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With decreasing Reynolds number, Re, turbulence in channel flow becomes spatio-
temporally intermittent and self-organises into solitary stripes oblique to the mean flow
direction. We report here the existence of localised nonlinear travelling wave solutions
of the Navier–Stokes equations possessing this obliqueness property. Such solutions
are identified numerically using edge tracking coupled with arclength continuation.
All solutions emerge in saddle-node bifurcations at values of Re lower than the
non-localised solutions. Relative periodic orbit solutions bifurcating from branches of
travelling waves have also been computed. A complete parametric study is performed,
including their stability, the investigation of their large-scale flow, and the robustness
to changes of the numerical domain.
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1. Introduction
The study of the transition to turbulence usually starts with the investigation of the

linear instabilities of the laminar solution. Plane Poiseuille flow (PPf), the solution
of channel flow with a parabolic profile, is one of the few analytical solutions of
the Navier–Stokes equations. Its stability has been studied extensively, with the
ambition to predict the transition to turbulence in this simple flow geometry. This
solution loses its stability in favour of two-dimensional Tollmien–Schlichting (TS)
waves at Re= 5772, where the Reynolds number Re= Uclh/ν is based on Ucl – the
centreline velocity of the corresponding Poiseuille flow solution, h – the half-gap,
and ν – the kinematic viscosity of the fluid (Orszag 1971). Turbulence, however,
is already found in channel experiments at Re = 1000 and below. Although the
TS instability is subcritical in Re, (Stuart 1960; Ehrenstein & Koch 1991) the
bifurcated branches fail to reach the low values of Re where the onset of turbulence
is reported in early transition experiments (Carlson, Widnall & Peeters 1982; Nishioka
& Asai 1985; Alavyoon, Henningson & Alfredsson 1986; Klingmann 1992; Seki &
Matsubara 2012; Lemoult, Aider & Wesfreid 2013). More critically, the TS waves,
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FIGURE 1. Experimental observation of an elongating isolated oblique stripe at Re= 700
in a water channel as it travels downstream. The flow is from the left to the right.
Reflective mica particles were added for visualisation.

having only spanwise vorticity, bear little structural resemblance with the coherent
structures observed in the corresponding turbulent regimes, which are characterised
by quasi-streamwise streaks and vortices.

From the analysis of the self-sustaining process of turbulence (Hamilton, Kim
& Waleffe 1995), it has become clear that different solutions of the governing
Navier–Stokes equations ought to exist, which capture key components of turbulent
flows and are more relevant to the transition process (Jiménez et al. 2005; Kawahara,
Uhlmann & Van Veen 2012). The first solutions were identified as steady states in
plane Couette flow by Nagata (1990), followed by many others (see e.g. Gibson,
Halcrow & Cvitanović (2009)). Many solutions have been found in other shear flow
geometries in the form of travelling waves (TWs), see Waleffe (2001), Nagata &
Deguchi (2013), Park & Graham (2015), Neelavara, Duguet & Lusseyran (2017),
Wall & Nagata (2016) in the context of channel flow and Faisst & Eckhardt (2003),
Wedin & Kerswell (2004) for pipe flow. They are disconnected from the laminar
profile and all are linearly unstable. The entanglement of their stable and unstable
manifolds has been conjectured to form a deterministic backbone for the low-Re
turbulent dynamics (Kawahara et al. 2012). Many of these studies were performed
in small periodic domains. Though conceptually useful, these studies are motivated
by higher Re wall turbulence studies (Jiménez & Moin 1991) and turn out to be
inadequate to capture crucial characteristics of lower Re turbulent flows, such as
spatial localisation. Indeed, ample experimental and numerical evidence from studies
in large domains show that wall-bounded turbulence at the lowest possible values of
Re remains localised. Besides, the corresponding laminar–turbulent interfaces display
non-zero angles with respect to the laminar flow direction (Coles 1965; Prigent et al.
2002; Tsukahara et al. 2005; Hashimoto et al. 2009; Duguet, Schlatter & Henningson
2010; Fukudome & Iida 2012; Xiong et al. 2015). Starting from fully turbulent flow,
as Re is decreased, criss-cross stripe patterns appear. As Re is decreased further, the
mean spacing between these stripes of turbulence increases, to the extent that they
appear isolated in an otherwise laminar environment (see Tsukahara & Ishida (2015),
Tao, Eckhardt & Xiong (2018), Paranjape (2019)). An experimental realisation of a
stripe in channel flow is shown in figure 1. Oblique stripes are common to many
wall-bounded shear flows at the onset (in Re) of turbulence (Tuckerman, Chantry &
Barkley 2019). These include the cases, in historical order, of Taylor–Couette flow
(Coles 1965), plane Couette flow (Prigent et al. 2002), rotor-stator flow (Cros & Le
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Oblique stripe solutions of channel flow 897 A7-3

Gal 2002) and annular pipes (Ishida, Duguet & Tsukahara 2016, 2017; Kunii et al.
2019).

