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GENERALISED HOLDERIAN FUNCTIONS

S. DE SARKAR AND S. PANDA

The concept of kth Holderian functions on an interval [a,b] which generalises the no-
tion of Haolderian (Lipschitzian) functions of positive order on [a, 8] is introduced. The
relationship of such functions to functions of bounded kth variation and absolutely kth
continuous functions is examined. Properties induced by higher order derivatives in this
new class of functions are investigated.

1. INTRODUCTION

It is well-known that a function f of a real variable is said to be Hélderian (Lip-
schitzian) of order a > 0 on [a,b] if there exists a positive constant K such that for

any two points ¢ and y in [a,}],

|f(z) — f(¥)| < K|z — 9|

Ifin this definition, & > 1, then f is constant on [a,b] andif @ = 1 then f is absolutely
continuous (consequently of bounded variation) on [a,}].

Russell [12] introduced the concept of functions of bounded kth variation (BV,
functions) on [a, b] and studied their properties in detail. As a natural consequence the
definition of absolutely kth continuous functions ( ACfunctions) on [a,b] was intro-
duced by Das and Lahiri {2] and they obtained some interrelations between BV, and
AC, functions. The definitions of BV, and ACjfunctions involve higher order divided
differences.

The main purpose of the present paper is to obtain a generalisation of Holderian
functions of positive order using higher order divided differences and to consider the
development of some classical properties with such a framework. To do this, we first
define kth Holderian functions of positive order on [a,b]. It is observed that such
functions correspond to BV, and AC, functions in exactly the same way as Holderian
functions of positive order correspond to functions of classical bounded variation and
absolutely continuous functions. We then exhibit several results concerning higher order
derivatives in this new class of functions.

For background and further information on BV,and AC,functions, we refer the
reader to Russell [13, 14], De Sarkar and Das [4, 5, 6, 7], De Sarkar, Das and Labhiri
[8] and Das and Das [3].
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2. PRELIMINARIES

Let f be a real-valued function defined on the closed interval [a,b] and let k be
a positive integer greatef. than 1. If z¢,z3,...,zx are any (k+ 1) distinct points, not
necessarily in linear order, in [a,b], then the kth divided difference of f is defined by

- k k
Qu(f;20,21,- - za) = D _[f(=i)/ ] (=i — =5))-
i=0 J=0
J#i
By a m-subdivision of [a,b] we mean a finite set of points g, Z1,...,Zs in [a,b]
with zg < 1 < ... < z, and we denote it by 7(z¢,z1,...,2,). The number
n—k

'V;(f; [a,8]) = sup Z (zivk — )| Qu(f3 2is- - - Tivk)l,

i=0
where the supremum is taken for all m-subdivisions of [a,b] is called the total kth
vartation of f on [a,b]. If Vi(f;[a,d]) < + o0, then f is said to be of bounded kth
variation, BVy, on [a,b]. For z € [a,b] we write Vi(s)(z) = Vi(f;la,z]).
Let 230 < 213 < +oo < T < T2p < T23 < ovo < Tpp S ovo < T < Ty <
... < T be any subdivision Qf‘[d, b] where z;; € [a,b]. We say that the intervals
(zi0rzik), i = 1,2,...,n form an elementary system I, say, in [a,b]. The system is

denoted by
I(a:,-,l, e ,a:.-,k_l): (1:."0, :!:,"k), 1=1,2,...,n.
We write )
n
olIl =) (zig — Ti0)|Qk(fi zin,- - -, zi)]
i=1
and

n
ml = Z'(z;,k — :!:,"o)..
i=1

The function f is said to be absolutely kth continuous, ACy, on [a,d] if for € > 0,
arbitrary, there exists 6(’6) > 0 such that for any elementary system I in [a,b] with
mI < § the relation o|I| < ¢ is satisfied.

Let z¢ be any point in [a, )] and let z;,z2,...,z% be any set of k distinct points
in [a,b] with the property 0 < |2y — ¢ < |22 — 29| < ... < |T& — zo|. If the iterated
limit 4

i}iﬂo:..'z‘li_lgo E'Qw(f; 2o, 21y- - -, Tk)
" exists, then this limit is called the kth Reimann* derivative of f at z, and is denoted
by D*f(z¢). The ordinary derivative of f of order r at z¢ is denoted by f"(z,). We

note that when f"(zg) exists, then D" f(zo) exists, and f"(zo) = D" f(=zo).
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3. kTH HOLDERIAN FUNCTIONS

DEFINITION 3.1: The function f is said to be kth Héldertan of order a > 0 with
the constant M > 0 on [a,b] if for any set of (k + 1) points zg < z; < ... < z} in

[a,b] we have
[Qk—1(fiz0sZT1s- -+, xh—1) — Qu—1(f; 21,22, ..., %)} < M(zp — z0)".

