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ON THE SINGULARITY OF GREEN FUNCTIONS
IN MARKOV PROCESSES

MAMORU KANDA

§0. Introduction

In the previous paper [6] we have discussed Markov processes in R*

with the Green function G (z, y) satisfying C,; _Iﬁx*—lyhlm"j < Gz, ¥)

= C, ~i?:l&]71_7 (0<a=<2, C, <C, are positive constants), and showed that
the regular points of its process are the same as those of a-stable process.
The present article is closely related to the previous one. We shall discuss
several properties of Markov process, including those of regular points,
which are sharply influenced by the singularity of the Green function at
diagonal set. The singularity we will be concerned with is more general
than that of previous one, but it is closely related to that of Riesz kernel.
Then, our results may be considered as a generalization of the facts which
appear in the relation between the Riesz kernel and stable process. For
this purpose potential representation of the hitting probability plays an
important role, which we shall show under certain uniform condition about
singularity of the Green function instead of duality condition.

The author wishes his thanks to Prof. H. Kunita for his valuable sugges-
tions.

§1. Notations and main results

Let R%d=3) be the d-dimensional Euclidean space and 2 be a domain
in it. Let o be adjoined to 2 and 2 U {oo} be its one-point compactifica-
tion. We denote by % the topological Borel field on QU {c0}. We
introduce several spaces of functions on 2; Bx = the space of bounded Z-
measurable functions of compact support, Cy = the space of continuous functions of
compact support in Q and C, = the space of continuous functions vanishing at infinity.

An extended real-valued function G(z,y) on 2 x 2 is said to be a kernel

on @, if it is non-negative, continuous except at the diagonal set on 2x .
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Further we assume that G maps By into C,, where Gf(z) = SQG(x,y)f(y)dy.

We say that a kernel G(x,y) on 2 satisfies the complete maximum principle, if
for any constant @=0, f and g€ Ck, the inequality

Gflz) =Gyglx) +a

holds everywhere, if it holds on the support of f, where C}; denotes the set
of non-negative functions of Cg.

In this article we consider a kernel G(z, y) which has singularity ¢(]2—y|)
at x =y, more precisely, for each =z, there exists a ball 0,, centering at z,
and

Glx,y) = Clx, v)e(lx —y]),

where C(z,y) is bounded on O:, X 0., and inf C(x,y)>0, where |z — ¥|

2,y€0z,
denotes the distance between z and y and O,, denotes the closure of O,

In this case we say that G(z,y) is a kernel with singularity ¢. We always
choose a function ¢ which shows the singularity of a kernel from one of
the following classes;

O = the space of non-negative, continuous and monotone decreasing functions ¢(t)

defined for sufficiently small t >0 such that ltim o(t)=+oo, S ti 1 p(t)d i<+ o,
-0 0

O, = the space of functions ¢(t)€® for which there exists an integer p, 0<p<d,
such that t"¢(t) ts monotone increasing for sufficiently small ¢ >0 and
lim ¢?¢(2) = 0,
t—-0

O = the space of functions ¢(¢) defined for all t >0 and of the class @, such
that, if we set G(z,y) = ¢(lx —yl), G is a kernel on R satisfying the
complete maximum principle.

Now we shall prepare the notations of Markov processes. Let o be a
function [0, +) > 2 U {o} such that it has right-continuity and left hand
limits everywhere and if w(¢) = oo, then w(t’) = oo for all ¢'=¢. Let us set
o) =1inf{t =0, o(t) = o}, = 4o if there are no such #. Let W be a set
of o’s mentioned above. Then W is closed under the operation of the shift;
o =00, 1 =0, where (6,0)(s)=o(t+s). F is the ¢-field in W generated
by sets {w(t) € A}, t=0, Ae %, and F, is the o-field in W, = {& >t}
generated by the sets {o(s)e 4, £ >1t}, 0<s<t, Ae #. Let [P, 2z}
be a family of probability measures on (W, F) such that P,(B) is .Z-measur-
able in z for each fixed Be F. We denote by M the intersection of all
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P,-completed o-fields of F, where P,-) denotes the measure defined by
SQPx(-)y(dx) for any measure g and, by M, the o-field formed from F, and
all null sets of M[W,], where M[W,] is the restriction of M to W,. The
system X = (x,, &, M,, P,) is called a Hunt process if it has the strong Markov
property and the quasi-left continuity of sample functions. A Hunt process
X = (%4, &, M,, P,) is called a Feller process if its semi-group {T,} is a strongly
continuous operator on C,. For a nearly analytic set E, we define the
hitting time by oy = inf (¢ >0, x, € E), = +oo if there are no such ¢. Then
or is 2 Markov time and we call P (o< +) the hitting probability of E.

A kernel G(x,y) on 2 is called the Green function of a Feller process
X = (%, & M,, P,) on 2 if it satisfies

£ [ rwoar) = ,6lan rway

for every function f of Bx. The Green function G(x,y) is called quasi-
symmetric, if G(x,y)=G(y,x) is a kernel on © which satisfies the complete
maximum principle.

In §2 we shall study the following potential representation theorem of
the hitting probability, which has been studied in the works of Ito-Mckean
[5], G.A. Hunt [4], M.G. Sur [14] and H. Kunita-T. Watanabe [10], etc.
In their works it seems that some condition about duality is necessary
intrinsically. Here we shall show that, if we require certain uniform con-
dition about the singularity of the Green function instead of the duality
condition, the method of representing the hitting probability as a potential
discussed in H. Kunita and T. Watanabe [10], is applicable with some
modifications. Then we have the following

TureorEM 1. Let X = (x,, §, M,, P,) be a Feller process on 2 which has
the Green function G(z,y) with singularity ¢ € @. Let K be a nearly analytic set
with compact closure in Q. If we assume the condition B, (see the supplement),

1) then there exists a measure px whose support is included in K such that
Pu(ox < +09) = | ,Gla, y)x(dy)

Sor any x € 2, where K denotes the closure of K.

i1)  Furthermore, the measure pix is unique if one of the followings are satisfied:

a) X s a continuous process,
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b) G(zx,y) is quasi-symmetric.

In §3 we construct a Feller process on £ whose Green function is a
given kernel satisfying the complete maximum principle with singularity
¢ € @ (Theorem 2).

§4 is devoted to studying some properties of capacitary measure z.(dy)
in case the process X has the quasi-symmetric Green function. Most of
these are modifications of Hunt’s results [4] to our setting and these are
used in the later discussions.

In the remaining sections we show some applications of Theorem 1 and
2. O. Frostman [3] has shown that the Riesz kernel with exponent a >2
does not satisfy the maximum principle. This corresponds to the fact that
e—const.1z1* o > 2 cannot be a characteristic function of a distribution func-
tion. In §5 we extend this fact to a kernel with singularity ¢ € @ in the
following form by using Theorem 1 and 2.

THEOREM 3.  Let G(x,y) be a kernel with singularity ¢ € @ on Q and let

= _M. , s, . .
C(x,y)( oo —y I)> can be considered as a continuous function on a suitable

neighborhood of each diagonal point. Then, if G(x,y) is a quasi-symmetric Green
Sunction it is necessary for ¢(t) to satisfy the following inequality

o(r) < ;wl §:99<2r sin %) sin¢-20d0

T

Sor each sufficiently small r >0 and each constant M, >TI < f}) 1“( d 2_ L >—1.

