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ABSTRACT. Where polythermal glaciers have frozen margins that buttress otherwise temperate-based
sliding ice, longitudinal compression can strongly influence ice-flow trajectory, and consequently
sediment transport paths. Past efforts to model flow in the vicinity of a basal thermal transition (BTT)
have generally relied on simplified boundary conditions or rheological idealizations, making these
model results difficult to apply to real glacier termini. Herein, we present results of numerical
simulations using a power-law rheology and with boundary conditions that better represent the frozen
margin. Model results indicate that a transition to a non-sliding frozen margin causes a decline in
surface velocity made possible by upward ice flow, implying either enhanced ablation for steady-state
simulations or the formation of a surface bulge. Permitting ice loss by ablation combined with numerical
smoothing of the basal slip transition subdues basal stress concentrations and thereby inhibits
development of structural discontinuities such as thrust faults. Upward ice flow is accommodated by
vertical extension up-glacier of the BTT. This strain regime can potentially account for key structural

features in polythermal glacier termini without appealing to thrusting.

INTRODUCTION

At the base of a polythermal glacier with a frozen margin,
the transition from temperate-based ice to cold-based ice,
herein called the basal thermal transition (BTT), is generally
viewed as a slip/no-slip transition (Fig. 1). Although some
glaciologists have documented basal motion at cold-based
glaciers (e.g. Echelmeyer and Wang, 1987; Cuffey and
others, 1999), it occurs at rates that are often more than an
order of magnitude smaller than those of temperate glaciers.
Therefore, rates of basal motion are expected to abruptly
decline where fully sliding temperate-based ice transitions to
fully coupled cold-based ice.

Many authors have ascribed important processes to the
BTT related to its role as a slip/no-slip transition. Among the
most commonly cited of these processes is thrust faulting
resulting from longitudinal compression (herein, a distinc-
tion is made between faulting, where there is slip along a
discontinuity, and continuum flow where motion is accom-
modated by distributed strain without a discontinuity). This
hypothesis seems to have arisen by analogy with crustal
tectonics, and it finds support in some theoretical treatments
of the problem. In models that represent flow of linear-
viscous ice over a bottom boundary that has a discrete
transition from free slip to no slip, a singularity in stresses
and strain rates develops at the transition point. Beneath
idealized glaciers this singularity, or the analogous case of a
transition from no slip to free slip, has been the focus of
several modeling efforts (Hutter and Olunloyo, 1980, 1981;
Barcilon and MacAyeal, 1993; Lliboutry, 2002), most of
which employed analytical methods for obtaining asymp-
totic approximations around the singular point. Although
each study attempted to extract a rigorous description of the
ice dynamics in the area, each also acknowledged that the
singularity was an unphysical result. Nevertheless, Hutter
and Olunloyo (1980) and Lliboutry (2002) suggested that the
high stress concentration at the BTT should cause erosion of
the substrate or faulting within the ice.
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Here we describe numerical experiments conducted to
see how ice dynamics is influenced by a frozen margin with
more realistic boundary conditions and ice rheology. For
generality, we use two geometrically simple domains and
treat the ice as a homogeneous medium. The intent is to
relax some constraints, which have been motivated in part
by mathematical convenience, to generate predictions of ice
motion that can be more readily applied to glacier termini.
Of particular interest is the treatment of conditions at the
upper boundary of the glacier and resultant flow patterns as
ice passes over the BTT. This modeling is also potentially
relevant to transitions in basal coupling arising from factors
other than temperature variations (e.g. soft-bed/hard-bed
transition).