In this case we write f € Hk(a M, [a, b)).

We note that for £ = 1, the above deﬁmtmn gives the deﬁmtlon of Hélderian
functions of order « on [a,b]. When a > 1, by using Lemma 4 of Russell [12], it is
easy to show that D*f(z) =0 for all & € [a, b] and consequently f is a polynomial of
degree (k — 1) at most.

THEOREM 3.1. If f € Hi(a,M,[a,b]), with -a > 0, then fE=1 exists and is
continuous in [a,b]. : ,

PROOF: Let a < c< b and £ >0 be arbitrary. We choose points
Tp—k+1 < Tp_k42 <...<Zp =c¢c< wp+1 <o < Tpgk+l

such th_at
(@ptio = Tppr) < (/(k = )Mk — 1))/,

Then we have
1Qur—1(f;%is- -y Titk—1)—Qr-1(Fi Tiz1,- - s Tigr)| < M(zigr — z:)” < e/(k - 1)}(k - 1)

fori=p—k+1,...,p— 1. Now combining (k — 1) inequalities we obtain

[(k = 1)Qk—1(fi2is. -, Tivh-1) — (K — 1) Qr_1(f; 2jy. . Tjqn-1)] <€

fori=p—k+1,...,pand j=p—k+1,...,p. Therefore, D*¥~! f(c) exists and hence
D¥-1f(z) exists in (a,b). By suitable modifications it can be shown that at the end
points a and b, D*=1f (of course one-sided) exists. It is easy to see that there exists
a § with 0 < 6 < (¢/k!M)"* such that for ¢, d € [a, b],

|D*=* f(c) - D*'f(d)| < €

whenever {c — d| < § and so D*~!f is continuous in [a,b]. The theorem now follows
from Theorem 4.4 of Bullen and Mukhopadhyay (1] and Theoremr 3 of Oliver [11]. a

The following result is immediate.
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THEOREM 3.2. If f € Hi(1, M, [a, b]), then f is AC on [a, b].

THEOREM 3.3. If the kth divided differences of f are bounded on [a,b] then
f € He(1,M,][a,b]).

PROOF: The proof follows readily from Lemma 4 of Russell [12]. 0

In connection with Theorem 4 of Russell [12] and Theorem 3.3 above we observe
that if f is BV,on [a,b], then f may not be kth Holderian of order 1 with any positive
constaut M on [a,b]. Functions which are BV but not ACg(see Example 2.2 of De
Sarkar and Das [4]) are examples of such functions.

THEOREM 3.4. If f € Hi(1, M, [a,b]), then Vi(s € Hy(1,kM,[a,b]).

PROOF: Let x; and z, be any two points in [a,b] with z; < =z;. Consider
any m(2zg,21,...,%n) subdivision of [¢1,22]. We then have k sets of non-overlapping
intervals (2;,ziy%), t € T = {r,k+ 7,2k +r,...<n} and r = 0,1,...,k ~ 1 so that

n—k
D 1Qu-1(fi iy -y zitko1) — Quo1(fs Zig1s- -+ Zit)]
i=0

k-1
= Z Z 1Qr—1(f5zis- -+ zitk—1) — Qu—1(f; ziv1, - -+, zign)|- -
r=0:€T,

Since f € Hi(1,M,][a,bd]) it follows that

n~k
ZIQk-—l(f; Ziyeo oy Zitk=1) — Qr—1(Ff; Zit1, -+, zitk)|
=0

k-1
SMY D (zigk— 21)

r=0i€T,
< kM(z; — z,).
Therefore Vi(f;[z1,22]) < kM(z2 — z1). This implies, in view of Theorem 7 of Russell
[12] that
Vi(r)(22) = Vigp(1)| < kM (22 — 1)
and thus the theorem is proved. 0

THEOREM 3.5. If Vi) € Hy(a, M,[a,b]) with a >0, then f € Hy(e, M, [a,b]).

PROOF: For any set of (k+ 1) points yo < y3 < ... < Yk in [a,d] we have, using
Theorem 5 of Russell [12],

'Qk—l(f;yo;yl,- --;yk—l) - Qk—l(f;yl,yz, ---:yk)’
< Vk(f; [yO)yk})
< Vi (ye) = Vi) (o)l
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and so the theorem is proved. 0
THEOREM 3.6. If f € Hi(a, M,[a,b]), a > 0, then f! € Hi_1(a,(3k — 5)M,{a,b]).
PROOF: By Theorem 3.1, f*~! exists on [a,b]. For any set of k points zo < ;3 <