In the case when the singularity function ¢ satisfies the above ine-

quality for M, =T <;gf>l’ ( d 2_ L >_1, we cannot say, in general, whether the

theorem is valid or not. But if we assume that the Green function G(x,y)

with singularity ¢ is written as the difference of z and y, the above theo-
o . _rd d—1\"

rem is still valid even for M, = F<~§:>F< > .

2
It is well known that a Feller process corresponding to the Riesz kernel

with exponent « (stable process) is not a continuous process in case 0<<a < 2.
In §6, we shall extend this fact to the following form.

THEOREM 4. Let X be a Feller process having the Green function which
satisfies the same assumptions as those of Theorem 3. If it holds the following
inequality
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M, i in 0 ind-2
o(r) < vas So go(Zr sin 7) sin?20df < + oo

Sor sufficiently small v, where M, is a positive constant strictly smaller than

F(%>P< d ; L >_1, X is not a continuous process.

The above Theorem will conclude naturally that any Feller process

with singularity #*7¢, 0 <<« <2, or, more generally, #*¢ <log —}ﬁ k, 0<a<2,
is not a continuous process under the continuity assumption on C(x,y).

We shall give a theorem about regular points which is an improvement
of our previous result® [6] and will be proved in §7.

TuroreM 5.  Let X' = (xt, &', MY, P) and X*® = (x%, &3, M2, P2) be Feller
processes on Q having the Green function G'(x,y) with singularity ¢, of @, and,

G¥x,y) with singularity o, of @, respectively.  Suppose that %% is  monotone
2
non-decreasing for sufficiently small t. If we assume the condition B for X' and X2,

1) then, a point x, is a regular point of B for X', if it is a regular point
of B for X? where B is a compact set.

i1)  Further, suppose that ¢, and ¢, belong to the class @) and ;Ig; decreases

2
to zero as t tends to zero. Then the regular points of B for X2 are included in the

regular points of B for X' in the strict sense, more precisely, there exists a compact
set B such that some points of B are regular points of B for X but no point of B
s a regular point of B for X2

The above theorem is applied to the (quasi-) diffusion corresponding to
the strictly elliptic differential operator of the second order with Dini con-
tinuous coeflicients in the strict sense.

We shall finally give an example of Feller process in R® whose Green

function is a kernel with singularity ¢*-* log %, 1<a<2in §8.

§2. Potential representation of the hitting probability

Throughout this section we shall consider a Feller process X=(x.,,{, M;, P,)
which- has the Green function G(zx,y) with singularity ¢ € @ without special
mentioning. Let us set G,f(x) = S:w e T, f(x)dt for each a«=0. Then

*) We have to point out the incorrectness in our previous paper [6]. In the formula
(4.19) of [6], “analytic set E” should be replaced by ‘“‘compact set E”. Hence Theorem
4.2 of [6] is true for a compact set.
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{G,} is a resolvent on C, such that limaG,f = f for each bounded con-

a— oo

tinuous function f. A positive universally measurable function # is said to
be (G, a)-excessive if BG,.pu <u for all 3>0 and if ﬂlim B8G..pt = u.
—+co

We shall first prepare some lemmas for the proof of Theorem 1.

Lemma 1. Glz,y) ts a (G,0)-excessive function of x for each fixed y.
This is shown in [7].

Remark. Let x be a measure such that u(x) = SQG(x,y)p(dy) is bounded.

Then u(x) is superharmonic in £, that is, for each domain Q ¢ 2, E u(x+,)
=< u(z), where ry =inf(¢ =0; z, ¢ Q).

LemMa 2. Let K be a nearly analytic set with compact closure.  Then
P(og << + o) is (G,0)-excessive and further it is harmonic in Q-K, that is, for each
domain Q < 2-K, E,(PZTQ (0x << + 0)) = P lox < + o), under the condition B.

Proof. 'This is a direct consequence of the strong Markov property.

Lemma 3. Let {G,} be a sequence of compact seis such that G,1 2, G,D K
Sor each n.  Then we have, under the condition B,

lim £,(P,,, (ox< + o)) = 0.

n— 4o

Proof. We shall prove this in the same way as Lemma 3 in M.G. Sur
[14]- NOting that E:c(P (0'1{ < + OO)) = Em(Px(O'K(w;Gl) < + OO)) = Pz:(o'K< +oo)9

.’L‘aat

we have for n > [

E P

Zgge

(0x< + ) = E{E,, ,(Ps, (ox<+ o))}
= Ez{Ex(P.z-a-G (w; c) (GK< +OO))} é Pz(GG; + UG, (w;g:) < + OO)

= Pac(a'Gf‘ + g, (w:oﬁ) <8, bo=oi.

On the other hand, let &,(w) = ag; + 0, (07,,), we have
Bo{ [, Clasn )y [ 20 Puléa <)

where § =min_| G(z,y)dy >0. (Sincegc G(x,y)dy is continuous in G,CG,,,,
141

r€GVYG

minyS G(z,y)dy 1is attained at some point z, of G,. It is clear that
T+1

2= GYG
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SG Glzy, y)dy >0.) We have also

EI[ SGMG(%"’ y)dy] = Ex[ S;XGM (x:)dtl <E, [ S;;Xam(xt)dt]
=E, { SQG(%G;, Y)g,, (y)dy} ,

where 25 is a characteristic function of G,,,. Noting that G maps Bx
into C,, the last expression tends to zero as n— -+ oo, which implies
P,(¢,<8—0. Hence lim E;,,.(PMc (ox < + o)) = 0.
N0 n
Lemma 4. Under the same assumption in Lemma 3, we have
EG(x,  ,y) = G, Y)
JSor almost all y in G;.

Proof. Let f be any function of By vanishing in G,. Then we have
+oo +o
[ EeGle o 0)S 0y = B v, ([T @) dt) = B[ [ * fiwiat |

= E.{{ " rw)dt] = | Gle,v) fw)dy
for each # in 2. Hence we complete the proof.

Lemma 5. Let us fix a point x, and a ball V containing x,.  Then there
exists a ball U(x,) which centers at x, with Ulx,) CV such that it holds

G(x,y) > E,G(x.,,¥)
Sor each (x,y) € U(z,) X U(x,), where vy =inf(t=0; z, & V).

Proof. If we choose a ball U(x,) such that U(z,) < O,, NV we have
G(x,y)_z_inf(x,’y,)eoxoxoxo C(x',y") - p(diameter of U(z,) for each (x,y) € U(x,)
xU(xy), and E,G(xr,,¥) < SUPyeps), veveG(z’,y'). Hence the lemma holds
if the diameter of U(x,) is sufficiently small.