The appropriate bifurcation scenario rationalising the appearance and self-sustenance
of such oblique turbulent structures has not been clarified yet. We expect it to start
from a branch of nonlinear solutions of the Navier–Stokes equations possessing the
following properties: (a) spatial localisation, (b) an oblique orientation with respect
to the mean flow, with angles comparable to experimental observations, (c) quasi-
streamwise vortices and streaks not aligned with the interface. In the present study,
we demonstrate numerically the existence of nonlinear TWs satisfying all the above
properties at once. These TWs form a large family of nonlinear states parametrised
by two wavelengths and by their angle with respect to the streamwise direction. Their
computation is a necessary step towards an improved mathematical understanding of
subcritical transition directly from the governing Navier–Stokes equations.

The paper is structured as follows: the numerical methodology is explained in § 2
and a parametric study of the TWs is detailed in § 3. Eventually, all these numerical
results, and their relevance to the experimentally observed transition phenomenon, are
discussed in § 4.

2. Numerical aspects
The approach used throughout this study is based on the numerical code

Channelflow (Gibson 2014), which integrates the incompressible Navier–Stokes
equations in time in a parallelepipedic geometry. When non-dimensionalised using
the centreline velocity Ucl of the laminar flow at the equivalent flow rate, the half-gap
h and the kinematic viscosity ν, the Navier–Stokes equations for the velocity–pressure
perturbation (u, p) to the base flow (UL, P) take the following form

∂u
∂t
+ (u · ∇)u+ (u · ∇)UL + (UL · ∇)u=−∇p+

1
Re
∇

2u+ f (t)∇ · u= 0, (2.1)

where Re=Uclh/ν. UL is the streamwise base flow, f (t) is a time-dependent forcing
term mimicking an imposed streamwise pressure gradient. The flow rate in both planar
directions x and z is held constant by adapting the amplitude of the forcing term
f (t) at every time step. No-slip boundary conditions are imposed at the walls of the
channel (y=±1), resulting in

u(x,±1, z)= 0. (2.2)

The spectral decomposition of the velocity field reads

u=
∑
k,m,n

Tn(y)ei(kαx+mβz), (2.3)

where Tn(y) are Chebyshev polynomials, and (α = 2π/Lx, β = 2π/Lz) is the
fundamental wave vector, where Lx and Lz are lengths of the rectangular domain
in planar directions x and z. The summation extends from k=Nx/2+ 1 to Nx/2, from
m= Nz/2+ 1 to Nz/2, and from n= 0 to Ny − 1, where Nx, Ny and Nz are integers.
The use of Fourier modes in (2.3) implies periodicity in the planar directions x and
z. The time-stepping algorithm with variable time step combines a Crank–Nicolson
scheme with a second order Adams–Bashforth scheme for the nonlinear terms, and
the maximum time step is fixed to 0.0325 in units of h/Ucl. By convention, Nx and
Nz are understood here as the number of modes before dealiasing.
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FIGURE 2. Direct numerical simulation of a sustained turbulent stripe in a large domain
with Lx′ = Lz′ = 400, no tilting (flow from bottom to top). Isocontours of wall-normal
velocity v(x, y = 0, z) for Re = 660. The oblique red rectangle illustrates the concept of
tilted domain (Barkley & Tuckerman 2005) with periodic boundary conditions in x and z.
By construction, the shorter side of the domain is parallel to the stripe.

A tilted domain, as in Barkley & Tuckerman (2005, 2007), Tuckerman et al. (2014),
is used in order to capture solutions in the form of oblique stripes. If x′, y and z′
denote the usual streamwise, wall-normal and spanwise coordinates, and ex′ , ey, ez′

are the corresponding unit vectors, we define here the directions x and z associated
with the new unit vectors ex and ez by

ex = cos θex′ + sin θez′, ez = sin θex′ − cos θez′, (2.4a,b)

where 0◦6 θ 6 90◦. These notations are consistent with Barkley & Tuckerman (2007)
and Tuckerman et al. (2014). If Lx � Lz and Lx = O(h), then, provided there is a
laminar–turbulent interface in the flow wider than O(h), this interface can only be
parallel to the short direction ex. The quantity θ can be thus interpreted as the angle
between the physical streamwise direction and the stripe (Tuckerman et al. 2014).
Note that no extra discrete symmetry has been imposed in any of the simulations.
The concept of tilted domain is demonstrated in figure 2. There, the simulation in a
larger domain is performed inside a non-tilted domain (θ = 0◦) of size Lx′ = Lz′ = 400
with resolution (Nx,Ny,Nz)= (1536, 64, 1536).