... < Tk in [a,b] we have, using Theorem 8 of Russell [12],

!Qk—z(fl;$o,$17---,$k—z) ’—Qk—Z(fl;mlazZr'-,wk—l)'

k-2 k-1
= ’ ZQ'C-l(f;xO,'",wh,zhy-”’wk—-Z) - ZQk—l(f;zl)"wzhazh,-"’wk—l)l
h=0 h=1

k-2
=| Z{Qk—l(f;zoa---,znxn---;%-2) = Qi1(fi®1,- oy Tea1y Ted1s -+ oy Th-1)H
t=0

k-2

< Z 'Qk—l(f;z()y" Tty Tty '7‘3’5—2) - Qk—l(f;zl" ey Te41y Te41ye - 'amk—l)l
t=0

k—2
< Z{ |Qr—1(f5 %0, sz, Tty -3 Thmz) = Qi—1(f3 Zos -y Zey 415+ -y Th—2)

t=0
+|Qr-1(fiz1, - Teg1y Tegry e o Thm1) — Qe—1(F3 21, - s Teg1, Eet1y e - - > Thom)|

+|Qr—1(fizoy- -y Tty Tho2) — Qr—1 (321500 oy Tegr, g1y s Thm1)| }

where ¢, < £, < £,41 when s =0,1,...,k—2 and z,_; < &, <z, when s = k- 1.
For € > 0, arbritary, the points £, < &3 < ... < £x_1 can be chosen so that

le—l(f;m(h'- 9Ty Ty oo -’wk—2) - Qk—l(f;ml))' .. 7mh€h' . '7wk—2)| < E/Z(k - 1)

and

IQk-—l(f;zl,'"1zt+173t+l7~"azk—l) - Qk——l(f;zh'"73¢+17§t+1)-‘-amk—-1)!
<ef2(k—1)

when t =0,1,...,k — 2. Thus we get

(3’1) ,Qk-—z (fl;:vo,x],. . ~,wk—2) - Qk—Z (fl;mlyz21 .- )zk—l)l
k—2

< Z!Qk—l(f;:vo,---,z:,ﬁt,---,wk—z) — Qr-1(F5%1y - Teg1, €tg1y - - Th—1)| F €

t=0

Consider

lQ’G—l(f;zO:"' 1 Zey ey - ')zk—'l) - Qk—l(f;zl)' cosTet1y Eetny - ,zk—l)‘
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for a fixed value of t where 0 < ¢t < k—2. When t = 0 we have

'Qk—l(f;zﬂ"- ey ey '73’6—-2) - Qk-l(f;zl"' '9zt+l:£¢+lr'”’zk—l)'

=A|Qk-l(f;30’£07zh"'1zk—2)_‘Qk-—-l(f;zlyfhzh-“’zk—l)’-
Wetake yo = zo, yi = b0, 2 =1, Ya=¢&1, Yr = zp_2; 7 = 4,5,...,{(k +1). Then,

clearly, yo < y1 < ... < Yx+1. By Theorem 1 of Russell [12] there exists a number. §
with 0 < 8 < 1 such that

|Qr-1(fi 20,80, 215-- s ZTh—2) = Qu-1(fi 21, 61,225 .-, Tha))| ‘

= [Qe-1(f3¥0,¥1,¥2, Y0, 95, . -, Y&) — Qkﬁ-]('f;yz,ys,'---,y‘k+1)' _

= 8Qi—1(f;¥0,y1,¥2:¥3, -, Yk—1) + (1 = B)Qu—1(fy1,92,- -, yx) .
= Qi—1(fiy2,¥sy- - > Yasa)| -

<1Qk—1(£i¥0,¥1s-- > Yae1) = Qums(F5 91, Y2, 3l
F+1Qr-1(fiy1: 925+ 98) — Qu—1(F; 92,435 - -, 1))

< M(ye — %)% + M(yrs1 —91)°

< ZM(yk+1_~ %) = 2M(zp-y — 20)".

When 1 <t < k-3 we define

Yi = T3 7=0,1,...,t
Yer1 = &, Yi+2 = Tev1, Ye+s = Eet1,
yt+r=zt+r—2; T=4,5,...,(k+1—'t).

With this relabelling, using Theorem 1 of Russell [12], it can be shown in a similar
manner that for 1 <t <<k -3,

le-l(f;mO) S T .,:l:k_z) - Qk—l(f;zlr R TS TS TRU 7xk—-1)|
< 3M($k_1 — xo)a.