Proof of (1) of theorem 1. We shall first show that there exists a positive
measure fx(dy) such that

Pu(ox < + %) = | ,Gla, y)ex(dy)

holds everywhere on the similar way as in the proof of Prop. 7. 6. in H.
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Kunita and T. Watanabe [10]. Let us set u(x) = P (ox<<+o0) and u,=xnG ,u,
where G u(x) = Ex(S:m e u(x,)dt). Then u, increases to # with »n, because
u is a (G, O)-excessive functions, and by using Dynkin’s formula and noting
Lemma 3, we have u,(x)= Gf,(x), where f.(x)= n(u(x)— u,(z)). As

Gf.lx)<1 and in/i; SB G(z,y)dx >d5 >0 for each compact set A, B such
ye

that Ac A’ c é, B+ ¢, where B denotes the set of interior point of B and

A’ is a fixed compact set in B, we have

viB)=| do| Ga,nrwayzas| ruway,

where V(B) is the volume of B. Therefore there exists a subsequence of

measures {f, (x)dz} and a measure pg(dx) such that limk_,+mggg(x)fnk (x)dx

= SQ g(x)¢x(dx) for each g Cx. Now, let & be a positive function of By,

then, noting that Gh(x)(= SQ G(x,y)h(y)dy, G(x,y)= G(y,z)) is continuous,
we have

[, n@u(@)ds = kliTsta h(@)G S, (w)dz
(2. 1)
=, Ghiw) nxtdn) = |, Coxto)hw)ds, Guxta) = |, Gla,pnsldy).

Let G, be a sequence of compact sets mentioned in Lemma 3, then we
have

| h@)u (@) da = lim | 1@)G 1, (@)da

< lim Sgh(x)SGnG(x,y)fnk (y)dyda

k—+o0

+ lim {_h@) |- Gla,9)f2, (0)dyda.
Noting Lemma 4, we have

the right-hand side of the above equality gSQGﬂK(y)h(y)dy

+ Jim | h(@)de | E.Glaas, v)fo, W)y

= |, Grcwhway + |, Euwes)h(z)da.
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Therefore by Lemma 3, we have

2. 2) SQ h(x)u(x)dz < SQG#K(y)h(y)d?/-

Hence we have by (2. 1) and (2. 2)
Gug(x) = u(x), almost everywhere.

Since Gpg(x) and u(x) are (G, O)-excessive, the equality holds everywhere.
We shall next show that gx concentrates on K. Let A be a compact
set in K° it is sufficient to show that gz(4)=0. Now we shall assume
that zx(A4) >0. Let z, be a point of A such that for every neighborhood
Q of z, 2x(Q)>0 and let us choose a ball V < K° whose center is z, and
fix them, then we can choose a ball U(x,) which centers at z, such that
the inequality of Lemma 5 holds for each (z,y) € U(z,) X U(z,). Therefore
we have
#4(2,) ES

Glaw Wexldy) > Exy | [ Glae,y) x(d)],

Uzg)n A U(z)nA

and noting that uy(z)= | Glao, ¥)itx(dy) = Engus(as,),

2-UG)NA
u(xo) = uy(g) + uy(xy) > Exg{us(e,) + us(ae,)} = Epgu(xr,),

which contradicts the fact that u(z) is harmonic in 2 — K. Hence p#x(A)=0.

Generally it is open whether the measure px(dy) is uniquely determined
or not. But in case the process is continuous we can show the uniqueness
of px(dy). Before the proof we prepare a lemma.

LemMAa 6. Let ¢ be a positive measure such that Ge is bounded and E be
a nearly analytic set i Q.  Then SEG(x,y),u(dy) is harmonic in Q—E, if the

process X is continuous.

Proof. Let @ be an open set in 2 — E. By the continuity of the path
we have P (x-, € 9Q U {}) =1, so E,G(x-,¥) is continuous in 2 — @ with
respect to y, where x is in the interior of @. Hence E,G(zr,¥y) = G(z,¥)
holds for every points y of E, because it holds for almost all y in Q°.
(See Lemma 4).

The first half of proof of theorem 1, (ii). We assume the condition (a).
Let #k(dy) and p%(dy) be measures concentrating on K such that
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u(x) = SQG(x, y)ek(dy) = SQG(x,y)ﬁﬁ(dy) for all . It is sufficient to show
that for each open set 2 5@ we have

[o 6@ 9 exian) = | Gla, )z ap).

Let C be a compact set in @ and let us set v(x)=g G (x, y) ¢tk (dy)

Q
—SG G (z, y) #% (dy), then wv(x) is superharmonic in 2—C, because

sc G(x,y)¢%(dy) is harmonic in 2 —C. Furthermore v(x) is superharmonic

in @, because it holds that
o) = | Glo, »exdy) — | ,Gla, w)exdy) + |, Glo, v)rkidy)
= — ([, v rxlay) = | G, vukan) + ,_ Gz, v)pk(dy)

and the first term of the right-hand side is harmonic in Q.  Therefore
v(x) is superharmonic in 2. So we have E v(z:, ) =<uv(z) for each compact
set G, such that G,12. Noting Lemma 3, we have »(2)=0. As C is
arbitrary, it holds

{oCte, vekan = 6, v)exiaw).

Q

We can also prove that
|o Gl 9 (ay) = [ Gla, ) eklay),

The case where b) is satisfied, will be discussed at the next section.

§3. Construction of Feller process having the Green function
with singularity

Our aim of this section is to show the following Theorem.

THEOREM 2.  For a given kernel G(x,y) with singularity ¢ € @ which satisfies
the complete maximum principle, there exists a Feller process whose Green function is
Gz, y).

Proof. This Theorem is an extension of Theorem 1.1 in [6]. The
proof carried out with only obvious modifications of Theorem 1. 1. if we
note the following: Let @ (resp. @’) be a ball with radius  (resp. 27) which
centers at x,. Then we have
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a) iggSQ¢(lx—yl)dy=SQsO(Imo—yl)dy,

sup\ ofjx —y|)dy
b) 1L ﬂSQL‘AHx_ggA_ﬁ <1+ 24’
[oet1zs— yDay

for each function ¢ € @, if Q' is sufficiently small. The equality a) can be
shown by a simple culculation. The inequality &) is proved as follows;
supfoelie —yhdy [ e(a,—yhay

[ostiza—yhay [ ollz—yhay

lo_o#lze—yhay + [ otiz,—yDdy

foetlos— vy

PNVQ) = V@) _ 1 4 e
=1 V) 1+2%

where V(Q) denotes a volume of Q.

Remark 1. An important example of a Feller process having Green
function G(z,y) is a process corresponding to the kernel G(z,y)=o¢(lz—y]),
where ¢ € 0,, We shall give an example of a function ¢(¢) € @} in R?

whose singularity is t“‘log% in §8.

CororrAry. Let X = (x,, §, M, P,) be a Feller process which has quasi-
symmetric Green function G(x,y) with singularity ¢ € @.  Then there exists a Feller
process X = (2., &, M,, P,) which has Green function G(z,y) (= Gy, )) such that

[, f @G g dz = | g@)Cus (2)d2

holds for each f, g€ Bx. and a=0.

We call the process X the dual process of X. Our processes X and
X are in the relation of duality in Meyer’s sense. (See [12]. ) Hence we
have the following

Lemma 1. (Hunt). Let X and X be Feller processes in Corollary. Then we
have
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(6 vP.ws. € ) = | G2, Py (30, € d2)
Jor each nearly analytic set E.