BACKGROUND

Many modern polythermal glaciers are composed of a core
of temperate ice capped with a cold surface layer in the
ablation zone that usually meets the bed near the front and
lateral margins (Fig. 1) (e.g. Blatter and Hutter, 1991; Clarke
and Blake, 1991). As with all grounded glaciers, these
polythermal termini are characterized by a decrease in
surface velocity toward the margins, which in some cases
may occur abruptly over the BTT (e.g. Jansson and others,
2000). This down-glacier velocity decrease is attended by
upward ice flow which, in steady state, is balanced by
ablation. Glaciers whose margins are frozen to the bed are
noteworthy for their debris content near the terminus. This
debris, usually melting out from arcuate, up-glacier-dipping
bands and lenses, commonly appears to have a subglacial
origin based on the presence of rounded, striated clasts (e.g.
Hambrey and others, 1999). A popular interpretation of
these debris bands is that they represent sediment that has
been entrained at the bed in the temperate-based portion of
the glacier and subsequently uplifted by thrust faulting to the
glacier surface (e.g. Hambrey and others, 1999). Although
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Fig. 1. Geometry and flow of a polythermal glacier terminus.
Down-glacier from where the freezing isotherm dips into the bed,
basal sliding is not permitted. This basal thermal transition (BTT)
therefore represents a slip/no-slip transition.

surge-type glaciers contain some of the best-documented
examples of thrust-like features in polythermal termini,
many other non-surge-type polythermal (e.g. Glasser and
others, 2003) and temperate (e.g. Herbst and others, 2006)
glaciers have structures that are interpreted as resulting from
thrusting.

The most rational starting point for modeling ice flow in
the vicinity of a frozen margin is to consider the BTT to
represent an abrupt change in boundary conditions. Hutter
and Olunloyo (1980, 1981) used the Weiner—Hopf method
to solve for velocity and stress in the neighborhood of a basal
slip/no-slip transition (SNST). Their solutions represent the
first detailed discussions of the effects of a SNST on the local
velocity field and basal shear stress. Their model predicts
that the transition from plug flow over the drag-free portion
of the bed to fully developed parabolic flow downstream
occurs over just a few ice thicknesses surrounding the SNST
and that the basal velocity gradient and stresses in the ice
approach infinity near the SNST. Barcilon and MacAyeal
(1993) built upon Hutter and Olunloyo’s original analysis,
yielding similar asymptotic solutions for stresses and vel-
ocities in the vicinity of the SNST. Lliboutry (2002) later
analyzed flow in the neighborhood of the singularity for a
non-linear ice rheology. These solutions all prohibit mass
loss across the top of the domain. The result is that when
basal ice decelerates approaching the no-slip base, ice
higher up must accelerate to satisfy conservation of mass.

Moreover, the infinite stresses predicted by analytical
models of the SNST are impossible. Thus, there must be a
physically meaningful way to place bounds on SNST
singularities. A strategy for doing this has been used for
several decades in the field of fracture mechanics, where
classical linear elastic models of cracked materials predict
infinite stresses at crack tips (e.g. Scholz, 2002). It was
recognized that at elevated stresses in the vicinity of a crack
tip, inelastic deformation must become important, thereby
limiting stresses over a finite region surrounding the tip and
invalidating the assumption of a continuum (e.g. Rudnicki,
1980; Gross and Seelig, 2006). If we imagine the ice-bed
interface at the SNST as the tip of a sliding shear crack (as
McMeeking and Johnson (1986) did for a related problem),
we would expect to find a zone in the ice around the SNST
where stress is limited by enhanced plastic yield, perhaps
associated with strain heating (cf. Renshaw and Schulson,
2004). Outside of this zone, normal power-law viscous flow
would dominate. Addressing the related issue of crevasse
penetration in ice, Van der Veen (1998) computed a range of
values for the size of the plastic zone in ice, with a
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reasonable average value on the order of 1 m (Van der Veen
suggested 0.16-2.55m based on various estimates of the
fracture toughness of ice). Clearly, continuum solutions for
stresses on a finer scale around the SNST will overestimate
stresses that can physically arise even if the thermal
transition is indeed sharp.

There are several glaciological reasons to further question
the notion of an abrupt SNST. In a transition from water-rich
temperate ice to completely cold ice with little unfrozen
intergranular water, there must be a zone where the
unfrozen water content decreases due to net freezing as
heat is removed (Fowler and Larson, 1978). This should
occur where ice is still at the pressure-melting temperature
but could result in a progressive increase in coupling
strength between the ice and a soft bed (e.g. Fowler and
others, 2001). Additionally, if geological or hydrological
heterogeneity in the substrate causes the freezing isotherm
to dip into the bed along a boundary that is wavy or patchy
in plan view, the effects of the BTT on ice flow may be
further muted. Among the few studies to investigate this
transition in situ, Murray and others (2000) and Smith and
others (2002) found that the surge front at Bakaninbreen,
Svalbard, where basal velocity declines to near zero,
represented the patchy start of a marginal zone of subglacial
permafrost rather than a sharp boundary.