The resolution used for a numerical domain with (Lx, Lz) = (10, 40) is Nx = 72,
Ny = 49 and Nz = 256 for all values of Re and θ reported. This is comparable
with the resolution in Tuckerman et al. (2014) for the turbulent regimes, known to
be computationally more demanding in terms of resolution than edge regimes for
equivalent parameters. One can also define a local resolution (nx =Nx/Lx, nz=Nz/Lz)
maintained in case of changes in domain size (such as in § 3.1). The current value
of Ny ensures that, for values of Re sufficiently below 1000, all transverse scales are
properly resolved.

In what follows, we keep primed notations (x′, z′, u′, w′) for non-tilted planar
variables and non-primed notations (x, z, u, w) for planar quantities defined within
a tilted domain. The physical streamwise velocity perturbation is hence denoted u′
(respectively, w′ for the spanwise component), while the velocity components parallel
and orthogonal to the stripes are denoted u and w, respectively.
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2.1. Tools for identification of nonlinear solutions
The observable Ev, based on the deviation from the base flow, is the wall-normal
energy defined as

Ev =
1
2

∫ Lx

0

∫ Lz

0

∫ 1

−1
v2 dx dy dz, (2.5)

where v is the wall-normal velocity component. The total perturbation kinetic energy
E is defined in a similar way with v2 replaced by the squared norm of the disturbance
velocity |u|2 (both independent of the tilting of the domain). The z-dependent energy
e(z) is defined by

e(z)=
1
2

∫ Lx

0

∫ 1

−1
|u|2 dy dx, (2.6)

and is such that E =
∫ Lz

0 e(z) dz. Its wall-normal counterpart ev(z) is also defined in
the same manner by considering only v2 as integrand.

Edge states are computed using the standard bisection algorithm (Skufca, Yorke &
Eckhardt 2006; Schneider, Eckhardt & Yorke 2007; Duguet, Schlatter & Henningson
2009): the amplitude of an arbitrary initial condition is rescaled recursively until the
flow reaches neither laminar nor turbulent level for sufficiently long observation times.
The two criteria, according to which trajectories are labelled as relaminarising or
transitioning, are based on threshold values for the wall-normal energy Ev (see (2.5)),
both chosen after trial and error. Once machine precision is reached, the rescaling
process is re-started from a state at a later time.

Several types of exact coherent states are identified during this study. In particular,
TW solutions are defined by

u(x, y, z, t)= u(x+ cxT, y, z+ czT, t+ T), (2.7)

for all t and T , where t is time and T is time period, while relative periodic orbits
(RPOs) are defined as

u(x, y, z, t)= u(x+ σx, y, z+ σz, t+ T), (2.8)

for all t but for given values of T , σx and σz, where σx and σz are shifts in
the x and z directions respectively. The Newton–Krylov algorithm included in
channelflow.org, augmented by the hook–step globalisation technique (Viswanath
2007), is used to successfully converge TW solutions and RPOs with an accuracy of
O(10−14). Arclength continuation is used to track the converged states as functions of
various parameters, such as Re, Lx or θ . For each converged state, application of the
matrix-free Arnoldi algorithm is used to determine eigenvalues or Floquet exponents
of converged solutions.

The governing system of equations, independent of the numerical domain, is
equivariant with respect to the two discrete symmetries

Sy : [u′, v,w′](x′, y, z′)→[u′,−v,w′](x′,−y, z′), (2.9)
S′z : [u

′, v,w′](x′, y, z′)→[u′, v,−w′](x′, y,−z′). (2.10)

This implies that for any solution u′(x′), (Syu′)(x′) and (S′zu′)(x′) are also solutions.
In particular, any oblique stripe forming an angle θ with the streamwise direction is
associated with its symmetric counterpart, an oblique stripe with an angle −θ . This
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FIGURE 3. (a) Edge tracking in a domain tilted by θ = 35◦ at Re= 720. Trajectories in
blue relaminarise directly whereas trajectories in red become turbulent. (b) Eigenspectrum
for the converged lower-branch TW (LBTW) solution with θ = 35◦, Re= 720, Lx = 3.33
and Lz = 40, computed using the Arnoldi algorithm with time horizon T = 60. Only one
multiplier lies outside the unit circle.

degeneracy is eliminated when computing in a tilted domain with θ 6= 0◦ and θ 6= 90◦,
yet it is useful to keep in mind that all the solutions listed come in pairs.