Proof. This is shown by G.A. Hunt [4] under Hunt’s hypothesis (F)
and (G). Further, P.A. Meyer [12] showed it under a little weaker con-
ditions. Our lemma follows directly from P.A. Meyer’s [12]. (See also [7].)

§4. Capacitary measures for a Feller process having the quasi-
symmetric Green function

Throughout this section we always consider a Feller process X = (=,,
¢, M, P,) having the quasi-symmetric Green function G(x,y) with singularity
¢ and its dual process X = (%,, ¢, M,, P,) without special mentioning. We
study some properties about capacitary measures which are analogous to
those of G.A. Hunt [4]. We first note the following

LemMa 1. The capacitary measure is uniquely determined.

Proof. Our case can be treated in the general setting of H. Kunita
and T. Watanabe [10] (See also [7]). Hence the measure is uniquely de-
termined by its potential (See Prop. 7. 11 in H. Kunita and T. Watanabe
(10]).

Let E be a nearly analytic set. We say that a point z is a regular
point of E for X (resp. X), if P,oz=0)=1 (resp. P,(6z=0)=1) and an
irregular point of E for X (resp. X), if P,(o5z =0) =0 (resp. P(65;=0)=0). In
the following a regular (resp. irregular) point of E for X is called simply
a regular (resp. irregular) point of £ and a regular (resp. irregular) point
of E for X is called simply a co-regular (resp. co-irregular) point of E.
We denote by E™, E®-7% E'"% and E“7*7"* the set of all the points
which are regular, co-regular, irregular and co-irregular of E respectively.
Nextly we prepare some elementary properties about capacitary measures.

Lemma 2. For each nearly analytic set E with compact closure and for each
e >0, there exists a nearly analytic set F such that E C F'™ and P,(ogp <<+ o) +
e =P, (o < + ) for each measure p with p(E N E*"") =0, where F may depends
on .

Remark. Lemma 2 is also shown for the Feller process which has a
locally integrable Green function in the sense of P.A. Meyer [11], (See the
proof C) of Theorem 3.5 in [117).
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LEmMa 3. For each nearly analytic set E with compact closure, the capacitary

measure p5(dy) is concentrated on E U E*~",

Proof. The proof is same as that of G.A.Hunt [4], Prop. 18.4. We
omit it here.

Remark 1.  Using Lemma 3, we can easily see that pgz(E) = fiy(E) on
the same way as in G.A.Hunt [4], p. 175.

Now we shall show two properties about capacitary measures for the
process which satisfies Hunt’s condition (H):

) if F is compact and pgp(F) >0, then some
’ point of F is a regular point of F.

Under the condition (H) it holds that gz (KN K® ") =0 for each
nearly analytic set K with compact closure. (note that Kn K" is p-
measurable for any bounded measure . ) Indeed, if we assume
(K NK®"") >0, there exists a compact set Q < KN K '"" such that
¢x(Q) >0, which means #4(Q)= 1x(Q) >0.

Then some point of @ 1is a co-regular point of @ (of course it is a co-

regular point of K), which is a contradiction.

Lemma 4. Under the condition (H), for each compact set K, there exists a
sequence of nearly analytic sets {Q,} such that Q, | K, Qi "% > K and it holds

tq, (Qn) | k(K.

Proof. Let @ be a bounded open set which includes K. Then, for
the capacitary measure f,(dy), we can choose a sequence of nearly analytic
sets {Q,} with Q. K, @ > Q. Q°°7°? 5 K such that

A

PyQ(éQ"< + m)ipﬂ‘?(31(< + o)
by Lemma 2 because po(K N K" < px(KN K"y =0. On the other

hand we have

10,(@n) = fiq, (@) = | Pulog< + o0itg (dz) = || Gla, w)reela)itg, (da)

= SQ_PZ,(&Qﬂ< + o0)pro(dy)
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and

1K) = | Byl < + o0)rgldy).

Q
Lemva 5. Under the condition (H), for each compact set K, we have

tx(K) = sup v(K),

ve Mg
where My = {measure v, Gv <1, S(v) (= support of v) < K}.

Proof. For a sequence of {Q,} in Lemma 3 and » € Mg, it holds

o, (@a) = e, (@) = | Gul)itg, (d2)
= [ _Py(o0,< + w0)uldy) = u(K).

Hence, noting Lemma 3, we have #x(K)= sup »(K). Since it is clear that
ve My

#x(K) < sup v(K), we finish the proof.

ve My
It is unknown whether Hunt’s condition (H) holds for general Feller

process having the quasi-symmetric Green function with singularity ¢  @.
But in special case we can show that (H) holds by proving the continuity
principle (Hunt’s condition (I), [4]).

LemMa 6. Suppose that the function ¢ belongs to the class @,.  Then the
condition (H) holds. (Hence the condition (B) holds).

Proof. 1) We shall first show the following. Let # be a bounded
measure with compact support S(#), such that Gg is bounded, then, for

each g-measurable subset @ of S(z) which is contained in some ball § with
radius 7%

on (0,7] and #P¢(#) is monotone decreasing), it holds that

(» denotes a strictly positive constant such that o(¢) is defined

(. 1) [ ¢wvudn =L sup | G, yuay), Voeo,

where L is a positive constant independent of @ (dependent on @ and ).

Let V be a -—Z»-neighborhood of @, then, for each z,& V — @, there exists

a point y,€Q such that ing 2o~y =2, — ¥ol and 27¢(ly,—y|) = o(lz—¥y1),
ye

because |y, —y| =< lyo— 2ol + |2, —y| =2]2,— ¥, ¥ € Q. Hence we have
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sup - C(x,y)

< _(»0edxQ 2?2 .\ Gy, y)2(dy).
SQG(xo,yM(dy)_ inf . ) 2 SQ (¥, ¥)2(dy)
(2,NERXQ

For each point # € V* we have, noting @ < V™%,

|, 6,0 eay) = E.{ Glwe,)etay) =sup( Gz, v)tay).
Q Q eV Y@

Hence (4. 1) is proved.

ii). By using the inequality (4. 1) we shall show the following. Let #
be a measure mentioned in i). If G is continuous on S(#), it is continu-
ous everywhere. Since Gg is continuous on S(z)°, we have only to show
that Gg is continuous at aS(x). Let x, € 8S(x) and {Q,(x,)} be a sequence
of open balls such that Q,(x,) | x,, then we have

Gla, y)edy)t | Glo,y)ray)

SS(#>~Q,.(%) s(u)

and the both sides are continuous on S(y), because

Gla, y) uldy) + | Gla, y)eidy)

Gulw) = S @u(2)NS()

S()~Qu(®0)

and Gy is continuous on S(#) and S Gz, y)u(dy) is lower semi-continu-

Qo)
ous. Hence, by Dini’s theorem, its convergence is uniform on S(#), which

means

SQ"(%mS(#)G(w,y)y(dy)J,O, uniformly on S(#).

Hence the proof is completed. (The proof of ii) is due to S. Watanabe [15].)

iii), Using the result of ii) we can show that the following condition
(J) weaker than Hunt’s condition (/) holds for the potential in (i) on the
same way as in G.A. Hunt [4], p. 19.