In summary, although idealized analytical models have
provided a starting point for understanding the influence of
frozen margins on ice flow, the relevance of these models to
the problem at hand is limited by their simplified boundary
conditions. Moreover, most such models are restricted to
linear ice rheology. Numerical approaches such as the finite-
element method can more readily handle the combined
difficulties of mixed boundary conditions and non-linear
rheology while retaining the full-stress Stokes equations.

METHODS

We consider the slip/no-slip transition at the BTT using the
finite-element method implemented with ELMER, a multi-
physics modeling software freely available from the Finnish
Center for Scientific Computing (http://www.csc.fi/elmer).
ELMER solves the equations governing momentum and mass
conservation for glacier flow, the Stokes equations, ex-
pressed here in non-dimensional form for an inertia-free
power-law fluid:

1-n

—VP4+V- {a'eT [vv + (VV)T} } -0
V.-v=0, (1)
where P is a pressure deviation from hydrostatic (Batchelor,

1967, p.176), ée = ,/%é:,—,é,vj is effective strain rate, v is the

velocity vector with vertical component v and horizontal
component u, and n is the power-law exponent. All
variables (here and below, unless otherwise specified) are
dimensionless. Gradients of the output velocities were used
to determine the components of the dimensionless strain-
rate tensor D, and corresponding components of the
deviatoric stress tensor were computed with the constitutive
relation:

1=n
Tij = Béen é,‘j, (2)

where B is the pre-factor in Glen’s flow law (Hooke, 2005).
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Fig. 2. Model domains and boundary conditions used in the finite-
element simulations: (a) rectangular domain; (b) domain with
parabolic upper surface; and (c) abrupt change in basal slip
condition.

Since we are interested primarily in the sensitivity of ice flow
to material properties and boundary conditions, the ice is
assumed to be homogeneous and B is set everywhere to 1.

To generalize results and permit comparison with past
modeling efforts, a simple two-dimensional rectangular
domain scaled in units of ice thickness was used in initial
model experiments (Fig. 2). The ice slab had no surface
slope, and all flow was driven by an influx of ice into the
domain from up-glacier. A second type of domain had an
upper surface described by a parabola. Even for this domain,
however, contributions to the stress field from local driving
stresses were neglected, despite the sloping surface. This
strategy allowed isolation of the impacts of longitudinal
coupling on ice flow.

As illustrated in Figure 2, horizontal ice flow with depth-
independent dimensionless velocity of 1 was prescribed
along the left side of each domain. Ice was permitted to slip
parallel to the bed for a portion of the bottom boundary up-
glacier, but a transition to no slip was imposed down-glacier.
An initial group of simulations was run with the same
boundary conditions imposed by Hutter and Olunloyo
(1980), where ice was permitted to exit the domain only
on the right-hand boundary. In these simulations, the upper
boundary was shear-free, with zero normal velocity. In all
other simulations, the upper boundary was prescribed to be
stress-free. A consequence of the stress-free condition is that
ice was free to exit the domain at the top where ablation was
assumed to remove mass. For simplicity, a steady-state
geometry was assumed, which required that ablation exactly
match upward flow. This is not always a safe assumption,
and its implications are addressed separately below.

The transition from slip to no-slip at the bed was enforced
as an abrupt transition between no-shear stress and no-slip
conditions at x = 0, much like the treatments of previous
authors. Basal velocity at x = 0 was required to be zero,
while the magnitude of the horizontal velocity at the
neighboring node up-glacier was left free. Linear basis
functions ensured that velocity gradients (and therefore
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stresses) were constant between nodes. With this in mind,
discretization was guided by the notion that elements
smaller than or roughly equal to the dimensions of the
near-field plastic yielding zone (as defined above) would
provide an upper bound for stresses. Realizing that most
modern polythermal glacier termini are <200 m thick at the
BTT, using 1/200 as the minimum characteristic element size
around the SNST ensured that stresses were bounded within
the ~1Tm zone of enhanced plastic yielding. Stress fields
obtained in this manner are viewed as more physically
meaningful than those resulting from idealizations that
assume step-change transitions, with associated stresses
approaching infinity.