For t = k — 2 we consider
"Qk-—l(f; Loy Lrye.e; T2y fk-z) - Qk—l(f; L31;L2y--- ,zlc—lyfk—l)L
Since zx_; < éx_1 < Z_1, in view of Lemma 3 of Russell {12}, we have

1Qr—1(fiTo, %1, Th—2,8e—2) — Qr_1(f;21,Z2,. .- ;Tr—1,k1)]

= |Qr-1(fiT0, %1, s Th—2,&k—2) — Qe—1(f; 21,2, -, Th—2,Ek—1, Th—1)|-
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Relabelling the set of points as

zj = Yj; j=0,1,...,k—2,

Ye-1 = Ek—2, Ye = Ek-1, Y41 = Th—1

and using Theorem 1 of Russell {12] again, we can show that

|Qr—1(f;%0,21y-- -, Zk—2,€k—2) — Qr-1(f; 21,22, -, Zk_1,Ek—1)]
< ZM(Zk_l — :co)“.

Hence from (3.1) we obtain

|Qe—1(F'sx0 21,y 2h—2) — Q1 (F'; 21,22, -, Zk—1)
<(3k —5)M(zp-1 —zo)" +e¢.

As e > 0 is arbitrary, the theorem is proved. 1}
The following corollary follows by straightforward induction.
CorROLLARY 3.1. If f €  Hi(e,M,[a,b]) with a« > 0, then
f" € Hp_ (o, My,[a,b]) where M, = (3k —5)(3k —8)...(3k —3r — 2)M for r =
1(k - 1)
THEOREM 3.7. If f*¥' € Hy(a,M,[a,b]) with o« > 0, then
f € Hk(avM/(k - 1)!1[0'76])

PROOF: Let o < z; < ... < zp be any set of (k + 1) points in [e,b]. By Milne-
Thomson [10, p.6], f¥! possesses the mean value property on [a,b], namely, for any
set of k points y1 < y2 < ... < y in [a,b] there exists at least one 7 in (y1,yx) such
that

(k ~1)!Qu-1(f;y1,y2,-..,38) = £} ().
Since f*~! € H,(a, M[a,b]) we thus have

1Qr—1(fi20,21,- -, Zh_1) — Qe—a(f; 21,22, - - -, Z1)]
= [1/(k = )NF* (m) = £ () m € (o, Zk-1), 72 € (%1,Zk)
< [M/(k —1)!]Im — me|*
< [M/(k = 1))(zx — z0)°

and this completes the proof. 1]
Using Theorem 3.6 we get the following corollary.
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COROLLARY 3.2. If f" € Hy_,(e, N,la,b]) with a > 0, for some r such that 1 <
r<k—2,then f € Hy(a,N,,[e,b]), where N, =[1.4...(3k — 3r — 5)N]/[(k — 1)}].

For 0 < a< 1, f € Hy(a,M,]a,b]) does not imply that f is BV on [a,b]. To see
this, consider the following example. .

Example 3.1. Let 0 < a < 1. Let f be the function on [0,1] such that f! = F
where F' is the Weierstrass non-differentiable function defined by

F(z) = Z p~ " sin 2mq"z,
n=0
where p > 1, ¢ is even and ¢ > (47 + 1)p, with p = ¢®. Taking
M = [(27pq)/(q - p)] + [(2p)/(p - 1)]

we see (Hardy [9]) that f! € Hy(a, M,[0,1]). Thus, by Theorem 3.7, f € Hy(e, M,[0,1]).

Since f! is not BV on [0,1], it follows from Theorem 7 of Russell [14] that f is
not BV; on [0,1].

We find the following theorem useful.

THEOREM 3.8. If f*~! is absolutely continuous (AC) on [a,b], then f is ACion
[a,8].

Proor: Consider an elementary system I(z;1,...,%Z;k-1): (Zio,%ik), t = 1,2,
...,n in [a,b]. Then in view of Lemina 4 of Russell [12] we have

olll = 1Qk-1(fiins- -+ Tik) — Qe1(fiTigs- - Tise1)l-
i=1

Using Milne-Thomson {10, p.6] it is then easy to see that
olI) = [1/(k ~ )NF*1(B:) — £57 ()]
where (7;,08:), for i = 1,2,...,n is a sequence of non-overlapping intervals in [a,].
The rest of the proof is straightforward.
We conclude with the following example, which shows that the converse of Theorem

3.2 is, in general, not true.

Example 3.2. Consider the function
f(z) = [2*7'Va?k-1)/[3.5.. . (2k — 1)]

on [0,1]. Then f*¥'(z) = \/z is absolutely continuous (AC) on [0,1] and so, by
Theorem 3.8, f is ACgon [0,1}. For 0 <z <1 we have

(1f*~(=) = £ O/ [= - 0] = 1/ /=,

which is unbounded as £ — 0. Consequently f*-! ¢ H,(1,M,[0,1]) for any M > 0
and so, by Theorem 3.5, f ¢ Hi(1, M, [0,1]) for any M > 0.
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