(J"; For each ¢ >0 there exists an open set Q such that 1¢(Q)<<e and the

restriction of Gy to 2 — Q is continuous.

iv). From (J’) we can also show that the following condition (K’)
weaker than Hunt’s condition (K) holds on the same way as in G.A. Hunt
4], p. 197.
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Let Gy be a potential mentioned in (J').

(K’); Then, Gu(z,) is continuous whenever x(¢,w) is continuous for almost all
w with respect to B-measure, where B(:) = SQPZ(-)f(x)dx and f(x)
is a non-negative bounded measurable function with compact support.

v). That (K') implies (H) can be established by the same way as in
the proof (a) of Theorem 6.5 in P.A.Meyer [13]. (See also S.Watanabe
[15]), p. 34).

§5. Maximum principle and the singularity

This section is devoted to the proof of Theorem 3. We prove it by
the contradiction. Without special mentioning the process X = (%,, {, M,, P,)
we concern is a Feller process having the quasi-symmetric Green function

G(x,y) with singularity ¢ € @ and the sets we concern are assumed to be
sufficiently small.

Let ep¢(dy) be the uniform measure on the surface 4Q of a ball @
whose total mass is 1.
If we set

r(4)
L=—1:———l_—— @ 2r sin -2_ sin?~20d0,
vz F<d21>§0< 2)
(=[etz—yhesetdn); = € 2q),

where 7 is the radius @, then we have the following

Lemma 1. If L is finite, it holds

R S >mo 1
" L™ = 115q(0Q) = m m L,

2 2

where m, = iry"(x,y)eoxoxo%C(x,y), My = SUP(a,4)c 0, x 02, C(%, ¥).  (Here a ball Q

centering at x, is assumed to be in some O, )

Proof. The first inequality is proved as follows.
£30(0Q) = | ,Pufog < + 0)epelda)

Zm({, o212 = yDee(dy)esgldz)

=my L-p;¢(0Q).
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We shall next show the second inequality. By the remark of Lemma 2 of
§4, for any >0 there exists a nearly analytic set E such that E™* 5 3Q,

P, (0p< + 00) < Pylogg < + ) + e,

Since we may assume that

o(r) — e <info(lx,— y|)
ye E

sup S.@ o(le — yl)es(dy) < L1 + ¢),
e E
the following inequality holds

(B = 5 [, 000 — vl eeldy) — ¢|rs(dn)

> %21_[ SQP"("E< + 00)egq(da) — eptp(E)
_ _f;zﬁ% —epy(E).

Noting that

My O(r) « 13(0Q) + e = my - {p(r) — e}pg(E),

we have

m .1 _ ¢ 1 _ €
L3 (0Q) = Py m2-L{1 go(r)‘l+e my-o(r)

Since e is arbitrary, we finally obtain the second inequality.

Proof of Theorem 3. Suppose the kernel G(x,y) of Theorem 3 satisfies
the complete maximum principle, then there exists a Feller process whose
Green function is G(z,y) by Theorem 2. Therefore it holds by Lemma
1in §4

12 Poy(090 < + 00) = |, Gl 0)1130(dy)

= m, [, (20— ¥1)tagldy) = my - 9(0) 130(0Q)

for each ball Q < O,, with radius r which centers at xz,,  Hence by
Lemma 1 we have

1> (—Z—;—)z o(r) -

1
I
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Noting that C(x,y) is continuous in (x,y), we can choose a sufficiently
my \? 1 d d—1\" :
small ball @ such that (m;> >~~—l— F<—72->F(—~2—> , where M, is a

constant mentioned in Theorem 3. Then the above inequality implies

n R L
M, SD 99<27 sin 7) sin®~20d0 >/ o(r),
which is equivalent to the inequality in Theorem 3.

Remark 1. There exists a case in which Theorem 3 holds for
M =T (—%)F(—d% 7 In fact, if G(z,y) is a function of the distance
between x and y and if ¢(|x — y|) = G(x,y) satisfies the inverse inequality
of Theorem 3 with M, =T <~‘£>F<~‘—1-:i>-l, then G(x,y) does not satisfy

2 2
the complete maximum principle.

CoroLLARY. When d>a>2, a kernel with singularity #*¢ s not

a quasi-symmetric ~ Green  function under the continuity assumption of
- _ Glx,9)
c =_ G,y
(@ ¥) sa(lar:—yl)>
Proof. We may apply Theorem 3 by taking ¢(f) =¢*¢, but the
culculation of [-function is not easy. So we prove this as follows.

Noting that 4-#°9<0 for 2< a<d, where 4 is the Laplacian, we have
Sgp(lxo—y[)eaq(dy) > L. On the other hand, we can show by an element-

ary culculation that L“S o o(lwy — yl)esoldy) is a constant independent of

Q. Hence the inequality in Theorem 3 does not holds.

§6. Continuity of sample paths and the singularity
In this section we shall prove Theorem 4. Let us first note the fol-
lowing lemma.

Lemma 1. Let X = (x,, §, M,, P,) be a Feller process on 2 such that each
point is not a trap. If almost all paths starting at x, are continuous, for each
positive number e there exists a ball Q such that P, (o5 <+ ) >1—¢ holds for
each ball Q c @.

Proof. Now if we choose a sequence of open balls {Q,} with radius
n~! which centers at z,, almost every path meets some 9Q, (3Q, depends
on the path w) by the continuity of the path, because P, (¢ >0)=1.
Noting that the sequence of events {s3q, < + co} is increasing by the con-

https://doi.org/10.1017/50027763000012836 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000012836

GREEN FUNCTIONS IN MARKOV PROCESSES 39

tinuity of the path, if there exists some constant ¢ >0 such that P;(osq,
< 4+ )<1—¢ for each », then it holds that P, (U (s5e, <+ o)) =1-—5¢,
which contradicts the above statement.

Proof of Theorem 4. We use the same notations as those of the proofs
in §4. If the inequality about ¢(#) in Theorem 4 holds, we have

s < r (4 r(470)

Hence it holds that

- d\™ d—1
24 (Gl Y)rtoaldy) Sor) -y 13(0Q) = 9(r) - L7 < My - () T (455,
Using the continuity assumption of C(z,y) we have
[ ,Glan vIraolay) < Mz <1

for each sufficiently small ball @ centering at x, which implies that the
process is not a continuous process by Lemma 1.

ProrosiTION.  Let X be a Feller process which has the Green function with
. . . . 1-d
singularity ¢ € @.  If the process X satisfies Hunt’s condition (H) and ;(—t) s
monotone increasing, then X is mot a continuous process even if L in Lemma 1 of

§5 us infinite.

Proof. It is sufficient to show that £4,(3Q)=0. If we assume that
there exists a capacitary measure #;o(dy) such that £4,(3Q) >0, some points
are regular points of 9Q for X by the condition (H). Using the result of
Theorem 5 which will be shown in the next section, such a point is a
regular point of 9Q for the symmetric stable process XS with exponent 1.
But 9Q7%? is empty for X5. Thus we have proved the theorem.

CoRroLLARY. Let X be a Feller process having the Green function G(z,y)
with singularity t°°,  Under the continuity assumptions on Clx,y), if 0<a <2,
X s not a continuous process.