Domain geometries and meshes were created using the
freely available mesh-generation software GMSH. Meshes
ranged from a minimum of 5486 to a maximum of 27 156
linear, triangular elements. Pressure-velocity solutions were
obtained first by solving the weak form of Equations (1) with
three degrees of freedom at each node, u, v and P. The
deviatoric stresses 7, 7,, and 7, were then computed
directly from nodal velocity gradients. Note that there is no
prescribed functional relationship between slip velocity and
basal stresses. Solutions were obtained iteratively in each
domain for ice with a power-law exponent nequalto 1, 2, 3
and 4.

RESULTS

Each of the changes that were made to the geometry and
conditions of the analytical SNST problem had a discernible
effect on simulation results. The results are therefore
presented as a series of changes to constraints, beginning
with a reference simulation using the Hutter and Olunloyo
(1980) formulation. We then describe effects of relaxing
constraints on boundary conditions, as well as domain
geometry. While simulations were performed for a range of
nvalues, our focus is mostly on results for n = 3. Changes in
n were found to have minimal effects on kinematics and to
mostly affect the magnitudes of stresses.

Results from a simulation of the SNST problem as
originally formulated by Hutter and Olunloyo (1980) are
shown in Figure 3, including the analytical solution with
n =1 (equations 5.7 and 7.7 in Hutter and Olunloyo, 1980)
and finite-element solutions for n = 1 and n = 3. There is
very good agreement between the Newtonian numerical
and analytical solutions for velocities and stresses (Fig. 3c
and d) both in the far field and near the SNST, indicating that
the numerical approach gives accurate results. In the
Newtonian case, ice does not begin to respond to the SNST
until it is about two ice thicknesses away from the transition
(Fig. 3¢), at which point the basal velocity declines steeply,
causing a concentration in basal shear stress at the SNST
(Fig. 3d). While the analytical solution indicates stresses
approaching infinity as x approaches 0, the corresponding
numerical solution for n = 1 gives a finite peak shear stress
at x = 0 (stresses are non-dimensionalized using the scheme
of Cohen, 2000). Due to confinement at the top of the
domain, surface velocity increases over this region to
conserve mass, reaching a steady surface speed within one
ice thickness down-glacier of the SNST that is 33% larger
than the up-glacier surface velocity (Fig. 3c). Numerical
results for n = 3 show similar behavior, albeit with an even
more subdued stress concentration (Fig. 3d) and a smaller
increase in surface velocity beyond the SNST (Fig. 3c).
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Fig. 3. Finite-element results of a reference simulation under boundary conditions employed by Hutter and Olunloyo (1980) compared with
their analytical results: (a) velocity vector field for n = 1; (b) velocity vector field for n = 3; (c) bed velocities from Hutter and Olunloyo’s
n =1 result (solid curve) and finite-element solutions for n = 1 (open circles show bed velocity; dash-dot line shows surface velocity) and
n = 3 (dotted line shows bed velocity; dashed line shows surface velocity); and (d) bed shear stress from Hutter and Olunloyo (solid curve)
and finite-element results for n = 1 (open circles) and n = 3 (dashed curve). The analytical results have been rescaled by a factor of 3 so that
inflow velocity is 1 to facilitate direct comparison with later simulations.
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Fig. 4. Results using a rectangular domain with an abrupt slip transition, n = 3, and an open (flow-through) upper boundary: (a) velocity
vector field; (b) streamlines; (c) basal slip velocity (dotted curve), horizontal surface velocity (solid curve) and vertical velocity (dashed curve)
(inset shows enlargement of the region around x = 0); and (d) basal shear stress (solid curve) and normal stress (dashed curve). Vertical
scales in (a) and (b) are exaggerated.
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Fig. 5. Results for a domain with a parabolic upper surface and abrupt slip transition, with n = 3: (a) velocity vector field; (b) streamlines;
(c) basal slip velocity (dotted curve), horizontal surface velocity (solid curve) and emergence velocity (dashed curve), where emergence
velocity is defined as v, =v+utan , where « is the ice surface slope (inset shows enlargement of the region around x = 0); and (d) basal
shear stress (solid curve) and normal stress (dashed curve). Vertical scales in (a) and (b) are exaggerated.

