
JFP 28, e16, 50 pages, 2018. c© Cambridge University Press 2018

doi:10.1017/S0956796818000114

1

Ghostbuster: A tool for simplifying and
converting GADTs�

TIMOTHY A. K. ZAKIAN

University of Oxford, Department of Computer Science, Oxford, UK

(e-mail: timothy.zakian@cs.ox.ac.uk)

TREVOR L. MCDONELL

University of New South Wales, School of Computer Science and Engineering, Sydney, AUS

(e-mail: tmcdonell@cse.unsw.edu.au)

MATTEO CIMINI

University of Massachusetts Lowell, Department of Computer Science, Lowell, MA, USA

(e-mail: matteo cimini@uml.edu)

RYAN R. NEWTON

Indiana University, School of Informatics, Computing, and Engineering, Bloomington, IN, USA

(e-mail: rrnewton@indiana.edu)

Abstract

Generalized Algebraic Data Types, or simply GADTs, can encode non-trivial properties in

the types of the constructors. Once such properties are encoded in a datatype, however,

all code manipulating that datatype must provide proof that it maintains these properties

in order to typecheck. In this paper, we take a step toward gradualizing these obligations.

We introduce a tool, Ghostbuster, that produces simplified versions of GADTs which elide

selected type parameters, thereby weakening the guarantees of the simplified datatype in

exchange for reducing the obligations necessary to manipulate it. Like ornaments, these

simplified datatypes preserve the recursive structure of the original, but unlike ornaments, we

focus on information-preserving bidirectional transformations. Ghostbuster generates type-

safe conversion functions between the original and simplified datatypes, which we prove

are the identity function when composed. We evaluate a prototype tool for Haskell against

thousands of GADTs found on the Hackage package database, generating simpler Haskell’98

datatypes and round-trip conversion functions between the two.

1 Introduction

Languages in the Haskell, OCaml, Agda, and Idris traditions can encode complicated

invariants in datatype definitions. This introduces safety at the cost of complexity.

For example, consider the standard GADT (generalized algebraic datatype)

formulation of length-indexed lists:

� This work was supported by NSF awards 1453508 and 1337242. Timothy Zakian was funded by the
Clarendon Fund.

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

2 T. A. K. Zakian et al.

data Vec a n where

VNil :: Vec a Zero

VCons :: a Ñ Vec a n Ñ Vec a (Succ n)

Although this datatype provides additional static guarantees—for example, that we

cannot take the head of an empty list—writing functions against this type necessarily

involves additional work to manage the indexed length type n. In some situations,

however, such as when prototyping a new algorithm, the user may prefer to delay

the effort required to fulfill these type obligations until they can verify that the

new algorithm is beneficial. In that case, we can convert the length-indexed list

into a regular list by erasing the length index n and operating over a simplified

representation:

data Vec' a where

Nil' :: Vec' a

Cons' :: a Ñ Vec' a Ñ Vec' a

before converting back to the original datatype in order to test the changes within

the larger code base.

However, this final step requires re-establishing the type-level invariants that were

encoded in the original datatype, which may not be straightforward. Perhaps, the

user should stick to regular ADTs for this project? Unfortunately, that too may not

be an option. In the 16,183,864 lines of public Haskell code we surveyed, we found

11,213 existing GADTs with type variables. A person tasked with working in an

existing project is unlikely to be able to re-implement all of a project’s datatypes

and operations on them from scratch.

Inspired by the theory of ornaments (McBride, 2010; Dagand & McBride, 2012),

we can think about moving between families of related datatypes that have the same

recursive structure: rather than always working with a GADT, a user could choose

to (initially) write code against a simpler datatype, while still having it seamlessly

interoperate with code using the fancier one. A practical tool to do this could

enable a gradual approach to discharging obligations of indexed datatypes. In this

paper, we present such a tool. We require that it (1) defines canonical simplified

datatypes; and (2) creates conversion functions between the original and simplified

representations.

Is it possible to define such a simplification strategy by merely choosing which type

indices to remove from a datatype? While such a method would be convenient for

the user, it is far from obvious that there exists a class of datatypes—or that this class

of datatypes is large enough to be meaningful—for which such an erasure selection

yields a canonical simplified datatype and guarantees that conversion functions can

successfully round-trip all values of the GADT through the simplified representation

and back.

In this work, we show how to do exactly that. Using our tool—named

Ghostbuster—the user simply places the following pragma above the definition

of Vec:

{-# Ghostbuster: synthesize n #-}

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 3

and Ghostbuster will generate the definition Vec' above as well as conversion

functions between the two representations:

upVec :: Typeable n ñ Vec a n Ñ Vec' a

downVec :: Typeable n ñ Vec' a Ñ Maybe (Vec a n)

Since downVec may fail at runtime if the actual size of the vector does not match

the expected size as specified (in the type n and checked at runtime via Typeable)

by the caller, we take the approach of returning the result wrapped in Maybe, but we

could also choose to throw an error on failure or return a diagnostic message using

Either. Furthermore, sometimes during the down-conversion process, we cannot

determine the specific type index that must be synthesized, and we must therefore

keep it sealed under an existential binding. We can then make use of this sealed

type in contexts that operate over any instance of the sealed type:

data SealedVec a where

SealedVec :: Typeable n ñ Vec a n Ñ SealedVec a

downVecS :: Vec' a Ñ SealedVec a

withVecS :: SealedVec a Ñ (@ n. Vec a n Ñ b) Ñ b

Assuming we had such functionality, would that truly make our lives any easier, or

have we just moved our type-checking responsibilities elsewhere? We will show that

manipulating these simplified—or ghostbusted—datatypes is not at all burdensome,

and can indeed make life simpler. As an example, consider implementing de-

serialization for our indexed list. With Haskell’98 datatypes such as Vec', a Read

instance can be derived automatically, but an attempt to do so with the Vec

GADT results in a cryptic error message mentioning symbols and type variables

only present in the compiler-generated code. Disaster! On the other hand, since

Ghostbuster generates user-level code, we can leverage the downVec function that is

created by the tool to achieve this almost trivially1:

instance (Read a, Typeable n) ñ Read (Vec a n) where

readsPrec i s =

[(v,s) | (v',s) Ð readsPrec i s

, let Just v = downVec v']

Another option for de-serialization to GADTs is by using GHC’s interpreter as

a library via the Hint package.2 Using this method, after we have de-serialized to

a simpler—non-type-indexed—datatype a code generator then converts expressions

in this simplified datatype into an equivalent Haskell expression using constructors

of the original GADT. This is then passed to Hint as a string and interpreted, with

the value returned to the running program. While this represents the most scalable

1 Admittedly, this instance would be improved if the constructors of our simplified datatype used the
exact same names as the original, but we append an apostrophe to constructor and type names as a
convention to clearly distinguish the generated, simplified datatypes.

2 http://hackage.haskell.org/package/hint

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

4 T. A. K. Zakian et al.

method until now, it has many downsides, and we compare this method against

Ghostbuster in Section 8.

In this paper, we scale up the above type-index erasure approach to handle a

large number of datatypes automatically. We make the following contributions:

‚ We introduce the first practical solution to incrementalize the engineering costs

associated with GADTs.

‚ We give an algorithm for deleting any type variable that meets a set of non-

ambiguity criteria. Our ambiguity criteria establish a gradual erasure guarantee:

if a multi-variable erasure is valid, then any subset of these variables also forms

a valid erasure (Section 5).

‚ We formalize the algorithm in the context of a core language. We show that

up-conversion functions are total and up-then-down is exactly the identity

function on all values in the original GADT (Section 6).

‚ We show how the encoding of dynamically typed values that emerges from the

algorithm can be asymptotically more efficient than a traditional type Dynamic

(Section 2.2).

‚ Viewed in the context of the literature on deriving typeclass instances for

datatypes, Ghostbuster increases the reach of deriving capabilities beyond

previous functional language implementations, by lifting derivations on simpler

types to fancier ones, as with Read above (Section 3).

‚ We describe the Ghostbuster tool, currently implemented as a source-to-

source translator for Haskell, but directly generalizable to other languages.

We evaluate the runtime performance of Ghostbuster conversions compared

to the ad-hoc approach to constructing GADTs using a runtime eval, and

apply it to existing datatypes in 9,026 packages on the Hackage Haskell

package server (Section 8).

Although our approach does not handle all datatypes or Haskell features, it clearly

delineates the class of valid erasures and lays the groundwork for future research.

Further, while Haskell is used in this paper, care has been taken to ensure that the

theory and tooling that we develop is applicable to other functional languages with

GADTs.

The layout of this paper is as follows. In the next section, we describe the design

constraints and prerequisites for Ghostbuster and give an intuition for our ambiguity

criteria. In Section 3, we give some real-world examples and use cases. We then define

and formalize the core language used by Ghostbuster in Section 4. After this, we

present our ambiguity criteria in Section 5, and then detail our algorithm for down-

and up-conversion functions and prove the round-trip property for our algorithm

in Section 6. In Section 7, we discuss some of the Haskell-specific design decisions

that we have made, possible extensions, and possible challenges we might face when

extending to other languages. Section 8 then evaluates our prototype implementation

of the algorithm against other methods. We finish with a discussion of related work

and conclusions in Sections 9 and 10.

A preliminary version of this paper appeared in the Proceedings of the 2016

International Conference on Functional Programming (McDonell et al., 2016). We

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 5

have added a discussion on how strongly typed GADTs may preclude certain

common algorithms (Section 3.2), significantly expanded our formalization of the

core language (Sections 4.3 and 4.4), expanded the exposition of our ambiguity

criteria (Sections 5.2 and 5.3), and expanded Section 6 to include our algorithm for

generating type representations and type equality operations.

2 Design constraints

The central facility provided by Ghostbuster is a method to allow users to select a

subset of type variables of a given GADT, from which we derive a new datatype that

does not contain those type variables—they have been erased from the datatype.

Furthermore, we generate an up-conversion function from the original datatype to

the newly generated one, as well as a down-conversion function from the simplified

type back to the original, re-establishing type-level invariants as necessary.

However, there are a number of different criteria that must be satisfied by the

datatype and to-be-erased type variables in question before we can guarantee that we

will be able to generate up- and down-conversion functions. This section motivates

these criteria by highlighting some of the different problems that can arise when

attempting to erase type variables from a datatype, along with detailing some of the

language features that are needed in order to implement the Ghostbuster algorithm.

In particular, Section 2.1 details the runtime type-testing facilities that we require

for the Ghostbuster algorithm, Section 2.2 gives the intuition behind the different

erasure settings that need to be considered for type variables, and Sections 2.3 and

2.4 informally introduce our type information flow criteria. Section 3 explores a

larger example in more detail.