Proof. Since X satisfies the condition (H) in case 0 <a =<1 (for the
proof see Proposition in §7), X is not a continuous process by the above
proposition because »1;—:;} =1 if a<1. Let us set o(¢) =1¢""% then
for the case 2> a >1 there exists a constant K< 1 such that
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[ o120 = yDeagldy) < K- L.

Indeed, we have only to note that 4-¢*¢>0 for 0<a<2 and that
ggga(lx—yl)eaq(dy):L on 0Q, L‘lgggo(lx‘,——- ¥ 1)ego(dy) is constant independent-
ly of a choice of a ball @ centering at z,, Hence by the continuity of
C(x,y)(= M)I—)) we see that the inequality about ¢ in Theorem 4

ol —yl) .
holds for ¢(t) = t*°¢ in case 1<<a<2.

Remark. It is well known that to the Riesz kernel with exponent 2-
Newtonian kernel-, there corresponds Brownian motion. But to general
kernel with singularity #2°¢ a continuous process does not always corres-
pond. We shall give such an example in R?

Let us set

Gla,y) = ﬂ“(wlﬂ;i—mg—)(lx —yl), @y € R,

where & ~! denotes the inverse Fourier transform and 1< g<2. Suppose
for a moment that G(z,y) is a kernel in R® with singularity #*™¢, d =3,
which satisfies the complete maximum principle. (The proof will be given
in the next paragraph.) Then the Feller process whose Green function is
the above G(z,y) is not continuous. Indeed, since |z[2+ [#]? is a nega-
tive definite function there exists a generalized Laplacian A such that

F(A) = —(|z|*+ |z]¥)dz,
and further we can see that

3 0
R’—-(O){ uly + z) — ulz) _El o,

Avu(z)=Cy - 4- ula)+Cpr| u(@) ys—s) ﬁu_[f}‘

fw)dy, fly)dy; Lévy messure for g-stable process,

where 4 is the Laplacian and C,, C, are strictly positive constants suitably
chosen. As A is not a local operator, the process corresponding to G(z,y)
is not a continuous process.

It remains to show that the kernel G(z,y) has singularity ¢ € @ and
satisfies the complete maximum principle. Since it holds that

4 sin 2z7 dr
o 7+ o —y|2EA T

. 2
Gla,y) = lim_ lx—yls
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we can see that by the second mean value theorem

Glx, y) = ~9‘I(£L7x:“§??l)

’

where C(|x|) is bounded in R  The continuity of G(x,y) except at the
diagonal can be proved easily. By Lemma 1 in the latter section 8, G(x,y)
is positive almost everywhere and so positive everywhere. Furthermore, by
Lemma 2 in §8, G(z,y) satisfies the complete maximum principle.

§7. Regular points and the singularity
The results in this section are improvements of our previous one [6].
We shall first show that the Wiener test holds in the following sense.

ProrositionN.  (Wiener test). Let X = (xy, & M, P,) be a Feller process
satisfying the condition B on Q which has the Green jfunclion with singularity ¢.
Suppose o € @,.  Then a point x, is a regular point of a nearly analyltic set B for
X, if and only if

+oo 1 B
2 o( ) e, (B = + =,

where By = {x; 73;—1— Sl —nl = 21k] N B and 1y, (dy) is the capacitary measure
of By
Proof. 'This proposition can be proved by the same method as that of
¢
“(3) _
olt) =

Theorem 4. 1 in [6], if we only note that 1< - 2°. We omit the

proof here. We also note that

+oo 1 _

5o ) Bi= 1o
if and only if

~o0

121 Py, (o5, < + o0) = + oo,

Proof of 1) of Theorem 5. We shall first prove the Theorem for a
compact set B in general case. Let the sequence {B;} be the sequence of
sets defined in the previous proposition and p; (dy) and p} (dy) be capacitary
measures of B; for X' and X2 respectively. Then we can choose a sequence
of nearly analytic set {G;} such that G,*° D B,, ¢, (diameter of By) X o, (dia-
meter of By < 20, (diameter of Gi) X @, (diameter of Gp)7' and such that
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P} (05, < + ) = P; (05,< + o) + -élk— {99 («—élr }_1 (note that B, is compact).

0

Hence, for B, with sufficiently large suffix k, we have

28,60 = | Pios, < + o)t (da)

- Sgﬂxxz Gz, y)e; (dy)eg (dx)

2alz =yl oy ®)pg (dx)pg (dy)

S =)

C o,(diameter of By) ,
> Lo ) )
SSQXQ o, (diameter of By) Pilog, < + )13, (dy),

= 2
where C, and C, are strictly positive constants which can be chosen in-

dependently of k. Note that

¢y(diameter of By - (2 2 NP oep 1 > 1\
o, (diameter of By) = 992( 2F )99‘( 2k ) =2 2%( 2k SD‘( 2k ) ’
where p, is a strictly positive constant that #P20,(f) is monotone increasing

Then it holds that

and lim #P2¢,(¢f) = 0.
>0

LGy =
ﬂGk(Gk)_ P+l 0,(279)

C. 27" -
2 992( ) #Izzk (Bk)o

Finally we have

o0 _ 0 _
> 0127 pb, (G = G Z, 9:(27") 3, (B,

. . .. . o _
where C; is a strictly positive constant.  Since 3] 991<f‘;217;> #& (Gy) and
k=1 *
oo . . . .
kZ} P, (0g, < + o) diverges simultaneously, the proof is complete, if we note
=1

+-co +-c0
that kZ‘,lelo(on< + ) = + oo if and only if kZ P/ (05, < 4 ) = 4
= =1
Before the proof of ii) of Theorem 5 we shall prepare two results from

potential theory. Let E be a bounded Borel set, and let us put

VeE) = inf { sup |, ollz — ) udy)],

peLg\ ze Re

where L, = {measure p, S(p) < E, p(E)=1}. Then we define the g-capacity

CE) of E as follows;
1). VUE)=+oo=—=C%E)=0
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2).  VYE) <+ oo == o(C¥(E)) = V¥(E).

Lemma 1. (S. Kametani). Let ¢(t) € @, and h(t) = go(lf)' Then, for each
bounded Borel set E, A"(E)<< -+ oo means CY(E) =0, where A“(E) denotes h-
Hausdorff measure of E.

For the proof, see S. Kametani [16]. (Also see S.J. Taylor [17].)

Lemma 2. [S.J. Taylor] Let ¢, and ¢, be functions of class @, and

-1 ;
h(t) = AR Then, if

lim inf -21(f) —
o0k Po(l)

holds, there exists a compact set E such that A"(E) =0 and C?:(E) > 0.
For the proof see S.].Taylor [17].

LemMmA 3. Let X* be a Feller process in R*® whose Green function
Gz, y) = o(lx —y|), where o(t) € O (see remark 1 in §3). Then, for a compact
set K, we have

#%(K) =0 & C¥(K) =0,
where p%(dy) denotes the capacitary measure of K for X¢.