We consider further only a power-law rheology (n = 3)
and explore effects of allowing flow across the upper bound-
ary and using a tapered (parabolic) domain geometry. These
changes are introduced additively, with the final simulation
including both effects and the power-law rheology.

Figure 4 summarizes representative finite-element results
for flow over an abrupt transition in a rectangular domain,
with a stress-free upper boundary and n = 3. At the extreme
left-hand side of the domain, the ice feels the no-slip
boundary far down-glacier (Fig. 4a and b). As a result, near-
surface ice is deflected upward and across the top of the
domain. The resulting loss of mass allows the remaining ice
to proceed through the domain more slowly, accounting for
the steady, nearly linear decline in basal velocity over most
of the slipping portion of the bed (Fig. 4c). Because the bed
in that region cannot support a shear stress (as required by
the boundary condition), the horizontal surface velocity
decreases almost identically. Only within about one-half of
an ice thickness of the SNST is there a departure from this
pattern. Here the basal velocity gradient steepens much like
the near-field solution in analytical models. The result is a
pronounced deviatoric stress gradient, for which we use bed
shear and normal stresses as proxies (Fig. 4d). However, the
reduced ice flux across the line x = 0 due to upward ice
flow decreases the magnitude of the stress concentrations at
the SNST by nearly 50% compared to the n =3 case in
Figure 3d. Horizontal and vertical surface velocities
continue to decline gradually as ice passes over the SNST,
eventually becoming nearly zero about two ice thicknesses
beyond the SNST. In this zone of velocity decline, the
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horizontal and vertical surface velocity components are
nearly equal, indicating that the ice-flow vector there is
inclined approximately 45° from the bed (Fig. 4a). Down-
glacier from there, ice is effectively stagnant because most of
the inflow has already been lost to ablation.

Results for a simulation with an abrupt SNST and flow-
through upper boundary are shown in Figure 5 for a domain
with a parabolic upper boundary. Although qualitatively
very similar to the results for the rectangular domain, there
are subtle differences. A kinematic difference is that velocity
components no longer establish linear trends in the sliding
portion of the domain (Fig. 5¢), owing to the down-glacier-
changing surface slope. Nevertheless, as the ice approaches
the SNST it is still deflected upward, as in the rectangular
domain, producing a broad peak in upward velocity there,
and again leaving a wedge of effectively stagnant ice at the
terminus. Ice-flow vectors over the SNST are inclined
somewhat less steeply than for the rectangular domain,
and stress magnitudes exhibit peaks at x = 0 but remain
small compared to the reference case (Fig. 3d).

Simulations were also attempted using a prescribed
function describing a continuous decline in basal velocity
as a basal boundary condition. The smoothed sliding function
further subdues stress concentrations but predicts untenable
negative shear stresses in the sliding portion of the bed.
Introducing gravity would likely eliminate these negative
shear stresses but is beyond the scope of the present paper.
Nevertheless, even with the prescribed smooth decline in
basal velocity, ice flow is deflected toward the surface,
leaving nearly stagnant ice at the terminus.
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DISCUSSION

The close correspondence between the numerical and
analytical results for the test case shown in Figure 3 indicates
that the finite-element method can reliably represent the
macroscopic velocity and stress fields of interest. Addition-
ally, in close proximity to the abrupt SNST, the numerical
approximation limits stresses in a way that is consistent with
the requirement that ice only supports finite deviatoric
stresses. For example, the results presented in Figure 3d give
a peak dimensionless shear stress at the SNST for n = 3 of
approximately 3.58. When scaled to an arbitrary terminus
thickness hy = 50 m, the characteristic element length used
is 0.25m, close to the lower end of Van der Veen’s (1998)
plastic-zone range. Further dimensionalizing (using the
scheme of Cohen, 2000) with reasonable values for B
(30MPas'?) and inflow velocity uy (10ma™"), the peak
dimensional shear stress is 0.099 MPa at the SNST, a good
match with the commonly cited 0.1 MPa yield strength of ice
(e.g. Paterson, 1994, p.188). Therefore, in this particular
scaling example, the numerical solution represents near-
field behavior around an abrupt SNST better than the
analytical solutions. Further mesh refinement around the
SNST is not only unnecessary but would give unphysical
results. For significantly different values of scaling par-
ameters, the mesh could readily be refined or coarsened
around the SNST to bound the solution appropriately.