2.1 Prerequisite: Testing types at runtime

Ghostbuster blurs the line between having a statically typed and dynamically checked

program. With Ghostbuster, we can explicitly remove type-level information in one

part of the program (up-conversion), which we then re-establish at some later point

(down-conversion). To accomplish this, a central requirement for Ghostbuster is the

ability to examine types at runtime and to take action based on those tests. Haskell

has supported (open-world) type representations for years via the Typeable class:

class Typeable a where -- GHC-7.10

typeRep :: proxy a Ñ TypeRep

However, this is insufficient for our purposes because examining a TypeRep value

gives us no type-level information about the type that value represents. Instead, we

require a type-indexed type representation, which makes the connection between the

two visible to the type system:

class Typeable a where -- GHC-8.2

typeRep :: TypeRep a

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

6 T. A. K. Zakian et al.

While this new Typeable type representation in GHC 8.2 could be used in Haskell,

we have decided to instead generate these type-indexed TypeRep values ourselves

for a couple of reasons: using embedded TypeRep values rather than embedded

Typeable class constraints simplifies our core language since we do not have to

handle typeclass constraints (Section 4); and other languages that have GADTs do

not necessarily have such a way to connect runtime type tests to the type system (e.g.,

OCaml), thus using locally generated TypeReps allows this work to be implemented

in other languages that do not have typeclass constraints or built-in type-indexed

type representations.

We can then use the following functions to compare two types and gain type-level

information when those types are equal:

eqT :: (Typeable a, Typeable b) ñ Maybe (a :„: b)

eqTT :: TypeRep a Ñ TypeRep b Ñ Maybe (a :„: b)

data a :„: b where

Refl :: a :„: a

2.2 Erasure method: Checked versus synthesized

The basic operation that we provide to users is the ability to erase type variables

from a GADT. However, there are restrictions on which type variables are valid

erasure candidates. Consider the standard list:

{-# Ghostbuster: synthesize a #-} -- invalid!

data List a where

Nil :: List a

Cons :: a Ñ List a Ñ List a

If we remove the type parameter a and attempt to synthesize it when converting

back to the original datatype, we will find that it is not possible to write this

down-conversion function. In contrast to our initial Vec example (Section 1), if we

remove the information about the type of the list elements, we cannot later infer

that information based solely on the recursive structure of the list.

For this reason, we allow a second, weaker form of type-index erasure. Given the

declaration

{-# Ghostbuster: check a #-}

Ghostbuster will generate the following simplified representation of List together

with its conversion functions:

data List' where

Nil' :: List'
Cons' :: @ a. TypeRep a Ñ a Ñ List' Ñ List'

upList :: Typeable a ñ List a Ñ List'
downList :: Typeable a ñ List' Ñ Maybe (List a)

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 7

In contrast to Vec', where the erased type was synthesized during down-

conversion, when erasing type variables in checked mode we must embed a

representation of the type directly into the constructor Cons', otherwise this

information will be lost. We refer to the type parameter a as newly existential,

as it was not existentially quantified in the original datatype fed to Ghostbuster. It

is only newly existential type variables that require an explicit type representation

to be embedded within the simplified datatype. This is important, as we surely do

not want the user to have to create and manipulate TypeRep values for all erased

parameters.

During down-conversion, we check that each element of the list does indeed have

the same type the user expects:

downList :: @ a. Typeable a ñ List' Ñ Maybe (List a)

downList Nil' = Just Nil

downList (Cons' a' x xs') = do

Refl Ð eqTT a' (typeRep :: TypeRep a)

xs Ð downList xs'
return (Cons x xs)

Compare this to the definition of down-conversion for our original Vec datatype,

which erased its type-indexed length parameter in synthesized mode:

downVecS :: Vec' a Ñ SealedVec a

downVecS VNil' = SealedVec VNil

downVecS (VCons' x xs') =

case downVecS xs' of

SealedVec xs Ñ SealedVec (VCons x xs)

downVec :: Typeable n ñ Vec' a Ñ Maybe (Vec a n)

downVec v' =

case downVecS v' of

SealedVec v Ñ gcast v

This highlights the key difference between erasures in checked versus synthesized

mode. In order to perform down-conversion on List', we must examine the type

of each element and compare it to the type that we expect; thus, we cannot create

a SealedList which hides the type of the elements, since we would not know what

type to compare against in order to perform the conversion. In contrast, down-

conversion for Vec' does not need to know a priori what the type n should be, only

if we wish to open the SealedVec do we need to check (via Data.Typeable.gcast)

that the type that was synthesized is indeed the type we anticipate.3 In this sense,

synthesized variables require a posteriori knowledge about what they should be,

while checked variables require a priori knowledge of their type during the down-

conversion process.

3 Where Data.Typeable.gcast performs runtime type tests and type casts and returns a Just of the
type cast value if test and cast are successful and Nothing otherwise.

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

8 T. A. K. Zakian et al.

Connection to dynamic typing. We note that this embedded type representation

essentially makes each list element a value of type Dynamic. Why then do we use

explicit, unbundled type representations when Dynamic has existed in Haskell for

years? For the List type above, we would perform the same Opnq number of runtime

type checks with either approach, but consider the following list-of-lists datatype:

data LL a where

NilL :: LL a

ConsL :: [a] Ñ LL a Ñ LL a

These two competing approaches would yield the following simplified types for

ConsL, respectively:

ConsL'_dyn :: [Dynamic] Ñ LL' Ñ LL'
ConsL'_rep :: TypeRep a Ñ [a] Ñ LL' Ñ LL'

Thus, during down-conversion, the former would require a runtime type check on

every element of the inner list, whereas our unbundled representation requires only

a single check for each element of the outer list—an improvement in asymptotic

efficiency. This is one reason that we design Ghostbuster to inject explicit type

representations using TypeRep.

Finally, this observation suggests an appealing connection to gradual typing—

when Ghostbusted, data structures that were refined by type indexing become

regular, parametrically polymorphic data structures, which in turn become dynamic

datatypes once all type parameters are erased.

2.3 Unrecoverable information

Consider the following definition of a strange binary tree:

{-# Ghostbuster: synthesize a #-} -- invalid!

data Bad a where

Leaf :: x Ñ Bad x

Node :: Bad y Ñ Bad z Ñ Bad z

Here, only the rightmost leaf of the tree is usable, since every leftward branch

is of some unknown, unusable type y. According to our policy of embedding an

explicit type representation for any newly existential types (Section 2.2), we will

add a TypeRep to the Leaf constructor to record the erased type x. However, what

type representation do we select for y? Since this type is already unknowable in

the original structure, we cannot possibly construct its type representation, so such

erasures are not supported.

2.4 A policy for allowed erasures

As we saw in Section 2.2, the defining characteristic of which mode a type variable

can be erased in is determined by whether the erased information can be recovered

from what other information remains. As a more complex example (which we explore

further in Section 3) consider the application case for an expression language:

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 9

Fig. 1. Information flow within Ghostbuster for type variables in checked and synthesized

contexts for the App constructor. Boxes are placed around those places where base type

information is determined.

{-# Ghostbuster: check env, synthesize ans #-}

data Exp env ans where

App :: Exp e (a Ñ b) Ñ Exp e a Ñ Exp e b

Why does the type variable a, which is existentially quantified, not cause a

problem? It is because a is a pre-existing existential type (not made existential by

a Ghostbuster erasure). The type a can be synthesized by recursively processing

fields of the constructor, unlike the Bad example above. Thus, we will not need to

embed a type representation so long as we can similarly rediscover in the simplified

datatype the erased type information at runtime. This can be expressed as a series

of information flow criteria that detail how the types of the fields in the data

constructor constrain each other.4

Checked mode: right to left. In the App constructor, because the env type variable

is erased in checked mode, its type representation forms an input to the downExp

down-conversion function. This means that since we know the type e of the result

Exp e b (on the right), we must be able to determine the e in the fields to the

left, namely in Exp e a and Exp e (a Ñ b). Operationally, this makes sense if

we think how the downExp function must call itself on each of the fields of the

constructor, passing the (same) representation for the type e to each recursive call.

Synthesized mode: left to right. Conversely, the type ans forms part of the output of

the down-conversion process, since this type is synthesized by downExp, and we only

check after the conversion that the generated type is the type that we anticipate.

This means that the recursive calls on the fields of the constructor will generate the

types (a Ñ b) and a from the left, which in turn are used to determine the output

type b on the right. Figure 1 shows how this type information is flowed through the

App type constructor for type variables in checked and synthesized position, where

to-be-checked type information during our recursive processing of the datatype is

represented by dashed black arrows, synthesized type information being returned out

from the recursive processing of the constructor is represented by grey arrows, and

4 These information flow criteria are closely related to inherited and synthesized attributes in attribute
grammars which are discussed in Section 9.

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

10 T. A. K. Zakian et al.

the shaded grey arrow represents the determination of b based on the synthesized

information about a Ñ b and a.

Fortunately, whether or not type variables a and b can be determined by examining

the other types in the constructor is a purely local check that can be determined in

isolation on a per-constructor/per-datatype basis.5 The same local reasoning holds

for the requirements on checked types as well as synthesized. Together, we call these

information flow checks our ambiguity criteria and formalize this in Section 5.

Erased types that escape. Ghostbuster performs one final check before declaring

that an erasure is valid: datatypes undergoing erasure can only be used directly

in the fields of a constructor, not as arguments to other type constructors. For

example, what should the behavior be if we attempt to erase the type variable a in

the following:

data T a where

MkT :: [T a] Ñ T a

We might expect a sufficiently clever implementation to notice that it can utilize the

Functor instance to apply up- and down-conversion to each element of the list. But

what if the type constructor does not have a Functor instance, or is only exported

abstractly, thereby prohibiting further analysis? Moreover, even if a type constructor

fits all these criteria, we cannot be assured that a valid Functor instance would give

rise to valid erasures: if we took the default Functor instance for pairs in Haskell,

the conversion would only be applied to the second element of the pair which is

nothing like what we would like to get out of our conversion process. This is an

incredibly tricky design space, and one in which it is not only difficult to determine

the intended behavior that we would want for any particular Functor instance to

give rise to valid erasures, but also one in which it is impossible to determine a priori

whether or not a given Functor instance has those desired behaviors. We therefore

do not handle these cases in Ghostbuster.

Thus, all the datatypes we consider—from Vec to List to Exp and the thousands

of others we survey in Section 8—only have Ghostbusted types directly as fields,

not as type arguments. Only when all of these constraints are met will Ghostbuster

generate the requested datatypes and conversion functions, guaranteeing that they

will type-check and successfully round-trip all (type-correct) values.