Proof. 1If we assume that p%(K) >0, then the measure Zx(dy)=p%(K)™*-

#%(dy) has total mass 1 and it holds SKso(lx —yDEx(dy) < Hence

1
v (K) °
VY(E)< + oo, which means C?(K) >0. Conversely, if we assume CYK)>0,
then there exists a measure p whose support is in K and S?(lm —y|) p(dy)

<VK)+e<<+ oo for each &>0. Hence, if we set [(dy)= —5&%'/{))4 R

Sgo(!x —y)p(dy) <1+ ¢ and support of Zc K, which means p%(K)>0 by

Lemma 5 in §4, because X¥ satisfies the condition (H) by Lemma 6 in §4.

Proof of ii) of theorem 5. By Taylor’s theorem (Lemma 2) and Lemma
1, there exists a compact set K such that C¥2(K) =0 and C*1(K) >0, which
means p%(K) =0 and p%(K)+0 by Lemma 3.  Since X1 and X?: satisfy
Hunt’s condition (H), some point is a regular point of K for Xt but no
point are regular points of K for X%. Noting Theorem 5, i), the state-
ment also holds for X! and X2
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ExamprLE. Let &7 be a differential operator in R%(d =3) of the form

d 02 d Pl
=3 au(w)a_x‘:j;j“ T 2 bilw) 5= — Cla).

Z,j=1

Here &7 is assumed to be strictly elliptic, i.e.

d d
2 aw(x)lzljgﬂtgl 239 a3 >O’

d
pR A= 2
i=1 i, J=1

and

[b(x)] <M, 0<C,=<Clx) <M, lim sup s B (e, Wdh = 0,

e=0 ze VO

where M and C, are positive constants and w(z, h) = sup |a;(z+y)—a;;(x)|.
i, |yl <h
N.V. Krylov has shown that on a suitable domain © there exists a Feller

process which is a quasi-diffusion Feller process connected with & having
a Green function G(z,y) with singularity 2%  (See N.V. Krylov [8], [9],
Th. 4). Hence, by Theorem 5, a point is a regular point of a compact
set for the above quasi-diffusion process, if and only if it is a regular point
of the same set for the Brownian motion.

As another application of Theorem 5, we shall give a sufficient condi-
tion such that Hunt’s hypothesis (H) holds, making use of singularity func-
tion.

ProrostTioN.  Let X be a Feller process which has the Green function G(x,y)
with singularity ¢ € 0. Then X satisfies the condition (H), under the condition (B).

Progf. Let XY be a Feller process whose Green function G%(z,y)=
o{lz —yl]). Then X? satisfies the condition (H) by Lemma 5 in §4 and,
for each compact set, its regular point is also a regular point for X and
converse is true. Therefore we have only to show that, for each compact
set K, #x(K) >0 means p%(K) >0, where px(dy) and p%(dy) are the capa-
citary measures of K for X and X* respectively. Let {@,} be a sequence
of nearly analytic sets such that Q;°7"¢? > K and ygn(é,,)J, 1% (K) (see Lemma
3 in §4), then we have for sufficiently small K

26 (@Qa) = S gPalox < + 0)pf (dz)

= ([, ,olly = 2 Dexidy)ug (@)
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= C'S Pi(gq, < + oo)px(dx)
= C’#K(K)’ C’ C >0,

which means that #.(K) >0 implies p%(K)>0.

§8. A Green function with singularity (%A>3_a<log %)

In this section we shall give an example of a kernel with singularity
¢ satisfying the complete maximum principle which is not a type of Riesz
kernel. For this purpose we use Deny’s result [1]. Let K be a measure
in R*. We say that K satisfies the balayage principle, if for any compact set
C and for any measure gz of compact support, there exists a measure g’
whose support is in C such that

(By) Kep’ < Kspp in RY;
(B.) Kip’ = Kepp on C
B faw ={ap,

where * denotes the convolution operator. The measure p’ is called the
balayaged measure of p on C.

Lemma 1. (J. Deny). Let us set

k=5 [([1wlu@s)], vere @z,

where p(ds) s a measure whose support is contained in the closed interval [0,2] and
 denotes the Fourier transform in Schwartz’s sense. Then K is a measure which
satisfies the balayage principle.

For the proof, see J. Deny [11.

LemMmA 2. Let K be a measure of function type o(x)dx, where o(x) is a
non-negative, locally integrable function such that ¢(x) = ¢(|x|) and dx is the Lebes-
gue measure.  Then, if K satisfies the balayage principle, it satisfies the complete
maximum principle.

Proof. Let f and g be non-negative continuous functions with compact
support such that the inequality

Kxf (2) < Kxg(x) + a
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holds on the support of f, where is a an arbitrary but fixed non-negative
constant. We shall show that the above inequality holds everywhere. Let
3, be a Dirac measure at x and ¢ be its balayaged measure on S(f) (= sup-
port of f), then we have

Kof (@) = o 7 0) (Be3,) (@) = [, F@) (Beo) (@)
= {potan|,, rie+ 9 K@y = | otan)| rwiollz — )y

= ot@n)]| otz — vDgwdy +a} = olle — yetw)dy + a.

The proof is completed.
Let us now set

K, = ,97'[( SZIyI’s"ds)—l], 1<ax<2, Fk; integer;_ 1.

In the 3-dimensional Euclidean space R® we can easily show that K,, is
absolutely continuous with respect to the Lebesgue measure. Further, we
can show that the density function ¢ such that G(z,¥) = ¢(lz —y]|) is a
kernel on R* with singularity (%)a-a(log%—) which satisfies the complete
maximum principle. Let us first note the following well-known result on
Fourier transform: Let f(x) be a measurable function on R® such that there
exists C >0 and a positive integer / and |f(z)| <Clz|' holds for large |z].
Suppose further that f(x) is only a function of |z].
Then, it holds

4 d

Ffllal) = };3307—'% [ (957 J gy 2xlwl9)ds, (in &),
x| 2 2
where J ,_, is the Bessel function of order a—2 The next equality

2

2
follows immediately from the above formula.
Kox=lim 2 (" sin @elalndr, 1<a<2, k>1
*E T Ao (2] Jo Uilr) ’ = ’
where

Uyr) = So rstds.

We divide the above integral into three parts as follows;
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1 o
C, = SO U sin (2z| 2 | 7)dr,

.
™,

sin (2x |z | 7)dr,

I R VAT
<3’k;1' ¢
C, = lim SA el ——sin (2|2 |7)dr
57T a0 zkk!-(' 1 \'if Ur) .

For 0 <7< 1 we have

o (3

2ytskelgs > p 2'<~q~—>k.

kUpy(r) =k g:r“’s"“’ds = kS 5

0
Moreover we have

atr* kb
Jogr logr Ueilr) 71
k+1

8. 1) Ulr) =

o

kE+1

1

210+1

2
“<1

Therefore we have for r<<

"erUk_1<7) - akT" 1 x <

log }; log- L

Ur) =

1%
%
5
<
|
|
.

Hence it holds that

in

o< 2 ()

1% 1
P 0 ¥ 2'10g7d7<Ku

where K, is a positive constant which is independent of z.
It is clear that there exists a constant K, which is independent of x

such that
1G] < K,
2
because }sin 27rlx|r’§1 and T]-r(wr)— is continuous in [(7"1“—>¢’ ekt .
( - 1_ 1 > “”1]. Now we shall estimate C;, We shall first note that #
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is monotone increasing for » >1. Indeed, as we have for 0<s<1 and
r=1

1—s -1 1 1
=17 {a=DsT1F = @17

y r(a—2)5+1 ; 7’“_1,

2

it holds for »> (ﬁ) o1 g2kk!