Each of the steps taken to relax constraints of analytical
solutions has significant impacts on the velocity field. The
most profound effect that can be seen by comparing either of
Figures 4 and 5 with Figure 3 (n = 3) stems from allowing
ice discharge out of the top of the domain. In each
simulation described in Figures 4 and 5, ice-flow vectors
acquire an upward component immediately upon entering
the domain. This impact can be clearly attributed to the
effect of discharge out of the domain on mass conservation.
Ice entering the domain from up-glacier is deflected upward
and out of the domain by slower-moving ice down-glacier.
As a result, less ice needs to be conveyed further through the
domain and down-glacier velocities decline. A change in
the orientation of the upper surface across which mass is lost
(i.e. use of a parabolic upper boundary) both lengthens that
surface and reduces the vertical velocity component
necessary to direct ice out of the domain. This changes the
linearity of the longitudinal gradient in surface velocity as
indicated by comparison of Figures 4c and 5c. The value of
n has very little effect on the velocity field except in the
local neighborhood (within three elements) of the SNST.
Comparison of the velocity field for otherwise identical
simulations indicates that outside of this zone a change from
n=1 to n=4 produces changes in the velocity field of
<5% of the inflow velocity. The lack of a significant
influence of the value of n on the macroscopic velocity
fields, combined with the conspicuous effects of changing
upper and lower boundary conditions, indicates that
conservation of mass subject to boundary constraints deter-
mines the velocity field much more than viscous deform-
ation resistance. Had we allowed for a transient free surface
and permitted ablation to inexactly compensate upward
velocity, time-dependent evolution of the terminus geometry
could have been calculated, but that calculation is beyond
the scope of the present analysis.

The primary features of interest in the simulated stress
fields are the magnitude and distribution of deviatoric
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stresses induced by the SNST. Each of the steps taken in
relaxing model constraints (Figs 3—-5) reduces the magnitude
of the basal shear stress peak. In particular, allowing ice flow
across the upper boundary causes significant stress reduc-
tion. Upward ice flow, balanced by ablation, decreases
velocity gradients by reducing total horizontal ice flux. The
magnitude and distribution of deviatoric stresses on the bed
would also be affected by the smoothing of basal velocity.
While the peak in basal deviatoric normal stress (which is
the opposite of longitudinal stress in plane strain and
therefore an indication of longitudinal stress transfer) occurs
sharply at an abrupt SNST, it would be broadened for a
smoother transition and focused not where slip velocity
nears zero but where the slip velocity gradient is greatest.

Allowing for non-zero basal shear stresses and a conse-
quent departure from plug flow in the freely sliding portion of
the model glacier would further improve realism. For
example, if we were to allow slip velocity in the model to
adjust to basal stresses through an effective-stress dependent
slip law (e.g. equation 21 of Paterson, 1994, p.151), the
enhanced normal stress on the bed up-glacier of the BTT
(Figs 4d and 5d) would contribute to smoothing of the basal
velocity transition. Also, inclusion of local driving stresses
(gravity) could potentially influence results with the parabolic
upper surface. Small but discernible effects of gravity are
likely (e.g. the volume of nearly stagnant ice at the margin
might be reduced by superposition of simple shear driven by
the downslope component of the glacier weight). However, a
major influence of gravity on our results would not be likely,
given the generally large deviatoric stresses associated with
longitudinal stress transfer at the BTT, relative to those
associated with the local glacier weight.

IMPLICATIONS

These results suggest that reliance on existing analytical
models of SNSTs may lead, among other things, to
overestimation of the importance of thrusting in glacier
margins. Longitudinal compression across the BTT of a
frozen margin deflects ice away from the bed, enhancing
upward ice flow and, upon ablation, removes it from the
system. In three dimensions, a transition from temperate-
based ice to cold-based ice is almost certainly irregular or
patchy. Even where local velocity gradients are steep, strain
heating would extend the zone of soft temperate ice. If
stresses did manage to reach a threshold level, plastic yield
would accommodate strain. Each of these processes would
tend to broaden the transition from sliding to non-sliding ice,
thereby reducing the magnitude of stress concentrations.
Without an extraordinary stress concentration, ice in typical
glaciological environments will not behave in a brittle
manner under compression (Schulson, 2002).