3 Life with Ghostbuster

In this section, we describe several concrete scenarios in which Ghostbuster can

be used to make life easier for the programmer by allowing them to more easily

implement standard algorithms over a GADT abstract syntax tree (AST) (Section

3.2), and derive standard typeclasses in Haskell for GADTs that would otherwise

5 This is more local than other (tangentially related) features such as the “.” notation in Idris (Brady
et al., 2004) and Agda, which signifies a type is runtime-irrelevant and should be erased during
compilation. Irrelevance requires a whole-program check to verify whether the annotation can be
fulfilled.

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 11

require hand-written instances (Section 3.3). We take as a running example the

simple expression language which we define below.

3.1 A type-safe expression language

Implementing type-safe ASTs is perhaps the most common application of GADTs.

Consider the following language representation:6

data Exp env ans where

Con :: Int Ñ Exp e Int

Add :: Exp e Int Ñ Exp e Int Ñ Exp e Int

Var :: Idx e a Ñ Exp e a

Abs :: Typ a Ñ Exp (e, a) b Ñ Exp e (a Ñ b)

App :: Exp e (a Ñ b) Ñ Exp e a Ñ Exp e b

Each constructor of the GADT corresponds to a term in our language, and the

types of the constructors encode both the type that that term evaluates to (ans)

as well as the type and scope of variables in the environment (env). This language

representation enables the developer to implement an interpreter or compiler which

will statically rule out any ill-typed programs and evaluations. For example, it

is impossible to express a program in this language which attempts to Add two

functions.

Handling variable references is an especially tricky aspect for this style of

encoding. We use typed de Bruijn indices (Idx) to project a type t out of a

type-level environment env, which ensures that bound variables are used at the

correct type (Altenkirch & Reus, 1999).

data Idx env t where

ZeroIdx :: Idx (env, t) t

SuccIdx :: Idx env t Ñ Idx (env, s) t

Finally, our tiny language has a simple closed world of types Typ, containing Int

and (Ñ).

data Typ a where

Int :: Typ Int

Arr :: Typ a Ñ Typ b Ñ Typ (a Ñ b)

Using GADTs to encode invariants of our language (above) into the type system

of the host language, it is written in (Haskell) amounts to the static verification of

these invariants every time we run the Haskell type checker. Furthermore, researchers

have shown that this representation does indeed scale to realistically sized compilers:

Accelerate (Chakravarty et al., 2011; McDonell et al., 2013; McDonell et al.,

2015) is an embedded language in Haskell for array programming which includes

optimizations and code generation all written against a GADT AST, maintaining

these well-typed invariants through the entire compiler pipeline.

6 https://github.com/shayan-najd/MiniFeldspar

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

12 T. A. K. Zakian et al.

Fig. 2. In this scenario, we wish to add a prototype transformation into a compiler that uses

sophisticated types, but against a simpler representation. For example, we may want to verify

that an optimization does indeed improve performance, before tackling the type-preservation

requirements of the GADT representation.

Where then does the approach run into trouble? The problem is that manipulating

this representation requires the developer to discharge a (potentially non-trivial)

proof to the type system that all of these invariants are maintained. As such, the

programmer’s time may be spent searching for a type-preserving formulation of

their algorithm, rather than working on the algorithm itself. While ultimately such

effort is justified in that it rules out entire classes of bugs from the compiler, we

question whether or not this effort should be required up front, and wonder if,

without this extra initial burden, other optimizations or language features might

have been implemented by the Accelerate authors and external contributors over

the life of the project so far.

In the next section, we discuss how Ghostbuster can be used to realize the situation

shown in Figure 2, where we wish to implement a prototype transformation over our

expression language, without needing to discharge all of the typing obligations up

front. Of course, other alternatives exist:

Competing approach #1: hand-written conversions. Rather than using a tool such as

Ghostbuster,7 a user could just as well build the same conversion functions to and

from a less strictly typed AST representation themselves. However, this introduces

a significant maintenance burden, since whenever the original (more strictly typed)

AST is changed both the less strictly typed AST along with the conversion functions

must be changed as well. Furthermore, these conversion functions are tricky to

implement, and since the Haskell type checker cannot stop us from writing ill-typed

conversions to or from our untyped representation, these errors will only be caught

when the runtime type tests fail.

Competing approach #2: runtime eval. Another approach is to avoid the fine-grained

runtime type checks necessary for down-conversion entirely, by generating the GADT

term we require as a string, and using GHC embedded as a library in our program

to typecheck (eval) the string at runtime. Implementing a pretty-printer is arguably

less complex than the method we advocate in this work, but there are several

significant disadvantages to this approach which we will demonstrate in Section 8.

7 Which is itself written in Haskell, with no modifications to GHC required to support it.

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 13

class Syntactic f where

varIn :: Idx env t Ñ f env t

expOut :: f env t Ñ f env t

weaken :: f env t Ñ f (env, s) t

instance Syntactic Idx

instance Syntactic Exp

shift :: Syntactic f

ñ (@ t'. Idx env t' Ñ f env' t')
Ñ Idx (env, s) t

Ñ f (env', s) t

shift _ ZeroIdx = varIn ZeroIdx

shift v (SuccIdx ix) = weaken (v ix)

rebuild :: Syntactic f

ñ (@ t'. Idx env t' Ñ f env' t')
Ñ Exp env t

Ñ Exp env' t

rebuild v exp =

case exp of

Var ix Ñ expOut (v ix)

Abs t e Ñ Abs t (rebuild (shift v) e)

. . .

substitute :: Exp (env, s) t Ñ Exp env s Ñ Exp env t

substitute old new = rebuild (subTop new) old

where

subTop :: Exp env s Ñ Idx (env, s) t Ñ Exp env t

subTop = . . .
Listing 1. Substitution algorithm for richly typed terms

3.2 Example #1: Substitution

Consider the task of inlining a term into all use sites of a free variable. For our

richly typed expression language, where the types of terms track both the type

of the result as well as the type and scope of free variables, this requires a type-

preserving but environment changing value-level substitution algorithm. Luckily, the

simultaneous substitution method of McBride (2005) provides exactly that, where

renaming and substitution are instances of a single traversal, propagating operations

on variables closed under shifting structurally through terms. Listing 1 outlines the

method.

Although the simultaneous substitution algorithm is very elegant, we suspect

that significant creativity was required to come up with it. Compare this to the

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

14 T. A. K. Zakian et al.

shift :: Idx' Ñ Exp' Ñ Exp'
shift j exp =

case exp of

Var' ix | ix < j Ñ Var' ix

| otherwise Ñ Var' (SuccIdx' ix)

Abs' t e Ñ Abs' t (shift (SuccIdx' j) e)

. . .

substitute :: Exp' Ñ Exp' Ñ Exp'
substitute = go ZeroIdx'

where

go j old new =

case old of

Var' ix | ix == j Ñ new

| ix > j, SuccIdx' i Ð ix Ñ Var' i

| ix < j Ñ old

Abs' t e Ñ Abs' t (go (SuccIdx' j) e

(shift ZeroIdx' new))

. . .
Listing 2. Substitution algorithm implemented against the simplified datatype

generated by Ghostbuster

implementation shown in Listing 2; since no type-level environment manipulation

needs to be taken into account when performing substitution (using shift and

rebuild), this simply amounts to simple structural recursion on terms. In particular,

this is implemented against the simplified representation generated by Ghostbuster

using the erasure pragma8 ,9:

{-# Ghostbuster: check env, synthesize ans #-}

which yields the following expression datatype:

data Exp' where

Con' :: Int Ñ Exp'
Add' :: Exp' Ñ Exp' Ñ Exp'
Mul' :: Exp' Ñ Exp' Ñ Exp'
Var' :: Idx' Ñ Exp'
Abs' :: Typ' Ñ Exp' Ñ Exp'
App' :: Exp' Ñ Exp' Ñ Exp'

8 The environment type env needs to be provided by the client (checked mode) because otherwise it is
ambiguous. For example, the constant term Con 42 can be typed in any environment.

9 We simultaneously request erased versions of Idx and Typ using the same settings, but elide those for
brevity.

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 15

and conversion functions:

upExp :: (Typeable env, Typeable t)

ñ Exp env t Ñ Exp'

downExp :: (Typeable env, Typeable t)

ñ Exp' Ñ Maybe (Exp env t)

Referring to the implementation of Listing 2, note that although the Var' and Abs'
cases constitute environment changing operations, we do not need to manipulate

any embedded TypeRep env values; needing to do so would seriously compromise

usability, and Ghostbuster is instead able to recover this information automatically

(see Sections 2.2 and 2.4).

While in this case, an algorithm for operating directly on the richly typed terms

already existed, there is no guarantee that we will be so lucky for all of the

operations we may wish to perform. An example of this arises in the common

compiler optimization of shrinking (Appel, 2007) in which functions that are only

used once are inlined, dead-code is eliminated, and constant folding is performed. In

particular, while linear-time shrinking algorithms are known for normal ASTs (Appel

& Jim, 1997; Benton et al., 2005), when using ASTs in which GADTs are used to

maintain type-level invariants (such as in our richly typed expression language),

we are no longer able to use these algorithms: the linear-time shrinking algorithm

must be able to contract redexes in any order, however, doing this efficiently

requires the ability to in-place update the AST of our program—which then

requires us to prove (and re-prove) that the type-level invariants in our AST are

maintained for each transformation. This represents at the very best a significant—if

not insurmountable—barrier to implementing such an algorithm for richly typed

ASTs.

3.3 Example #2: Template Haskell and typeclass deriving

One great feature of Haskell is its ability to automatically derive certain standard

typeclass instances such as Show and Read for Haskell’98 datatypes. Unfortunately,

attempting to do the same for GADTs results only in disappointment and cryptic

error messages from compiler-generated code. However, as we saw in Section 1, we

can regain this capability by using Ghostbuster and leveraging derived instances for

the simplified datatypes instead.

instance (. . .) ñ Show (Exp env t) where

show = show . upExp

Similarly, some libraries include Template Haskell (Sheard & Peyton Jones, 2002)

routines that can be used to automatically generate instances for the typeclasses

of that library. Although these run into problems when applied to GADTs,10 once

more we can use Ghostbuster to circumvent this limitation. As an example, we can

10 https://www.reddit.com/r/haskell/comments/5acj3g/derive fromjson for gadts/

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

16 T. A. K. Zakian et al.

easily generate JSON (de-)serialization instances for the aeson package11 applied to

our richly typed terms:

$(deriveJSON defaultOptions ''Exp')

instance (. . .) ñ ToJSON (Exp env t) where

toJSON = toJSON . upExp

instance (. . .) ñ FromJSON (Exp env t) where

parseJSON v = do

v' Ð parseJSON v :: Parser Exp'
return $ fromMaybe (error " . . . ") (downExp v')

These examples demonstrate that Ghostbuster enables a synergy with existing

Haskell libraries and deriving mechanisms, providing a convenient method to lift

these operations to GADTs, which may be otherwise precluded.