Another symmetry (linked to the tilted geometry) is the shift-and-reflect symmetry
with shifts in the x-direction.

Srx : [u, v,w]
(

x+
Lx

2
, y, z

)
→[u,−v,w](x,−y, z). (2.11)

This symmetry, specific to each value of Lx, has not been imposed in any of the
computations, but it turns out to be verified by all TW solutions found.

3. Parametric study
3.1. Edge tracking

The first attempt to identify a simple edge state dynamics is for Re = 720, θ = 35◦,
Lx=10 and Lz=40. These values of Lx and Lz are similar to those in Tuckerman et al.
(2014), whereas θ = 35◦ is well within the experimental and numerical range. The
initial condition consists of a random three-dimensional divergence-free velocity field.
As shown in figure 3(a), the energy E(t) settles to a constant value, the signature of
a TW – which can be converged easily using the Newton–Krylov algorithm (Duguet,
Willis & Kerswell 2008). The solution travels with a phase velocity c with non-zero
streamwise and spanwise components cx′ =0.77=1.15Ub and cz′ =0.06 in units of Ucl,
where Ub= 2/3 ∗Ucl is a bulk velocity. The TW propagates with a streamwise phase
velocity slightly larger than the flow rate: fluid enters the wave from upstream and
is released downstream of it as well as on the sides. The property that lower-branch
solutions travel faster than the base flow appears generic to all wall-bounded shear
flows. By virtue of the Sz symmetry, a twin TW solution also exists in a domain tilted
with angle −θ with opposite spanwise propagation velocity.

The initial bisections were carried out for Lx= 10. The numerical domain with these
parameters accommodates three identical wavelengths, and the TWs found do possess
this 3-fold periodicity in x. This suggests that a similar TW solution should exist as
an edge state in a numerical domain with Lx← Lx/3 and correspondingly Nx←Nx/3.
This is indeed the case for Lx= 3.33. From here on, unless otherwise stated, the value
of Lx is set to 3.33. The new TW identified possesses the Srx symmetry specific to
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FIGURE 4. Perturbation kinetic energy e(z) for LBTWs with increasing Lz = 20, 40, 80
and 120 (logscale). Lx = 3.33, θ = 35◦, Re= 720.

the new value of Lx (compatible with the different symmetry identified for Lx = 10).
We do not exclude possible subharmonic instabilities for larger values of Lx.

It was determined using the Arnoldi algorithm that the TW solution is linearly
unstable but possesses only one real unstable eigenvalue, as expected for edge
states. This corresponds to one unstable Floquet multiplier outside the unit circle in
figure 3(b). The same property also holds for Lx = 6.66, 10 and 13.33.

3.2. Spatial localisation
Similar bisections were repeated for different values of Lz= 20, 40, 80 and 120. The
numerical resolution was kept identical except in the z-direction in which Nz was kept
proportional to Lz. In all cases, a similar-looking TW solution was identified as an
edge state and converged successfully using the Newton algorithm. The z-dependence
of the perturbation kinetic energy of the four TWs obtained for different Lz is
shown in figure 4. All TWs found here are spatially localised. This suggests that the
corresponding TW for Lz→∞ is a solitary state (its energy drops off exponentially).
In what follows, the value of Lz is fixed to 40, keeping in mind that most results are
independent of Lz provided Lz is large enough.

3.3. Self-sustenance and large-scale flow
We now display visualisations of the TW solutions for 45◦ in figures 5 and 6.
The xz-view of the wall-normal velocity in the midplane (see figure 5) reveals
a spatial structure very similar to that of turbulent stripes. The three-dimensional
structure (see figure 6) features streamwise vortices which are almost parallel to
the streamwise direction. Streamwise vortices are naturally associated with streaks
(spanwise modulations of the streamwise velocity). The tails of the streaks outside
the core of the stripe are deviated by the large-scale flow near both interfaces
(Henningson & Kim 1991; Duguet & Schlatter 2013). Interestingly, the streaks for
the LBTWs shown in figure 6(a,b), do not feature the characteristic sinuous structure
of other exact coherent states found in smaller domains and fundamental to Waleffe’s
self-sustaining process (Waleffe 1998). This process assumes that the streamwise
vorticity induced by sinuous streak instabilities compensates for its own viscous
decay, and that this loop maintains the exact coherent structures in equilibrium.
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FIGURE 5. LBTW solution computed in a domain tilted by θ = 45◦ for Re= 720, Lx =

3.33 and Lz = 40 represented using 12 concatenated copies. Wall-normal velocity field
v(x, y= 0, z) (streamwise direction pointing towards positive x and z).
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FIGURE 6. (a) LBTW solution at Re= 720. (b) LBTW solution at Re= 414.25. (c) Upper-
branch TW (UBTW) solution at Re=414.25. (d) UBTW solution at Re=438.74. Isolevels
of streamwise velocity perturbation (red: ux= 0.1, blue: ux=−0.1) for (a–d). (a–d) Three
concatenated copies only.