Inspection of velocity vectors and streamlines in Figures 4
and 5 indicates that objects initially near the bed in the
sliding portion of a glacier would eventually emerge at the
surface within a few ice thicknesses of the BTT. Planar
englacial features initially oriented parallel to streamlines
would be rotated along with the streamlines as they were
passively transported down-glacier, attaining dips as large as
45°. Because boundary conditions prevent basal drag in the
sliding segments, the dominant component of the strain field
up-glacier of the BTT is horizontal shortening and vertical
extension (pure shear). Under this regime, pre-existing
features oriented at an angle to streamlines would steepen
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Fig. 6. Progressive deformation of a passive marker in the simulation shown in Figure 5, assuming a steady state. A slightly convex-up, sub-
horizontal structure that is initially 0.04 ice thicknesses above the bed is rotated up-glacier, longitudinally shortened, and vertically extended
as it approaches the SNST and is deflected toward the surface. Vertical exaggeration is 2 and the dimensionless time-step is 2ho/uy.

as they move toward the BTT and the surface, as indicated in
Figure 6. An initially slightly inclined structure deep in the
ice (e.g. a basally accreted sediment lens) would become
rotated to steeper angles by the time it outcropped at the
glacier surface (cf. Hooke and Hudleston, 1978). The
addition of a bed-parallel simple shear component arising
from inclusion of gravity could counteract this rotation to
some degree if it were large compared to the longitudinal
compressive stresses. Nevertheless, upward deflection and
substantial rotation of structural features formed at depth
within the glacier (such as debris bands in basal ice) may be
explained by continuum flow in the vicinity of a SNST. This
provides a mechanism for generating thrust-like structures in
ice margins without appealing to uplift along a structural
discontinuity.

Finally, in most of our simulations, ice more than two ice
thicknesses down-glacier from the SNST is largely stagnant,
a result that contrasts greatly with the down-glacier speed-
up predicted in earlier models that prevent ice flow out the
top of the domain. Assuming that ablation rates are roughly
constant along a flowline or vary linearly with surface
elevation, a geometry such as the parabolic profile of
Figure 5 would not be sustainable. The nearly stagnant ice at
the terminus would melt away, unless insulation there
provided by surface debris or snow inhibited ablation
sufficiently. Alternatively, if ablation was sufficient to
balance upward ice flux in the slow-moving terminus but
was unable to keep pace with faster upward flow
immediately up-glacier, a bulge would form in the ice
surface in the vicinity of the BTT. A number of polythermal
surge-type glaciers do develop such bulges near their surge
fronts, which in some cases appear to be coincident with
their basal thermal transitions (e.g. Clarke and Blake, 1991;
Fowler and others, 2001).

CONCLUSIONS

Our numerical model builds on previous analytical models
of SNSTs by using a power-law rheology, realistic terminus
geometry, allowing ice loss (ablation) from the top of the
model domain, and eliminating singularities in basal
stresses. Under these more realistic constraints, model
results indicate that longitudinal compression at the BTT is
accommodated by vertical extension, resulting in uplift of
ice from depth and a down-glacier decline in surface
velocity. Upwardly deflected flow can account for the
appearance at the glacier surface of up-glacier-dipping
structures containing basal sediment even in the absence
of thrusting along discontinuities. Thrusting is further
disfavored when account is taken of the numerous processes
that likely contribute to limiting stress magnitudes. Results
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also suggest that an imbalance between the spatial patterns
of upward ice velocity and ablation rate can lead to very
different terminus geometries. Further development of this
model will include introducing gravity, allowing rheological
heterogeneity in the ice, and tracking the evolution of the
free surface under various imposed ablation patterns. Work
is underway to apply this strategy to the terminus of a
polythermal glacier (Storglacidren, Sweden) to help under-
stand the effects of its frozen margin on terminus structure
and behavior.
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