4 Core language definition

Before covering the ambiguity criteria and core algorithm for Ghostbuster in Sections

5 and 6, we first formalize a core language to facilitate the precise description of the

transformations performed by the Ghostbuster tool. This core language also serves

as the intermediate representation of the Ghostbuster implementation. Although we

implement our prototype in Haskell, it is easily extended to generate code for any

language that supports GADTs.

The core language definition is given in Figure 4. The input to Ghostbuster

is a set of datatype definitions, dd1 . . . ddn. The term language is used only as an

output language for generating up- and down-conversion functions. As such, we

are not interested in the problem of type inference for GADTs, rather we assume

type annotations that allow us to use the permissive, natural type system for

GADTs (Schrijvers et al., 2009a), which supports decidable checking (Cheney &

Hinze, 2003; Simonet & Pottier, 2007) (but not inference). Our implementation runs

a checker for this type system, and, to support checking, case and typecase forms

are labelled with their return types as well, though we will elide these in the code

throughout the rest of the paper.

4.1 Syntax

The syntax of terms and types in Figure 4 resembles Haskell syntax with extensions

for type representation handling and extra conventions related to type arguments

(k c s) to indicate the erasure level (respectively, type variables which are kept

unchanged in the output, and those which are erased in checked and synthesized

mode, as discussed in Section 2.2). Without loss of generality, we assume that

type constructor arguments are sorted into these kept, checked, and synthesized

11 https://hackage.haskell.org/package/aeson

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 17

Fig. 3. The architecture of the Ghostbuster tool, which processes data definitions in several

passes, resulting in pretty-printed Haskell source on disk. Note that only the ingestion and

code generation phases are Haskell specific: the ambiguity check through lowering phases are

implemented in terms of our core language.

Fig. 4. The core language manipulated by Ghostbuster.

categories. This simplifies the discussion of which type arguments occur in which

contexts, based on position. The implemented Ghostbuster tool does not have this

restriction and the status of type arguments are specified in pragmas, as we saw

earlier.

A program consists of a number of datatype declarations followed by mutually

recursive value definitions (vd) and a “main” term e. The generated up- and

down-conversions will form a series of vds. Terms in our language consist of

the lambda calculus, a non-recursive let with explicit type signatures, simple

case expressions and ways of creating, casing on, and querying equality of

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

18 T. A. K. Zakian et al.

runtime type representations, which we call typerep, typecase, and »τ. The »τ

operator must work over arbitrary monotype representations, comparing them for

equality at runtime. typecase also performs runtime tests on type representations,

and enables de-constructing type representations into their component parts—for

example, splitting a function type into an input type and output type. An example

of using typecase to perform this destructuring of typereps can be seen in the

code on Page 33.

We specifically do not handle typeclasses. If we were to handle them, we would

need to be able to discover and then prove the various typeclass constraints in the

same way that we do for type constraints. However, verifying such constraints is

impossible without either using Constraints from GHC.Prim, using unsafeCoerce,

or dropping down into GHC’s intermediate language. More generally, in order to

allow typeclass constraints, we would need not only type-indexed, but typeclass-

indexed type representations. And while GHC allows us to do this by hooking into

the underlying intermediate language, this is not something that is a feature of

Haskell or any other (non-intermediate) languages that we are aware of.

We deviate from the standard presentation of GADTs. Typically, the return type

of each constructor is normalized to the form T a, with any constraints on the

output type pushed into a per-data-constructor constraint (C):

Ki :: @a, b.C ñ τ1 Ñ ¨ ¨ ¨ Ñ τp Ñ T a

We avoid this normalization. Because we lack typeclass constraints in the language

(and equality constraints over existentially bound variables can easily be normalized

away), we simply omit per-data-constructor constraints. This means that when

scrutinizing a GADT with case, we must synthesize constraints equating the

scrutinee’s type T τ with T τk τc τs in each Ki clause and then add this into a

constraint C , which we will use during type-checking (Figure 7). The advantage

is that avoiding per-constructor constraints greatly simplifies our definition of the

allowable space of input datatypes for Ghostbuster (Section 5). The absence of per-

constructor typeclass constraints from our core language is also why we require type-

indexed TypeRep values (rather than equivalent Typeable constraints) to observe

the type of newly existential type variables (Sections 2.2 and 2.1).

4.2 Type system

The typing rules for our language are syntax-directed and are given in Figures 5–8.

The main judgment forms are the following:

Well-typed expressions Well-typed patterns

C,Γ $e e : τ C,Γ $p p Ñ e : τ1 Ñ τ2

along with judgments for extending Γ with data definitions pΓ $d dd : Γ1q, value

definitions pΓ $v vd : Γ1q, and for typing whole programs pΓ $prog prog : τq. We also

make use of some syntactic sugar in the typing rules and we will often write both

τ1, . . . , τn and τ1 . . . τn as τn, and τ1 Ñ ¨ ¨ ¨ Ñ τn as ÝÑτ n.

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 19

Fig. 5. Typing rules for type representations and operations on them.

Fig. 6. Equality theory for the Ghostbuster type system.

Many of the typing rules are standard, but a few—in particular, TypeRep,

TypeCase, and IfTyEq—are unique to our language and separated into Figure

5. Here, the TypeRep and TypeCase rules only cover the type constructor T cases,

the elided rules for the built-in type representations T “ Existential and T “ ArrowTy

are nearly identical.

The TypeRep and TypeCase rules together allow us to encapsulate the arguments

to the type constructor T in such a way that we can later on—at runtime—

de-structure and bind type information for later use, and is why the TypeRep rule

requires that each of its arguments are TypeReps, and why each xi is given the correct

TypeRep type in the right-hand side (RHS) of the first branch in the TypeCase rule.

Most importantly, both the TypeCase and IfTyEq rules are the way in which we

reflect the runtime type-tests that are performed statically in the typing judgments

for the different branches, notice in the TypeCase rule that not only is e1 typed with

each xi : TypeRep τi but also with the added constraint that τ0 „ T τn, and similarly

for the IfTyEq rule the consequent is typed with the added constraint τ0 „ τ1. This

can be viewed as being similar to what is done in occurence-typing (Tobin-Hochstadt

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

20 T. A. K. Zakian et al.

Fig. 7. Typing rules for the core language.

Fig. 8. Environment and program typing rules.

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 21

& Felleisen, 2010a) where type-level information is added to an expression based

upon the knowledge of a given (runtime) predicate having passed.

We depart from previous approaches in the Eq rule in Figure 7 by making

the coercion of an expression from one type (τ1) to another (τ2) explicit via the

form e τ1 � τ2 (cf. Schrijvers et al. (2009a)). Without these explicit coercions, when

a reduction in our semantics pushes us under a true branch in a type equality

check there would be no way of recovering the (possibly needed) equations in

our constraint environment to show type equality within that subexpression. We

could get around this need for explicit type coercions in our language by having our

semantics return both an expression along with a constraint environment that is then

used in the statement of type preservation, but this would significantly complicate

our semantics.

We lack a full kind system, but we do track the arity of constructors, with

T : ‹n P Γ as a shorthand for the T being an arity-n type constructor. We require

that all type constructors be fully applied except when referenced by name through

the (typerep T) form.

It will prove useful later on to only deal with constraint contexts in which all of

the types in our type constraints have been reduced to the smallest possible. We

therefore define a reduction relation á on type constraints τ1 „ τ2 and reduce the

type constraints in C based upon these:

pTConRq T τn „ T τ1
n

á τ1 „ τ1
1 ^ . . . ^ τn „ τ1

n

pTyRepRq typerep τ1 „ typerep τ2 á τ1 „ τ2

pArrowRq pτ1 Ñ τ2q „ pτ1
1 Ñ τ1

2q á τ1 „ τ1
1 ^ τ2 „ τ1

2

(1)

Since conjunction is commutative, the order in which we perform the reductions on

the type constraints in C does not matter. If one of the reduction relations defined

above applies to a type constraint τ1 „ τ2, we will call that constraint reducible. The

one-step reduction of a constraint C á C 1 is then defined to be the reduction of a

single reducible type constraint τ1 „ τ2 in C , where we say that a constraint τ1 „ τ2

is in C (or τ1 „ τ2 P C) if there exist constraints CL and/or CR such that C can be

written as a conjunction of τ1 „ τ2 with one, or both, of CL and CR (i.e., C is equal

to one of τ1 „ τ2 ^ CR , CL ^ τ1 „ τ2, or CL ^ τ1 „ τ2 ^ CR).

We would like for our reduced constraints to have the same power as our original

constraints. Luckily, this proves to be the case: since each constraint reduction

relation has a corresponding expansion in our equality theory in Figure 6, any

constraint reduction that we perform can always be “re-expanded” to get back to

the original constraints.

Lemma 1 (Constraint reduction preserves power)

Let C be a constraint, and C 1 a one-step reduction of C . Then, if C|“ τ1 „ τ2, then

C 1|“ τ1 „ τ2.

Proof

It suffices to show that given any C , and one-step reduction C 1 of C , that we can

transform C 1 back to C . We proceed by case analysis on the reduction relation used

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

22 T. A. K. Zakian et al.

from C to C 1. If

C “ CL ^ T τn „ T τ1
n

^ CR,

then we will use the TConR reduction rule to get

C 1
“ CL ^ τ1 „ τ1

1 ^ . . . ^ τn „ τ1
n

looooooooooooomooooooooooooon

p‹q

^CR

Applying rule TStruct in Figure 6 w.r.t. T and (‹), we get

CL ^ T τn „ T τ1
n

^ CR

which is equal to C .

We apply the exact same reasoning in the other cases, replacing the use

of TStruct with TyRepStruct and ArrStruct, and then using TyRepR and

ArrowR, respectively. �

Definition 1 (Constraint normalization)

We say that a constraint C is normalized if Eτ1 „ τ2 P C such that τ1 „ τ2 is

reducible.

We can now easily show that normalized constraint contexts have the same

expressive power as the original constraints using Figure 1.

Theorem 1 (Normalization preserves power)

Let C be a constraint, and C 1 its normalization. Then, if C|“ τ1 „ τ2, then

C 1|“ τ1 „ τ2.