Here, the streamwise rolls are not sinuous; however, their slight deviation by the
large-scale flow contributes to their three-dimensionalisation. This suggests that the
nonlinear feedback on the streamwise vorticity, necessary for its sustenance against
viscous decay, is operated by the tilting due to the large-scale flow, rather than by
the sinuous instability of the streaks. Further work would be necessary to confirm
this mechanism. Unlike the LBTW solutions, the UBTW solutions do feature sinuous
oscillations of the streaks visible in figure 6(c,d).

We investigate now the spatial structure of this large-scale flow. In figure 7(a),
the planar velocity components are plotted after integration in y from wall to wall.
As predicted in Duguet & Schlatter (2013), this y-integrated velocity field is parallel
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FIGURE 7. Velocity field of LBTW solution at Re = 720 at θ = 45◦. (a) The xz-plane
with y-averaged velocity components as quivers and wall-normal velocity using contours
(streamwise direction pointing towards positive x and z). (b–d) The x-averaged velocity
profiles as functions of y for z= 5, 15 and 25. These profiles show the large-scale flow
around the stripe.
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to the interface of the stripe. This observation is fully consistent with the mean
flow properties (Barkley & Tuckerman 2007) and with instantaneous visualisations of
turbulent stripes (Xiong et al. 2015). The simple time-dependence of the TW solution
makes the structure of the integrated large-scale flow emerge even without spatial
filtering or time-averaging. The non-integrated flow has a strongly three-dimensional
structure lost by averaging. The individual components of large-scale flow and their
dependence on y are plotted in figure 7(b–d), after averaging in the short stripe
direction x, and at different z positions outside and inside the active part of the
stripe. Robust conclusions emerge independently of the value (positive or negative)
of the angle θ . In all cases, the large-scale flow upstream of the stripe has a parallel
component pointing downstream, whereas the large-scale flow downstream of the
stripe has a parallel component pointing upstream. The large-scale flow outside
the active zone differs depending on the side of the stripe considered: the velocity
profile upstream is double-humped and stronger near the walls, whereas the velocity
profile downstream is single-humped and stronger near the midgap. None of the
local velocities exceeds 0.04 (in units of Ucl) in absolute value, and such values are
attained in the active part of the stripe (here at z= 15).

3.4. Angular dependence
The same strategy as in § 3.1 was repeated for all values of θ between 0 and 90◦ in
steps of 5◦, by fixing Lx=3.33 and Lz=40. The original value of Re was chosen again
as 720, high enough for turbulent stripes to be observable in numerical simulations. As
observed in Barkley & Tuckerman (2007) and Duguet et al. (2010), not all angles can
support a stable laminar–turbulent interface. Bisection was successful at converging
TWs as edge states only for 25◦ 6 θ 6 60◦. Outside this range, edge tracking proved
unfeasible because the turbulent state itself was only short-lived. Continuation of the
TWs in Re was performed at fixed values of θ , Lx and Lz for the values of θ where
TWs were found for Re= 720. For each angle, the corresponding TWs emerge in a
saddle-node bifurcation at a given value of Re = ReSN(θ, Lx, Lz) (where ReSN is Re
at saddle node bifurcation). This is shown in figure 8, where the total kinetic energy
E is plotted against Re for several angles. This figure also contains information on
the linear stability of the waves (analysed later). Continuation along the upper branch
was stopped as soon as resolution issues started to manifest themselves, a commonly
reported issue for upper-branch solutions of shear flows (Waleffe 2001). The smallest
value of ReSN is apparently obtained for θ = 45◦. Figure 9 displays similar curves for
the streamwise and spanwise phase velocities, plotted versus Re. Here, the LBTWs
are characterised by the larger phase velocities. All TW solutions were found to obey
the Srx symmetry for all imposed angles.