®.2) 4 (Dd) = [ (s — 1)rs-tstas

= [orrs 4 1pds = [ = 9prr-astas
_ Sl sla — 1)*{(a — 1)s + 1} ers—2{p(a—s+1 — 1l—=s sk x
0 {a — 1)

1
{(a —1)s + 1}*

X ds

where K, is a positive constant which is independent of x. Therefore we
have

Koy Ky
lKa.kl é 'x' + lxlz’

where K, is a positive constant independent of z. In the following we
shall show that there exists a strictly positive constant K; such that

. K
(8. 3) lim I = K.
e lxl“‘3<log |];c|) 5

It is sufficient to show that

. C
(8. 4) lim 3
o )

By the change of the variable we have

= K5.

Bz ._r_

x|
)

dr
2] *

. sin (2z7) «

sin2x |x|r dr = S

Vewlor
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We shall first show that for any given e >0 there exists a constant A’

(independent of |z] <%> such that

v_ (%1 . 2-a 1\t |w|
8.5 C¥f= Sm o7+ 1! <logW[> (T sin (2xr)dr < ¢
[o]
2
for each |z| <1 and A" > A’. If we choose A’ ><7;71—T> olgkk! = |,

T%(Uk <—;->>_1 is a monotocically decreasing function of » on [A’, + 0]

by (8. 2). So by the second mean value theorem we have

I

U(,—i‘{l)'

|C#1 <2lw]~(log-57)”

Let us note that

logf éo{ CH=) (loér)‘ (b — ¢ n! }+( l)kﬂk'“(loh?l?’)—“—l—
r#+1
Ulr) = o
I r=1
0 r=0

Indeed, using the equality (3.1), we can get the above equality by the
induction. Therefore we have for 2= a >1

. AI
| log-—~
|C&] < 241 | [z . T — 1' S
\log-1 ) {xma —1y(log A1) L |+
S Tal = lel/ " =0

el ) (log 157) "

<24 (1+ :c?ggi,)' Héo (1) (log |x|>_l ey ez ()]
x

k k

Hence, if we choose A’ such that -75— ‘;. “t(log At - k! +2k'<~”~> )
it holds for |o| <
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, - log A’ 1
|C¥| < 44 (1+l )
%8 Tl

<4A" 1+ (log2)tlog A" - —-

Hence (8. 5) holds for sufficiently large A’. In the following we shall fix
such A4’, and show

|x|2““<log ﬁ)ﬂ o1 2] gin (2zr)dr

= o)

(8. 6) lim SA )
|#] -0 (_1,)‘;21' ezkk!-lxl

@ —

= SA 7}7- r*~* sin 2zr dr >0,

The left-hand side of (8. 6) equals to

, log 1
. A‘ 1
th L2 (1—_~{_ <7~ sin (2z7) -
|2]-0 (T:f) «—1 eZkk' 2] log_AA_
[2]
1

(Belon ) 0 B o (2 g )
Noting that
0 = 31 ari(log- &) (-1 er + (et (421 (log-, L)

(lxl>

;(logﬁa { ‘(log lxl)—a(logl ) ekt - <log ) k!

)

=5 (log )k ZT“ >0 for A">r> e |zl
I
we see that
log L 1
X[e2kk!,|x"A/] 1 - r yl-o . Sin 2ny - (*)
10g—|§0|

< K;;
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where K; is independent of ¢ and » and Zk! ., 4y is a characteristic
function of [e**!'|z], A'). Hence we can obtain the equality (8. 6). We
can also show that K, is continuous except at the origin, so it is non-
negative because it is positive almost everywhere. (Remark that K, is a

measure.) Hence K, is a kernel with singularity (%)H‘Oog-}—) which

satisfies the complete maximum principle.(Note Lemma 2. )

REFERENCES

[1] J. Deny, Le Balayage, Meddel. Lunds Univ. Mat. Sem., tome dedié a M. Riesz (1952),
47-61.

[2] E.B. Dynkin, Markov process, Springer-Verlag, Berlin.

[ 3] O. Frostman, Potentiel d’equilibre et capacité des ensembles avec quelques applications
a la theorie des fonctions, Meddel. Lunds Univ. Mat. Sem. 3 (1935).

[4] G.A. Hunt, Mrkoff processes and potentials. 3, Illinois J. Math. (1958), 151-213.

[5] K. Ito and H.P. Mckean. Jr, Diffusion processes and their sample paths, Springer-
Verlag, 1965.

[61 M. Kanda, Regular points and Green functions in Markov processes, J. Math. Soc.
Japan, Vol. 19, No. 1, (1967), 46-69.

[ 7] M. Kanda, A remark on the continuity of the dual process, Nagoya Math. J. Vol. 32,
(1968), 287~295.

[8] N.V. Krylov, On quasi-diffusional processes, Theorey Probability Appl. (USSR) (1966),
424-443.

[9] N.V. Krylov, On the green function for the Dirichlet problem, Uspehi Mat. Nauk,
Tom. 22. No. 2 (134) (1967), 116-118.

[10] H. Kunita and T. Watanabe, Markov processes and Martin boundaries, Illinois J.
Math., 9 (1965), 485-526.

[11] P.A. Meyer, Proprietes des fonctions excessives, Séminaire Brelot-Choquet-Deny (théorie
du potentiel), (1960-1961).

[12] P.A. Meyer, Semi-groupes en dualité, Séminaire Brelot-Choquet-Deny (théorie du
potentiel), (1960-1961).

[13] P.A. Meyer, Fonctionelles multiplicatives et additives de Markov, Ann. Inst. Fourier,
12 (1962).

[14] M.G. Sur, Martin boundary for linear elliptic operators of second order, Izv. Akad.
Nauk (USSR), 27 (1963), 45-60.

[15] S. Watanabe, J. Takeuchi and T. Yamada, Stable process, Sem. on Prob. Vol. 13,
(in Japanese).

[16] S. Kametani, On Hausdorff’s measures and generalized capacities with some of their
applications to the theory of functions. Japanese J. Math. 19 (1944), 217-257.

[17] S.J. Taylor, On the connection between Hausdorff measures and generalized capasity.
Proc. Cambridge Philos. Soc., 57 (1961), 524-531.

Nagoya University.

https://doi.org/10.1017/5S0027763000012836 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000012836

52 MAMORU KANDA

SUPPLEMENT

It is clear that the theorem 1 also holds under the condition B for the Feller process
on £ which hsa a Green function G(x,y) such that, for each ball O, c 2 with radius
—1—, lim ( inf Gz, y)) = + co. The proof is the same as that of theorem 1.

n n-w \(2,4)€0, X0,

Here, by the condition B, we mean
Pylox < + ) = Pylox(wy,) < + )

holds for x € Q — G, where K (resp. G) is a nearly analytic set (resp. open set) with com-

pact closure in Q such that KC G. For example, a continuous Feller process satisfies the
condition B.
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