Proof

By the definition of normalization, we have the following:

C “ C0 á C1 á . . . á Cn “ C 1

where each Ci is the one-step reduction of Ci´1 for i ě 1. We then have by repeated

application of Lemma 1 that for each Ci, Ci|“ τ1 „ τ2. From this, we get that

Cn|“ τ1 „ τ2. Since C “ C0 and Cn “ C 1, we are done. �

Now that we have shown that we do not lose any expressive power through

normalizing the constraints, from now on we assume that all constraints in C are

normalized.

4.3 Semantics

The operational semantics for our language is largely straightforward, with the only

intricacies arising from our embedded type representations and how we handle type

coercions. As we mentioned in the previous section, since our operational semantics

does not build up or keep a constraint environment, we need to be able to erase type

coercions and substitute types in our semantics in order to reflect the runtime type

information that we gather at the type-level. This substitution and type coercion

erasure in our semantics can be seen as replacing the propositional equality between

types that we have in our type system with syntactic equality.

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 23

Since the type coercions in our language represent transformation-time promises

of type equalities that must be proved later on at runtime, the erasure of a type

coercion in the semantics represents a discharging of the proof obligation for that

coercion to be valid. Likewise, a substitution of one type for another can be seen

as discharging any possible future proof obligations of type equality between the

two types that may be needed later—changing some propositional equalities (that

would rely on some possibly no-longer-provable constraint) during type checking

into syntactic equalities. To this end, once we have proved that two types are equal,

we eagerly substitute one of them in for all occurrences of the other in the remaining

term, and perform any coercion erasures that we can. This leads to the following

definition of a type substitution and coercion erasure function errτ1{τ2ss that recurses

naturally on terms, and performs a standard substitution on types and handles

coercions as follows:

xrrτ1{τ2ss “ x

pλx :: τ.eqrrτ1{τ2ss “ λx :: τrτ1{τ2s.errτ1{τ2ss

pe1 e2qrrτ1{τ2ss “ e1rrτ1{τ2ss e2rrτ1{τ2ss

pe τ3 Ź τ4qrrτ1{τ2ss “ errτ1{τ2ss

if τ3rτ1{τ2s ” τ4rτ1{τ2s

pe τ3 Ź τ4qrrτ1{τ2ss “ errτ1{τ2ssτ3rτ1{τ2s Ź τ4rτ1{τ2s

if τ3rτ1{τ2s ı τ4rτ1{τ2s

...

(2)

where the last rule handles the case where we are erasing a type that may occur

within another type, a simple example of which can be seen in the following, where

we are saying that we have shown τ1 equal to τ3, and τ2 equal to τ4:

pe pτ1 Ñ τ2q Ź pτ3 Ñ τ4qq rrτ1{τ3ssrrτ2{τ4ss

“ perrτ1{τ3ss pτ1 Ñ τ2qrτ1{τ3s Ź pτ3 Ñ τ4qrτ1{τ3sq rrτ2{τ4ss

“ perrτ1{τ3ss pτ1 Ñ τ2q Ź pτ1 Ñ τ4qq rrτ2{τ4ss

“ perrτ1{τ3ssrrτ2{τ4ss pτ1 Ñ τ2qrτ2{τ4s Ź pτ1 Ñ τ4qrτ2{τ4sq

“ perrτ1{τ3ssrrτ2{τ4ss pτ1 Ñ τ4q Ź pτ1 Ñ τ4qq

“ errτ1{τ3ssrrτ2{τ4ss

We are now in a position to present the (small-step) operational semantics for our

language, which are given in Figures 9 and 10. The judgment takes the form

Σ;D $ e ãÑ e1

where Σ : TermVar Ñ Exp is an environment mapping term variables to expressions

and is what we use to allow us to deal with function definitions and recursive

functions in the language, and D : TypeConstr Ñ DataConstr is an environment

that maps type names and type constructors to their corresponding runtime type

representation—a data constructor within the language. It is this latter environment

that is of particular importance to us, since it is through this mapping that we are

able to reify our static assumptions in the type system with dynamic (runtime) type

checks.

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

24 T. A. K. Zakian et al.

Fig. 9. Environment creation and evaluation judgments for programs.

How we build up the Σ environment is straightforward, and is given by the

Prog and ValDef rules in Figure 9. However, in order to handle possibly mutually

recursive functions, it is important that the ValDef rule does not inspect the body e

of the value definition in the process of building up our bindings. Building the type

representations D for our language on the other hand is quite a bit more nuanced in

its realization and relies on a minor yet important property of the language: if we

encounter a typerep during the evaluation of the program, that typerep must have

occurred as a subterm of the larger program earlier on (i.e., we cannot synthesize

typereps). This property is critical to the correctness of our algorithm when using a

closed-world type representation since it ensures that we can syntactically determine

after we have generated the program which type representations need to be created,

and then insert these into the generated program. Thus, there is an important phase

distinction between program generation, type representation creation, and actual

evaluation of the program. This property about type representations in our language

is formalized in Theorem 2, and we go into detail on precisely how we determine

and generate the various type representations that need to be formed in Section 6.4.

But for now, it suffices to know that D contains runtime type representations for all

type names that we may encounter under a typerep form in the generated program.

Using a closed-world type representation in order to test runtime type equality

means that each type representation will simply be a GADT data constructor

in the source language. The operational semantics makes use of this fact and

thus expresses both typecase and »τ in terms of case statements and equality

checks on data constructors, respectively, in the TypeCase and IfTyEq rules. Note

also, how in each of the TypeCase and IfTyEq rules, we perform type equality

erasure with the new type-level information that is gained through the process

of matching on the type representations, and where D´1pKq represents the pre-

image of the constructor K in D. Moreover, in order to simplify data constructor

application, we (implicitly) η-expand all data constructors in our language and thus

all applications of data constructors are fully saturated, with substitution on the body

of the enclosing lambda expressions substituting in the correct types for free type

variables, and the correct expressions for the variables that have been bound in the

η-expansion.

4.4 Metatheory

In this section, we detail some of the metatheoretic properties of our language and

show our core language typesafe. Further, we show that we are able to syntactically

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 25

Fig. 10. Operational semantics for expressions in Figure 4.

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

26 T. A. K. Zakian et al.

determine the required type representations during the conversion process in order

to use closed-world type representations for the generated program.

Syntactic determination of type representations. As we mentioned in the previous

section, in order to use a closed-world type representation in the generated program,

it is crucial that we are able to statically determine the various type representations

that we need to generate. The following theorem formalizes this ability:

Theorem 2 (Syntactic determination of type representations)

Let prog “ dd; vd; e1 and let $d dd : Γd. Let e be an expression such that ε,Γd $e e : τ.

Then, if Σ;D $ e ãÑ‹ typerep T for some type name T, then there exists a program

context C12 such that e “ Crtyperep Ts.

Proof

By induction on e and the operational semantics. �

Type coercion erasure. As was mentioned in Section 4.3, type coercions represent

outstanding proof obligations of runtime type equality. Thus, encountering a closed

term ε, ¨ $e e1 τ1 Ź τ : τ where τ1 ı τ during the reduction process represents the

obligation to prove something from nothing: since we do not have any other parts

of the program to build constraints that can prove the equality between τ1 and τ,

we will have reached a final unprovable expression if we encounter such a form.

Thus, while the following theorem could be viewed as a corollary to progress for

the language, in fact we cannot view it as such since we need this invariant in the

proof to show that we do not encounter (non-identity) type coercions during our

reduction process.

Theorem 3 (Type coercion erasure)

Suppose that ε, ¨ $e e : τ. Then there does not exist an e1 such that e ” e1 τ1 Ź τ2 for

τ1 ı τ2.

Proof

Assume for contradiction that such an e1 did exist. Then by inversion on the Eq

rule, we would have that ε|“ τ1 „ τ2 and therefore τ1 ” τ2. But τ1 was assumed to

not be equal to τ2 which is a contradiction. Therefore, no such e1 can exist. �

Progress and preservation. Proving progress and preservation for our language is

largely straightforward, however care must be taken with constraints, and in

particular how we introduce them in the type system, and handle them in the

semantics. The following lemma serves as a crucial link between the type-level

constraint environment and the type-erasure that we perform in our semantics.

12 Our program contexts are standard and elided for brevity.

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 27

Lemma 2 (Constraint substitution)

Let C be a normalized constraint and C ^ τ1 „ τ2, ¨ $e e : τ. Then, Crτ1
1{τ1

2s, ¨ $e

errτ1
1{τ1

2ss : τrτ1
1{τ1

2s. Where we choose the τ1
i according to the following rules:

τ2 P τ, τ1 R τ ñ τ1
1 “ τ2, τ

1
2 “ τ1

otherwise ñ τ1
1 “ τ1, τ

1
2 “ τ2

Proof

The proof follows by induction on the structure of e and by inversion of the typing

rules. The only interesting case arises from the explicit type coercions and the Eq

rule—in particular in showing that

C ^ τ1 „ τ2|“ τ1
„ τ ùñ Crτ1

1{τ1
2s|“ τ1

rτ1
1{τ1

2s „ τrτ1
1{τ1

2s

This can be shown by proving a more general substitution lemma on constraints:

C|“ τ1
„ τ

Crτ1
1{τ1

2s|“ τ1
rτ1

1{τ1
2s „ τrτ1

1{τ1
2s

which follows by induction on the proof derivation. We then note that

pC ^ τ1 „ τ2q rτ1
1{τ1

2s “ Crτ1
1{τ1

2s ^ τ1
1 „ τ1

1 and since τ1
1 „ τ1

1 holds by reflexivity,

we can then eliminate this constraint from our environment. �

The fact that the constraint substitution in Lemma 2 does not necessarily lead to

the same type (syntactically) presents a challenge to proving type safety, but it makes

sense: a constraint τ1 „ τ2 in C represents the ability to coerce a value of type τ1

to a value of type τ2 (and vice versa), however a substitution rτ1{τ2s represents the

obligation to change all types τ2 to τ1. Furthermore, Lemma 2 can be seen as a way

to transform propositional into syntactic equality, so it makes sense that while it

should preserve propositional equality between τ and τrτ1{τ2s it does not necessarily

preserve syntactic equality between these two types.

Since Lemma 2 is central to our proof of preservation, this lack of syntactic

equality presents an issue to the normal formulation of preservation. We will

therefore need to change the statement slightly to take into account that even

though the types may change syntactically during reduction, they do not change

semantically. This leads to the following definition of a propositional equality

between types where we say that once we have proved two types to be equal

at runtime then we can syntactically change our types to get rid of one of the (now

known to be equal) types.