Continuation is next carried out in the angle parameter θ for fixed Re. This turns out
to be a more efficient way to explore the limits of the range of angles where TWs are
found. Such data are shown in figure 10 in a effort to highlight the three-dimensional
structure of the diagram shown in figures 8 and 9. As shown in figure 10, the range of
angles shrinks to the sole value of 45◦, whereas it monotonically widens for increasing
Re. For Re= 720, the largest value of Re explored in this study, possible angles range
from 20◦ to almost 70◦, slightly wider than the range of values of θ accessible by
bisection at the same Re. It is instructive to plot the value of ReSN(θ) versus θ for
fixed Lx and Lz (cf. figure 12). The curve appears as a slightly asymmetric parabola
centred around 45◦. This curve bounds the region of existence of the TW solutions
in parameter space. As Re is gradually increased from zero, the first TW encountered
has θ = 45◦. As Re continues to increase, the range of possible angles widens.
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FIGURE 8. Energy for TW solutions versus Re in a domain for different angles θ , Lx =

3.33 and Lz = 40. Solid lines: TWs with one unstable eigenvalue only (edge states); thin
dotted lines: LBTWs with strictly more than one unstable eigenvalue; thick dotted lines:
UBTWs.
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FIGURE 9. Phase velocities for TW solutions in a domain tilted by θ with Lx= 3.33 and
Lz = 40. (a) Streamwise component, cx′(Re). (b) Spanwise component cz′(Re).

The width of the localised stripe along z can be evaluated by choosing an arbitrary
criterion ev(z) > 10−4. It corresponds to the length of the streaks as visualised in
figure 5. The width across the streamwise direction, i.e. along x′, was determined
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FIGURE 10. Continuation of the TWs in angle for different values of Re. (a) The (θ,E)
projection. (b) Three-dimensional projection (θ, Re, E).

from the previous criterion using trigonometric rules. As suggested in figure 4,
these quantities are independent of the value of the parameter Lz once it is large
enough. For a constant value of Re, the width increases almost linearly with θ , see
figure 11. The maximum amplitude of these waves, however, is lowest around 45◦
as is shown in figure 11 using z-profiles of ev. No clear reason for this property has
been identified yet.

3.5. Hopf bifurcations
As can be seen in figure 8, the stability of each TW family parametrised by θ changes
with Re along its respective lower branch. A similar scenario emerges for all values
of θ . As Re is decreased, starting from Re= 720, the LBTW initially possesses one
unstable eigenvalue only and is an edge state of the corresponding system. At a given
value of Re = ReH(θ, Lx, Lz) (where ReH is Re at Hopf bifurcation), two additional
complex conjugate eigenvalues become unstable, so that between ReH and ReSN <ReH

the TW is no longer an edge state.
For each set of parameters, a Hopf bifurcation at Re = ReH leads to a new

branch of RPOs of period T , initially unstable close to ReH . The loci of these Hopf
bifurcation points are shown in figure 12 together with the saddle-node points. In
fact, other bifurcations of TWs occur in the interval (ReSN, ReH), as is clear from
the number of unstable eigenvalues at ReSN listed in table 1, which always exceeds
three. For instance, for θ = 45◦, Lx = 3.33 and Lz = 40, the primary Hopf bifurcation
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FIGURE 11. (a) Profile of ev(z) for various tilt angles, Lx = 3.33, Lx = 40, Re = 720,
lower-branch solutions. (b) Stripe width versus θ for Re= 720, both along the streamwise
direction (blue) and across the stripe (red).

(for descending Re) occurs at ReH ≈ 393, while the saddle-node bifurcation lies at
ReSN = 370.55. This Hopf bifurcation breaks the Srx symmetry. The resulting branch
of RPOs has been tracked by continuation. One snapshot is displayed in figure 13
using three concatenated copies. Another Hopf bifurcation arises near Re= 390. We
have not investigated the possible additional bifurcations along the upper branch
and/or for other angles and domain sizes. The Hopf bifurcation points (θ , ReH(θ))
get increasingly far from the saddle-node points as θ decreases. The values for the
period of the RPOs at their respective bifurcation points are reported for most angles
in tables 1 and 2.

Unlike the LBTW solutions, the RPO features sinuous oscillations of the streaks. In
a frame moving with the original TW velocity, the RPO displays global time-periodic
oscillations visible only in the core of the corresponding TW. In this moving frame,
they travel upstream, as attested by the space–time diagram in figure 14. The
emergence of finite-amplitude time-periodic oscillations propagating on top of a
spatially localised TW is strongly reminiscent of the concept of nonlinear global
mode put forward in spatially inhomogeneous media (Pier & Huerre 1996). In this
picture, the period of the global oscillations is determined at the location where local
stability analysis predicts transition from convective to absolute instability. The role of
the slowly spatially evolving base flow is played here by the localised TW solutions,
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FIGURE 12. Location of saddle-node bifurcations in a (θ, Re) representation (ReSN(θ),
blue solid line), and Hopf bifurcation points (ReH(θ), red dots) below which the TWs are
no longer edge states.

