and S2 is the sum of two independent random variables with

the same distribution as S1 and T1(R3).
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See also [55] for further discussion of the agreement formula (145) and some gen-

eralizations.

Consider now the counting measure N3(·) on (0,∞)3 defined exactly like N(·) in

(144), but with the underlying Brownian motion β replaced by a BES(3) process R3.

That is

N3(·) :=
∑

`

1
(

(`,H3,`+ − H3,`, `− min
H3,`≤u≤T3,`+

R3,u) ∈ ·
)

,

where H` := T`(R3).

From Proposition 13 and the McKean-Williams description of BES(3) as a condi-

tioned Brownian motion, we deduce the following:

Corollary 14 The point process N3 on (0,∞)3 is Poisson with intensity measure

dh1(m<h)µ(dv × dm)

where µ is the intensity measure on (0,∞)2 defined in (145).

Proof The Poisson character of the point process follows easily from the strong

Markov property of R3. To identify the intensity measure, it is enough to consider

its restriction to (a, b) × (0,∞)2 for arbitrary 0 < a < b < ∞. The restriction of

N3 to (a, b) × (0,∞)2 is generated by R3 after time H3,a and before time H3,b, during

which random interval R3 evolves like β conditioned to hit b before 0. The Poisson

measure N derived from β in Proposition 13 is then conditioned to have no points

(h, v,m) such that h ∈ (a, b) and m ≥ h. The conditioned Poisson measure is just

Poisson with a restricted intensity measure, and the conclusion follows.

Since

H3,1 =

∑

0<`<1

(H3,`+ − H3,`)

where the sum is over the countable random set of ` with 0 < ` < 1 and H3,`+ −
H3,` > 0, and these H3,`+ − H3,` > 0 are the points of a Poisson point process,

whose intensity is the Lévy measure ΛS(dt) of the common distribution of H3,1 and

S1. Hence for each non-negative Borel function g

(146) E
[

∑

0<`<1

g(H3,`+ − H3,`)
]

=

∫ ∞

0

g(t)ΛS (dt)

In particular, for g(x) = xs/2 we deduce from Table 4 the following probabilistic

interpretation of Riemann’s ξ function:

(147) E
[

∑

0<`<1

(H3,`+ − H3,`)
s/2
]

=

(

2

π

)s/2
2ξ(s)

s(s − 1)
(<(s) > 1).

See also [37, §4.10] and [12] for more general discussions of the Poisson character of

the jumps of the first passage process of a one-dimensional diffusion.
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If M̃1 > M̃2 > · · · are the ranked values of the maxima of the excursions of

R3 − R3 away from 0 up to time H1(R3), and Ṽi is the length of the excursion whose

maximum is M̃i , then we have the representation

(148) H1(R3) =

∞
∑

i=1

Ṽi =

∞
∑

i=1

M̃2
i S2,i

where the S2,i are independent copies of S2, with the S2,i independent also of the

M̃i . Now the M̃i are the ranked points of a Poisson process on (0, 1) with inten-

sity measure m−2(1 − m)dm. If the last sum in (148) is considered for M̃i that

are instead the ranked points of a Poisson process on (0, 1) with intensity measure

2m−2(1 − m)dm, the result is distributed as the sum of two independent copies of

H1(R3), that is like S2. Together with the fact that E(S2) = 2E[H1(R3)] = 2/3, the

above argument shows that X = S2 satisfies condition (ii) of Proposition 12. Indeed,

it was by this argument that we first discovered this property of the law of S2.

7.4 A Path Transformation

There are several known constructions of the path of a BES0(3) process, or segments

thereof, from the path of a one-dimensional Brownian motion β. It will be clear to

readers familiar with Itô’s excursion theory that the previous discussion can be lifted

from the description of the point processes of heights and lengths of excursions of

R3 below its past maximum process to a similar description of a corresponding point

process of excursions defined as a random counting measure on (0, 1) × Ω where Ω

is a suitable path space. Essentially, the conclusion is that the point process of excur-

sions of R3 below its past maximum process is identical in law to the point process

obtained from the excursions of β below its past maximum process by deletion of ev-

ery excursion whose height exceeds its starting level, meaning that the path of β hits

zero during that excursion interval. Since the path of R3 can be reconstructed from

its process of excursions below its past maximum process, we obtain the following

result, found independently by Jon Warren (unpublished).

Theorem 15 For a standard one-dimensional Brownian motion β, let β t :=

max0≤u≤t βu and let Rt := βt − βt . Let (Gs,Ds) be the excursion interval of R away

from 0 that straddles time s. Let Ms := maxGs≤u≤Ds
Ru be the maximum of R over this

excursion interval, and

Ut :=

∫ t

0

1(Ms ≤ βs) ds and αu := inf{t : Ut > u}

Then the process (βαu
, u ≥ 0) is a BES0(3).

Note that the continuous increasing process U in this result is anticipating. See

also Section 4 of Pitman [52] for closely related results.
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[6] J. Bertoin, Lévy processes. Cambridge University Press, Cambridge, 1996.
[7] P. Biane, Comparaison entre temps d’atteinte et temps de séjour de certaines diffusions réelles. In:
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[62] K. Sato, Lévy processes and infinitely divisible distributions. Cambridge University Press, Cambridge,
1999 (translated from the 1990 Japanese original, revised by the author).

[63] W. Schoutens, Stochastic Processes and Orthogonal Polynomials. Lecture Notes in Statistics 146,
Springer, New York, 2000.
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