Definition 2

We say that pe, τq « pe1, τ1q if e ãÑ e1 results in type-erasures rrτ1{τ1
1ss, . . ., and

τ1 „ τ1
1 ^ . . . |“ τ „ τ1. If the reduction does not result in an erasure, then τ ” τ1.

Theorem 4 (Preservation)

Suppose that ε, ¨ $e e : τ and that Σ;D $ e ãÑ e1. Then, ε, ¨ $e e1 : τ1 and

pe, τq « pe1, τ1q, where Σ is built-up as in the premises of the Prog rule.

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

28 T. A. K. Zakian et al.

Proof

The majority of the proof is straightforward, and based on induction over the

derivation of ε, ¨ $e e : τ and a standard preservation proof. The only interesting

part is in the handling of constraints. In particular, in showing that whenever type

constraints are introduced in our typing rules, these correspond to type-erasures in

the semantics. This correspondence is shown through a straightforward (and tedious)

case analysis on our pattern matching and type equality testing rules in both the

type system and semantics and in each case showing that the type-erasures that

are performed in the semantics match with the constraints introduced in the typing

rules, and then using Lemma 2 repeatedly on the normalized constraint (Definition

1, Theorem 1) to show that the resulting types are « to each other after each

type-erasure. �

We will need the following (standard) lemma for the proof of progress.

Lemma 3 (Canonical forms)

1. If v is a value of type T τ, then v is a data constructor for T (i.e., K e).

2. If v is a value of type τ1 Ñ τ2, then v is a lambda expression.

Proof

By inspection of the definition of values in Figure 4, and the typing rules in

Figure 7. �

Now that we have the Canonical Forms lemma, we have all the tools we will need

in order to prove progress and preservation for our language.

Theorem 5 (Progress)

Suppose that ε, ¨ $e e : τ. Then, if e is not a value, then there exists an e1 such that

Σ;D $ e ãÑ e1. Where Σ is built-up as in the premises for the Prog rule.

Proof

Straightforward induction on the derivation of ε, ¨ $e e : τ, using Theorem 3 to

ensure that we do not encounter a type coercion when we perform the reduction

step, and by use of Lemma 3. �

5 Pre-conditions and ambiguity checking

Before Ghostbuster can generate up- and down-conversion functions, it first performs

a sanity check that the datatypes, together with requested parameter erasures,

meet all pre-conditions necessary for the tool to generate well-typed conversion

functions. Indeed, as we discussed in Section 2 not every erasure setting is valid. We

therefore want to create sufficient pre-conditions such that if these pre-conditions

are met, the Ghostbuster tool is guaranteed to generate a pair of well-typed functions

pup, downq, such that up-conversion followed by down-conversion is a total identity

function. This section details these pre-conditions and ambiguity criteria.

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 29

5.1 Ambiguity test

While it would be possible to issue errors at the point Ghostbuster is generating

conversion functions (i.e., in a later pass of the “compiler”), our goal in the ambiguity

criteria are a concise specification of the class of programs handled by Ghostbuster.

These non-ambiguity pre-requisites apply per-data-constructor, Ki, and for each

datatype that requests a type-erasure (non-empty c or s variables). If all of the

constructors for a datatype that is marked for erasure each individually pass the

ambiguity check, then the datatype is marked as valid. And if all of the datatypes

that have been marked for erasure individually pass the ambiguity check, then the

program as a whole is valid. We will also need some terminology for our data

constructors as we go forward in order to avoid ambiguity in our ambiguity criteria.

Thus, given a data constructor:

Ki :: @k, c, s, b.τ1 Ñ ¨ ¨ ¨ Ñ τp Ñ T τk τc τs,

we refer to the types τ1 through τp as the fields τp of the constructor, and the

T τk τc τs expression as the RHS. Types which occur in a checked or synthesized

context means that they occur within the arguments of some type constructor T in

positions corresponding to its c or s type parameters. Likewise, kept (or non-erased)

context k refers to all types τ that are not in checked or synthesized context.

The primary pre-requisite-checks for Ghostbuster are for verifying computability

of checked and synthesized type variables, and the ambiguity check is concerned with

the information flow between the type variables in kept, checked, and synthesized

contexts. That is, whether the type information erased from the simpler up-converted

datatype can be recovered during down-conversion based on the properties and

type information of the simpler datatype. If not, these type variables would not be

recoverable upon down-conversion—and since we are only concerned with datatypes

where we can generate both up- and down-conversion functions for datatypes

Ghostbuster rejects the program.

5.2 Type variables synthesized on the RHS

In order to synthesize the types τs, we require that for each synthesized type τ1 P τs
on the RHS, type variables occurring in that type, a P Fv�τ1�, must be computable

based on the following:

1. Occurrences of a in any of the fields τp. That is, Di P r1, ps . a P Fvs�τi�, using

the Fvs�� function from Figure 12.

2. a P Fv�τk�. That is, kept RHS types.

3. a P Fv�τc�. That is, a occurs in the checked (input) type.

Note that the occurrences of a in fields of the constructor can be in either

kept or synthesized contexts, but not checked. For example, consider our Exp

example (Section 3.1), where the a variable in the type of an expression Exp e a is

determined by the synthesized a component of its sub-expressions, bottoming out

at leaf expressions such as constants and variables. In contrast, checked variables

in the fields must be created by the down-conversion function as inputs to recursive

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

30 T. A. K. Zakian et al.

Fig. 11. Information flow for type variables in checked and synthesized contexts for the

program Abs Int (Abs Int (Var Zro)). Vertical edges are processed before horizontal

edges.

down-conversion calls on the value’s fields. Thus, in (1), they cannot be a source

of new information to determine synthesized outputs, and we have to use the Fvs��

rather than the Fv�� metafunction above in order to determine the types available

to us during the synthesization process. Conversely, notice that we do not worry

about applying the above prerequisites to synthesized variables inside fields—these

are the outputs of recursive down-conversion calls. Their computability is left to

an inductive argument (bottoming out at “leaf” constructors such as Exp’s Con).

An example of valid type-information flow for a small program in the language

of Section 3.1 is given in Figure 11 where the grey arrows represent synthesized

type-information being returned back out by the recursion, the black dashed arrows

represent checked type-information being pushed down into the recursive calls on

the datatype, and the grey dashed arrows represent synthesized type information

that has been discovered at a previous step being pushed down into the recursive

calls on the datatype.

5.3 Type variables in checked context

All types in checked context in τ1 . . . τp are implicit arguments to the down-conversion

function that will process that field. Thus, for all τi in checked context, all a P Fv�τi�

must be computable based on information available at that point, which includes

1. kept or checked variables in the RHS, a P Fv�τc� Y Fv�τk�;

2. occurrences of a in a non-erased context within any field;

3. occurrences of a in Fv�τj�, for other fields τj that have already been processed

before the field containing τi.

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 31

This last case—inter-field dependencies—can be found in the Abs case of our

expression language (Section 3.1):

Abs :: Typ a Ñ Exp (e, a) b Ñ Exp e (a Ñ b)

Recall that in our example, given Exp e a, we erase e in checked mode and

a in synthesized mode. Thus, the type (e, a) is in checked context, so how is

it determined? It cannot be resolved using (a Ñ b) on the RHS, as this is a

synthesized type (meaning it is an output of the down-conversion function), it must

be determinable from the other fields of the constructor, in this case Typ a. An

example of what this information flow for inter-field type dependencies looks like is

given by the grey dashed line in Figure 11.

For a type in checked context, we must be able to determine which fields to

examine in order to determine what the checked type should be. This requires that

any possible inter-field dependencies do not form a cycle. As an example, take the

following piece of code:

{-# Ghostbuster: synthesize t #-} -- invalid!

data Loop t where

MkLoop :: T a b Ñ T b a Ñ Loop (a, b)

{-# Ghostbuster: check a, synthesize b #-}

data T a b where

MkT :: a Ñ b Ñ T a b

Since the types a and b in the fields of the constructor both appear in checked mode,

determining the type of a could depend on the determination of the type of b and

vice versa. Thus, the inter-field dependency graph between a and b could form a

cycle—so this constructor fails the ambiguity criteria and we cannot erase the type

t from Loop.

For simplicity our formal language assumes that fields are already topologically

sorted so that dependencies are ordered left to right. That is, a field τi`k can depend

on field τi. In the case of Abs, a P Fvs�Typ a� and τ1 “ Typ a occurs before

τ2 “ Exp (e,a) b, therefore Ghostbuster accepts the definition.

Discussion: design choice. Finally, note that we could seek to loosen the inter-field

dependency restriction to allow intra-field dependencies. For example, currently an

uncurried version of the Abs constructor would be rejected by Ghostbuster:

Abs' :: (Typ a, Exp (e, a) b) Ñ Exp e (a Ñ b)

Here, a in (e,a) must be determined by a synthesized portion of the same field’s

type, τ1. In this particular case, we know that tuple values of type (x,y) can be

broken into a value of type x and y, so we can recursively process one part of the

tuple before the other. However, for arbitrary type constructors, this property does

not hold: synthesization of type variables can be viewed as a type of effect and

the order in which we synthesize type variables is important, so unless we know

that a given type constructor has a Traversable instance (or some other canonical

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

32 T. A. K. Zakian et al.

Fig. 12. Extracting free type variables in different contexts.

traversal ordering is imparted to it), we are unable to determine where we should

start resolving intra-field dependencies. Furthermore, as discussed in Section 2.4,

this would require us to also trust in the Functor instance provided to us for the

type constructor, which in and of itself presents many challenging issues. For these

reasons, we keep the allowed dependencies simple (inter-field), and types must be

re-factored to meet this requirement.

5.4 Gradual erasure guarantee

One interesting property of the class of valid inputs described by the above ambiguity

check is that it is always valid to erase fewer type variables—to change an arbitrary

subset of erased variables (either c or s) to kept (k). That is:

Theorem 6 (Gradual erasure guarantee)

For a given datatype with erasure settings k, c “ c1 c2 and s “ s1 s2, then erasure

settings k
1

“ pk c2 s2q, c1 “ c1, s
1 “ s1 will also be valid.

Proof

The requirements above are specified as a conjunction of constraints over each

type variable in synthesized or checked position. Removing erased variables

removes terms from this conjunction. For the remaining erased type variables,

their dependence check may have depended on formerly erased, now kept, variables.

However, both the synthesized and checked dependency prerequisites include all

variables in kept context. Thus, moving variables from erased to kept context never

breaks any dependency. �

6 Core translation algorithms

We now describe the core translation algorithms used in Ghostbuster using the

language defined in Section 4. The resulting pipeline of translation passes is shown

in Figure 3.