θ (deg.) ReSN ReH No. of real (r) and complex (c) unstable
eigenvalues on the lower branch in the

vicinity of the saddle node point

25 488.8826 1058.12 1r+ 1× 2c
30 426.5995 598.034 1r+ 2× 2c
35 393.2030 424.92 1r+ 2× 2c
40 375.4929 408.44 1r+ 2× 2c
45 370.5567 393.58 1r+ 2× 2c
50 377.8913 403.83 1r+ 2× 2c
55 400.4196 421.16 1r+ 2× 2c
60 448.8425 462.49 1r+ 1× 2c

TABLE 1. Values of Re at the saddle-node bifurcation point ReSN and at the Hopf
bifurcation point ReH of TW solutions for different tilt angles θ and for Lx = 3.33 and
Lz = 40. For Re > ReH the LBTWs are edge states. Also listed is the stability at the
saddle-node point with number of unstable eigenvalues and also the Hopf bifurcation point
for LBTW solution branches. See text for definitions.

for which local stability analysis is known to predict absolute instability in the core
but stability in the more laminar zones.

3.6. Minimum Reynolds number
A recurrent interrogation in earlier investigations of invariant solutions is the minimal
value of Re supporting such equilibrium solutions. For instance, Wall & Nagata
(2016) have lately reported a non-tilted TW solution existing down to Re = 665.
This minimisation task can appear endless here given the many parameters present.
However, we shortcut this limitation by recalling that (i) the new TW solutions
become independent of Lz for Lz large enough, and (ii) the minimal Re corresponds
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FIGURE 13. Snapshot of an RPO solution computed in a domain tilted by θ = 45◦ for
Re=407, Lx=3.33 and Lz=40, three concatenated copies. Isolevels of streamwise velocity
perturbation (red ux=+0.13, blue: ux=−0.13) and streamwise vorticity (yellow: ωx= 1.0,
green: ωx =−1.0).

θ Tp1 Tp2

25 42.4874 N/A
30 29.8828 66.832
35 73.0069 31.548
40 84.3443 29.3557
45 27.6013 96.8748
50 109.1105 25.9726
55 120.2174 23.125
60 127.2664 N/A

TABLE 2. Time period Tp1 (respectively Tp2) of the first (respectively second, if any) RPO
bifurcating from the LBTW branch for various tilt angles (deduced from the eigenvalues
at their respective Hopf bifurcation). The period Tp1 is computed at Re= ReH .

to θ = 45◦. As a consequence, we define here, pragmatically, the globally minimal
Reynolds number as Rem = minLx ReSN(θ = 45◦, Lx, Lz = 40). Hence, Rem can be
determined by fixing θ = 45◦, Lz = 40 and performing continuation in Re for several
values of Lx only. In figure 15, Rem is displayed as a function of Lx. A local minimum
for Rem is found around 367 and occurs for Lx= 3.2. Note that this value is close to
the value of 3.33 used here. We do not exclude the possibility for other local minima
corresponding to other yet unreported families of TW solutions.

4. Discussions and outlook

We have presented new families of nonlinear TW solutions of channel flow
featuring spatial localisation, oblique orientation with respect to the mean flow
direction, streamwise vortices and streaks. All the solutions reported here are linearly
unstable, although the number of unstable directions is generally very low, ranging
from one for edge states up to six for upper-branch solutions near their onset. These
solutions are the ones appearing at the lowest value of Re reported so far in channel
flow. Interestingly, they do not emerge via a homoclinic snaking scenario as is the
case for many non-tilted localised states (Schneider, Gibson & Burke 2010; Knobloch
2015). A few Hopf bifurcations of these new waves occur along the lower branch,
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FIGURE 14. Space–time diagram ev(z, t) for the RPO solution shown in figure 13 over
three time periods, Re = 407. Frame moving with the original LBTW phase velocity
computed for the same value of Re.
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FIGURE 15. Minimum Re versus Lx for θ = 45◦ and Lz = 40.

rather than the upper branch as commonly reported in shear flows (as in e.g.
Zammert & Eckhardt (2015)). The occurrence of such Hopf bifurcations means
that for ReSN < Re< ReH the TWs are no longer edge states and cannot be identified
using edge tracking. The success of the method used here hence relies on starting at
a sufficiently high value of Re.

This dynamical systems approach to complex stripe patterns can also be applied
to other systems displaying spatiotemporal intermittency. The application of edge
tracking in tilted domains of plane Couette flow has so far yielded only chaotic
edge states rather than exact solutions, even with central symmetry imposed. While
this highlights some limitations of the current method, other ways of constructing
exact localised solutions are possible, as shown in Gibson & Brand (2014) for plane
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Poiseuille flow using spatial windowing or using asymptotic analysis (Deguchi &
Hall 2015) in plane Couette flow. We also note a recent cheaper alternative to edge
tracking using feedback control (Willis et al. 2017) likely to work successfully in our
case. More recently, similar families of oblique localised solutions of plane Couette
flow have also been constructed by exploiting the possible subharmonic instabilities
of formerly known non-localised states (Reetz, Kreilos & Schneider 2019; Reetz &
Schneider 2020). This is another promising alternative to edge tracking, although it
requires good preliminary knowledge of some solutions. An extension of these ideas
to other geometries is encouraged.