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 33

6.1 Simplified datatype generation

Creating simplified data definitions is straightforward. Fields τi are replaced with

updated versions, τ1
i , that replace all type applications T τk τc τs with T 1 τk:

Ki : @k, c, s, b.τ1 Ñ ¨ ¨ ¨ Ñ τp Ñ T τk τc τs
ñ

K1
i : @k, b. getTyRepspKiq Ñ τ1

1 Ñ ¨ ¨ ¨ Ñ τ1
p Ñ T τk

1

where getTyReps returns any newly existential variables for a constructor (Section

2.2):

getTyRepspKi : @k, c, s, b.τ1 Ñ ¨ ¨ ¨ Ñ τp Ñ T τk τc τsq “

tTypeRep a | a P pFvk�τ1 . . . τp� ´ Fv�τk�q ´ bu

Recall here that b are the pre-existing existential type variables that do not occur in

τk τc τs.

6.2 Up-conversion generation

In order to generate the up-conversion function for a type T , we instantiate the

following template:

upTi :: ÝÝÝÝÝÝÝÑTypeRep c Ñ
ÝÝÝÝÝÝÝÑTypeRep s Ñ Ti k c s Ñ T 1

i k

upTi c1_typerep . . . sn_typerep orig =

case orig of

Kj x1 . . . xp Ñ

let φ = unify(T k c s, T τk τc τs)

KtyRepj = map (λτ Ñ bind(φ, [τ], buildTyRep(τ)))

getTyReps(K)

in

Kj' KtyRepj
dispatchÒ(φ, x1, φpτ1q) . . . dispatchÒ(φ, xp, φpτpq)

While the procedure is largely straightforward—pattern match on each Kj and

apply the K1
j constructor—there is significant complexity in the type representation

management of the bind and dispatchÒ operations. Here we follow a naming

convention where a type variable k is witnessed by a type representation bound

to a term variable k typerep. Ghostbuster performs a renaming of type variables

in data definitions to ensure there is no collision between the variables used at the

declaration head T k c s, and those used within each constructor Kj . For example,

this already holds in Exp where we used env/ans interchangably with e/a.

In the let-binding of φ above, we unify the type of orig with the expected result

type of Kj . This uses a unification function that is part of a type checking algorithm

based on the type system of Figures 5–8. Because we use the k c s variables to

refer to the type of the input, orig, this gives us a substitution binding these type

variables. For example, in the Abs case of our expression language (Section 3.1):

Abs :: Typ r Ñ Exp (e, r) s Ñ Exp e (r Ñ s)

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

34 T. A. K. Zakian et al.

unification yields

φ “ tenv :“ e, ans :“ pr Ñ sq u

It is the job of bind to navigate this substitution in order to create type

representations for type variables mentioned in φ, such as r. Here, getting to r

requires digging inside the type representation for ans using a typecase expression.

Because the type representation added to K 1
j will always be of the form TypeRep a

(for type variable a), this is all the call to bind must do to create the type

representations that decorate K 1
j . Note that there may be multiple occurrences

of r P φ, and thus multiple paths that bind might navigate; which path it chooses is

immaterial.

Type representation construction in dispatch. The dispatchÒ function is charged with

recursively processing each field f of Kj . Based on the type of f, this will take one

of two actions:

‚ Opaque object: return it unmodified.

‚ Ghostbusted type T : call upT .

In the latter case, it is necessary to build type representation arguments for the

recursive calls. This requires not just accessing variables found in φ, but also building

compound representations such as for the pair type (e, r) found in the Abs case

of Exp.

Both of these behaviors can be seen in the snippet of actual Ghostbuster-generated

code below:

upExp :: @ env ans . TypeRep env Ñ TypeRep ans

Ñ Exp env ans Ñ Exp'
upExp env_typerep ans_typerep orig

= case orig of

Abs a b Ñ Abs'
(upTyp

(let r_typerep = typecase ans_typerep of

(typerep ArrowTy) left right Ñ left

in r_typerep)

a)

(upExp

(let e_typerep = env_typerep in

let r_typerep = typecase ans_typerep of

(typerep ArrowTy) left right Ñ left

in (typerep Tup) e_typerep r_typerep)

. . .)

Finally, when building type representations inside the dispatchÒ routine, there is

one more scenario that must be handled: representations for pre-existing existential

variables, such as the type variable a in App:

App :: Exp e (a Ñ b) Ñ Exp e a Ñ Exp e b

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 35

In recursive calls to upExp, what representation should be passed in for a? We

introduce an explicit ExistentialType in the output language of the generator

which appears as an implicitly defined datatype such that (typerep Existential)

is valid and has type @ a. TypeRep a.

Lemma 4 (Reachability of type representations)

All searches by bind for a path to v in φ succeed.

Proof

By contradiction. Assume that v R φ. But then v must not be mentioned in the

Ti τk τc τs return type of Kj . This would mean that v is a pre-existing existential

variable, whereas only newly existential variables are returned by getTyReps. �

6.3 Down-conversion generation

Down-conversion is more challenging. In addition to the type representation binding

tasks described above, it must also perform runtime type tests (»τ) to ensure that

constraints hold for formerly erased (now restored) type variables. The type signature

of a down-converter takes type representation arguments only for checked type

variables; synthesized types must be computed:

downTi :: ÝÝÝÝÝÝÝÑTypeRep c Ñ T 1
i k Ñ SealedTi k c

where the SealedTi seals over any newly existential type variables for Ti that may

be introduced during the down-conversion process just as SealedVec did for Vec

in Section 1.

If the set of synthesized variables is empty, then we can elide the Sealed return type

and return Ti k c directly. This is our strategy in the Ghostbuster implementation,

because it reduces clutter that the user must deal with. However, it would also be

valid to create sealed types which capture no runtime type representations, and we

present that approach here to simplify the presentation.

To invert the up function, down has the opposite relationship to the substitution φ.

Rather than being granted the constraints φ by virtue of a GADT pattern match, it

must test and witness those same constraints using p»τq. Here the initial substitution

φ0 is computed by unification just as in the up-conversion case above.

downTi :: ÝÝÝÝÝÝÝÑTypeRep c Ñ T 1
i k Ñ SealedTi k c

downTi c1_typerep . . . cm_typerep lower =

case lower of

K1
j ex_typerep . . . f1 . . . fp Ñ

let φ0 = . . . in

openConstraintspφ0, openFieldspf1...fpqq

where

openConstraintspH, bodq = bod

openConstraintspa :“ b : φ, bodq =

if a_typerep »τ b_typerep

then openConstraintspφ, bodq

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

36 T. A. K. Zakian et al.

else genRuntimeTypeError

openConstraintspa :“ T τ1 . . . τn : φ, bodq =

typecase a_typerep of

(typerep T) a1_typerep . . . an_typerep Ñ

openConstraintspa1 :“ τ1, . . . ,an :“ τn : φ, bodq

_ Ñ genRuntimeTypeError

Above we see that openConstraints has two distinct behaviors. When equating

two type variables, it can directly issue a runtime test. When equating an existing

type variable (and corresponding _typerep term variable) to a compound type

T τn, it must break down the compound type with a different kind of runtime test

(typecase), which in turn brings more _typerep variables into scope. We elide the

pÑq case, which is isomorphic to the type constructor one. Note that (»τ) works on

any type of representation, but this algorithm follows the convention of only ever

introducing variable references (e.g., a_typerep) to “simple” representations of the

form TypeRep a.

Following openConstraints, openFields recursively processes the field arguments

f1 . . . fp from left to right:

openFieldspf::T τk τc τs : rstq =

case openRecursionpφ0,fq of

SealedTq s’ typerep f' Ñ

openConstraintspunifyps1 typerep, τsq, openFieldsprstqq

openFieldspf::τ : rstq = let f' = f in openFieldsprstq

Here we show only the type constructor (T τk τc τs) case and the “opaque” case.

We again omit the arrow case, which is identical to the type constructor one.

As before with dispatchÒ, the openRecursion routine must construct type

representations to make the recursive calls. Unsealing the result of a recursive

call reveals more constraints that must be checked. For example, in the Add case

of Exp, both recursions must synthesize a return type of Int and thus a type

representation inside the Sealed type of (typerep Int). Likewise, in the App case,

the function input and the argument types must match. openConstraints ensures

these synthesized values are as expected before returning control to openFields to

process the rest of the arguments.

Finally, in its terminating case, openFields now has all the necessary type

representations in place so that it can build the type representation for SealedTi.

Likewise, all the necessary constraints are present in the typing environment—from

previous typecase and (»τ) operations—enabling a direct call to the more strongly

typed Kj constructor.

openFieldspHq = SealedTi buildTyRepps typerepq (Kj f1
1 ¨ ¨ ¨ f1

p)

Fresh variables and naming conventions. Naming conventions are subtle when

implementing the above code generation algorithm. By processing from left to

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 37

right, we ensure that earlier synthesized dictionaries are available for creating later

checked dictionaries to pass to recursive calls. However, in the above presentation,

we did not keep an explicit naming environment. This works because the structure of

the types is static and available at all points in the code—it is possible to construct

a unique name for the values and dictionaries returned by each recursive call, and to

agree on this by convention. Alternatively, we could also pass a Γ as an argument

to openFields which would keep track of all available term variables with dictionary

type.

The result of code generation is that Ghostbuster has augmented the prog with up-

and down-conversion functions in the language of Figure 4, including the typecase

and (»τ) constructs. What remains is to eliminate these constructs and emit the

resulting program in the target language, which, in our prototype, is Haskell.

6.4 Runtime type representations

Before we can get rid of the typecase and »τ constructs in Ghostbuster’s generated

code, we must first choose an approach to dynamic type checks. Since we are

generating Haskell code, one method is to use Haskell’s type-indexed Typeable

class introduced in GHC-8.2, which we saw in Section 2.1. However, this is only one

of several possible approaches, as described by the substantial literature on dynamic

type checking in statically typed languages (Abadi et al., 1989; Leroy & Mauny,

1991; Abadi et al., 1995; Baars & Swierstra, 2002a).