For the last two decades, the main motivation to detect and study unstable nonlinear
states comes from the conjecture that they constitute a state-space skeleton for the
turbulent dynamics (Hof et al. 2004; Eckhardt et al. 2007; Kawahara et al. 2012). TW
states, like those reported here, are the simplest instances of such states compatible
with the symmetries of the system. The different Hopf bifurcations of these waves
lead to new branches of unstable periodic orbits whose further bifurcations, both local
and global, are expected to cover the turbulent attractor specific to each tilted domain
(Avila et al. 2013; Zammert & Eckhardt 2015). This approach is now generally
accepted for small constrained systems Budanur et al. (2017). However, it remains
daring to extend it to spatiotemporal complex situations, such as turbulent stripes,
where additional spatial degrees of freedom come into play. Further bifurcations of
these modulated waves are expected to give rise to a regime of temporal chaos, which
is dynamically consistent with the turbulent behaviour reported – in both constrained
and unconstrained numerical domains – at comparable values of Re (Tuckerman et al.
2014).

At the lowest Re typical of figure 1, the experimental transition process involves
solitary finite-length bands fully localised in one direction and growing (or receding)
in another direction. These bands feature an active head and a passive rear (see e.g.
Kanazawa (2018), chap. 5 and Xiao & Song (2020) or figure 2). While growth occurs
at the active head, at slightly larger Re, stripes extend to lateral boundaries and do
not necessarily have a well-defined head. This suggests that the core of the stripe is
autonomous and self-sustained. The solutions presented here are localised only in one
direction and have unambiguous similarities with the core of the turbulent stripes.

Such an analogy between TWs and turbulence is supported by the agreement
between the spanwise wavelength and the streamwise extent of the streaks. More
originally, a large-scale flow parallel to the band direction is common to both
turbulent stripes and the present TWs. It has been suggested as a crucial player for
the spatial proliferation of turbulence in planar flows and as a mechanism to justify
the obliqueness of the laminar–turbulent interfaces (Duguet & Schlatter (2013)). This
large-scale flow property is specific to localised turbulence. It cannot be interpreted
theoretically using the previously found non-localised states, and this justifies the
present search for oblique solutions localised in one direction only. A posteriori,
we have verified that the large-scale flow induces a spanwise propagation velocity
explaining the motion of the streaks within the band itself (cf. figure 9). From the
investigation of the exact solutions, it was also suggested that the large-scale flow
plays a role in the regeneration of the streamwise vorticity inside the band core.
Such a possibility had not been considered so far for localised turbulent dynamics,
which highlights the utility of exact solutions. As far as the understanding of the
energy production mechanisms at the head is concerned, however, other channel
solutions with an additional direction of localisation need to be envisioned (Zammert
& Eckhardt 2014; Kanazawa 2018).
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At slightly higher Re, the multitude of possible angles displayed by turbulent stripe
patterns falls within the range of angle values where the TWs and their bifurcated
states exist. A natural question that arises is whether the range of angles of the TWs
bears a direct relation to the selection process of stripe angles in turbulent flows. The
critical curve θ(Re) displayed in figure 12 is at first sight reminiscent of the selection
mechanism in other systems with one spatial degree of freedom, such as Rayleigh–
Bénard convection (Cross & Hohenberg 1993). However, the nonlinear nature of the
wave solutions makes the selection mechanism entirely different. As a consequence
of nonlinearity, adding different such solutions together to create new solutions is
not allowed. A consequence is that different routes to chaos for different values of
θ coexist. On the other hand, the TW with 45◦ is the one persisting down to the
lowest Re. This is reminiscent of the observation that, close to their onset in Re where
they are observed, the angle of turbulent stripes saturates at 45◦ (Tao et al. 2018;
Paranjape 2019). It remains to be understood why no turbulent stripe forms or sustains
with an angle larger than 45◦ in realistic domains, whereas this is allowed for TW
solutions. This apparent discrepancy is likely to be related to the choice of the tilted
domains rather than to the TWs themselves. Indeed, in the comparable tilted domains
of plane Couette flow, turbulence is also reported for angles higher than 45◦ (Barkley
& Tuckerman 2007), whereas it is not the case in large periodic domains (Duguet
et al. 2010). This might be related to the issue of stability (in the broad sense) of a
given laminar–turbulent interface.
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