6.4.1 Runtime Types in Ghostbuster

Since generating code against the new Typeable class in Haskell restricts the

portability of the generated code,13 we instead use the simple approach of generating

a closed-world of type-indexed TypeRep values for all types mentioned in the

datatypes passed to Ghostbuster: since the Ghostbuster tool can observe all the

types mentioned in a set of data-types (Theorem 2) it creates an application-specific

notion of a runtime type representation, which itself is a GADT. Since for a closed

set of types, creating a GADT for runtime type representation is trivial (Peyton Jones

et al., 2016)—For example, the following is the TypeRep for representing Boolean,

integer, and tuple types:

data TypeRep a where

TypeInt :: TypeRep Int

TypeBool :: TypeRep Bool

TypeTup2 :: TypeRep a Ñ TypeRep b Ñ TypeRep (a,b)

What is more, using an explicit dictionary type makes it

trivial to construct a type equality check function of type

TypeRep a Ñ TypeRep b Ñ Either TypeError (a :„: b)

13 Not just to other languages—but also to Haskell before the new Data.Typeable introduced in
GHC-8.2.

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

38 T. A. K. Zakian et al.

6.4.2 Lowering type representation primitives

Including explicit type representation operations in our core language allows us to

defer commitment to a particular representation of runtime type representations

in our algorithm, and provides a simple solution to enabling an open union of

dictionary types without using typeclasses or any more complex mechanisms in the

formal language to achieve this. Now that we have chosen a representation for

our types, we can describe how to de-sugar explicit type representation operations

such as typecase into the other operations of the core language as a core-to-

core transformation. This allows us to lower those operations into operations more

directly expressible in the target language (e.g., Haskell).

First, the “Lower TypeRep” pass must introduce a new data definition, TypeRep a,

with one constructor for each type constructor T mentioned anywhere in a typerep

or typecase form, plus the built-in types:

data TypeRep a where

TypeT1
:: ÝÝÝÝÝÝÝÑTypeRep a

n1
Ñ TypeRep pT1 a

n1q

TypeT2
:: ÝÝÝÝÝÝÝÑTypeRep a

n2
Ñ TypeRep pT2 a

n2q

. . .

ArrowType :: TypeRep a Ñ TypeRep b Ñ TypeRep (a Ñ b)

ExistentialType :: @ a . TypeRep a

This datatype, plus propositional type equality (:„:) that we saw earlier, are used

by the generated code for the desugared forms, which appears as follows:

Drrtyperep T ss ùñ TypeRepT
Drrtypecase e1 of pptyperep T q a1 . . . anq Ñ e2; Ñ e3ss ùñ

case Drre1ss of

TypeT a1 . . . an Ñ Drre2ss

TypeT1
. . . Ñ Drre3ss

...

Here we encounter a tension with typecase desugaring. As specified in our core

language definition, we do not have “catch all” pattern matches along with the case

form. Thus, the case expression generated must match on every possible Typeτ
constructor. If generating these exhaustive cases, and e3 produces non-trivial code,

it is also important to let-bind it to avoid excessive code duplication, which slightly

complicates the translation above.

Finally, the third form, p»τq, de-sugars into a call to a type representation equality

testing function, eqTT:

D�if e1 »τ e2 then e3 else e4� ùñ

case eqTT Drre1ss Drre2ss of

Just Refl Ñ Drre3ss

Nothing Ñ Drre4ss

This eqTT value definition is also produced by the type representation lowering

pass and added to the output program. For example, below is an excerpt of generated,

pretty-printed code for this function:

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 39

eqTT :: TypeRep t Ñ TypeRep u Ñ Maybe (t :„: u)

eqTT x y =

case x of

UnitType Ñ case y of

UnitType Ñ Just Refl

Tup2Type a2 b2 Ñ Nothing

. . .

. . .

The eqTT function performs a simple, recursive traversal of both type

representation values. Without catch-all clauses, this function will grow quadratically

with the number of cases in the type representation sum type.

6.5 Validating Ghostbuster

We are now ready to state the main theorem about Ghostbuster: if all the datatypes

in a program pass our ambiguity criteria, then up-conversion followed by down-

conversion is the identity after unsealing synthesized type variables.

Theorem 7 (Round-trip)

Let prog be a program, and let T “ tpT1, k1, c1, s1q, . . . , pTn, kn, cn, snqu be the set

of all datatypes in prog that have variable erasures. Let D “ tD1, . . . , Dnu be a

set of dictionaries such that Di “ pDis, Dicq contains all needed typeReps for the

synthesized and checked types of Ti. We then have that if for each pTi, ki, ci, siq P T

that Ti passes the ambiguity criteria, then Ghostbuster will generate a new program

prog1 with converted datatypes T1 “ tpT 1
1, k1q, . . . , pT 1

n, knqu, and functions upTi and

downTi such that

@e P prog. prog $ e :: Ti ki ci si ^ pTi, ki, ci, siq P T

ùñ prog1 $ pupTi Di eq :: T 1
i ki, where pT 1

i , kiq P T1
(3)

and

@e P prog. prog $ e :: Ti ki ci si ^ pTi, ki, ci, siq P T

ùñ prog1 $ pdownTi Dic pupTi Di eqq

” pSealedTi Dis e :: SealedTi ki ciq

(4)

The full proof, while being fairly lengthy and tedious—is not terribly interesting

or enlightening. We thus provide a proof-sketch here.

Proof Sketch

We first show by the definition of up-conversion that given any data constructor K

of the correct type, that the constructor will be matched. Proceeding by induction

on the type of the data constructor and case analysis on bind and dispatchÒ,

we then show that the map of bind over the types found in the constructor K

succeeds in building the correct typeReps needed for the checked fields of K . After

showing that every individual type-field is up-converted successfully and that this

up-conversion preserves values, we are then able to conclude that since we have

managed to construct the correct type representations needed for the up-converted

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

40 T. A. K. Zakian et al.

data constructor K 1, and since we can successfully up-convert each field of K , that

the application of K 1 to the typeReps for the newly existential types and the up-

converted fields is well-typed and that the values that we wish to have preserved

have been kept.

To show that down-conversion succeeds, we first show that given any data

constructor K 1 of the correct type that the down-conversion function will match it.

We then proceed by case analysis on the code-path executed on the RHS of the case

clause that matched the data constructor: we show that openConstraints succeeds

in deriving suitable type representations for the call to openRecursion to succeed in

constructing the correct down-converted datatypes for each of the busted recursive

datatypes in the fields of K 1. We then use this to show that openFields will succeed

in down-converting the busted types that it encounters. We then use the fact that

openFields has successfully down-converted the types it has encountered, coupled

with the success of constructing suitable type representations to show that we are

finally able to successfully construct the down-converted sealed type. �

7 Implementing Ghostbuster for Haskell

The Ghostbuster prototype tool is a source-to-source translator, which currently

supports Haskell but could be easily extended to other languages that incorporate

GADTs. To build a practical tool implementing Ghostbuster, we need to import

data definitions from, and generate code to, a target host language. Because our

prototype targets Haskell, we extended our core language slightly to accommodate

certain Haskell features of data definitions such as bang patterns. For the most

part, code generation is a straightforward translation from our core-language into

Haskell using the haskell-src-exts package,14 which we subsequently pretty-print

to file. If erasure results in Haskell’98 datatypes, we add deriving clauses to the

simplified datatypes for the standard typeclasses such as Show.

There is one important impedance mismatch between our core language’s (more

permissive) type system and Haskell’s. In particular, we allow locally conflicting

constraints in case statements, like Typed Racket (Tobin-Hochstadt & Felleisen,

2010b), but unlike GHC Haskell.15 In these cases, GHC issues “inaccessible code”

errors, which we would prefer could be turned into configurable warnings.

Of course, because these branches are inaccessible, they cannot cause a problem

at runtime. Unless GHC makes a change, our recourse is to (1) predict which

branches GHC will object to and omit those in code generation or (2) turn on

deferred type errors locally for the generated conversion functions which have this

problem. We currently do the former—avoiding the issue for Ghostbuster-generated

conversion functions.

14 http://hackage.haskell.org/package/haskell-src-exts
15 See the consistent requirement in Section 3.2 of Schrijvers et al. (2009b).

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 41

7.1 Pre-processing options

There are several potential ways to connect the tool to a build environment, as well

as several design decisions that we must address in constructing simplified types. As

in the code snippets we have seen, the user of Ghostbuster writes the original type

by hand, and uses a separate specification (pragma) to indicate which type variables

should be erased. One option would be to generate the Ghostbusted code implicitly,

e.g., by macro expansion,16 but our intent is for the user to read the generated

code and write functions consuming values of that type. Thus, we run Ghostbuster

as a pre-processor that generates pretty-printed Haskell code in a stand-alone

file.17

7.2 Current limitations and possible extensions

Our current prototype comes with some limitations. Yet, as we will see in Section

8.2, a great many of the datatypes found in the wild are supported.

Runtime type representation. As mentioned in Section 2.1, we require type-indexed

TypeRep values, which just appeared in GHC-8.2. However, in order to make the

theory and tool more easily generalizeable to other languages without this feature, we

use our own (closed-world) representation of runtime types synthesized on demand

by the Ghostbuster tool and described in Section 6.4.2.

Advanced type system features. There are some features we support indirectly by

allowing them in the “opaque” regions of the datatype which Ghostbuster-generated

code need not traverse, but we do not model explicitly in our core language. This

currently includes type families (Chakravarty et al., 2005; Schrijvers et al., 2008) and

typeclasses (Peterson & Jones, 1993; Hall et al., 1996).

Erased datatypes as type parameters. As we saw in Section 2.4, Ghostbuster does

not allow datatypes undergoing erasure to be used as arguments to other type

constructors, for example, []. If available, we could lean on a Functor instance

for that type, but in general there is not a single, clearly defined behavior. Future

work may allow a user to specify how Ghostbuster should traverse under type

constructors to continue the erasure and conversion processes.

Typeclass constraints. As we saw in Section 4.1, we do not handle typeclass

constraints in the datatypes that are passed to or generated by Ghostbuster. While

we have decided against implementing this feature for the Haskell version of the

16 For example, we could use Template Haskell (Sheard & Peyton Jones, 2002) with a top-level
$(ghostbuster . . .) splice, which inserts the generated code and conversion function declarations.
This approach would be sufficient, but it suffers from a drawback. While it is possible to dump
Template Haskell splices during compilation, this is not an ideal solution for examining the generated
code.

17 Both GHC and the build tool cabal have good support for invoking custom pre-processors.

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

42 T. A. K. Zakian et al.

tool, there is nothing that prevents this. However, doing so in a formal and well-

founded manner would complicate the formal language, type system, and operational

semantics considerably, and would require updating the ambiguity criteria. Further,

doing so would break the source-to-source nature of our tool since the generated

code would need to access internal features of GHC (and Core) in order to prove

typeclass constraints in the generated code.

Ghostbuster for other languages. As long as a given source/target language is

parsable into our core language, updating the tool to handle other languages simply

involves changing the parsing and code generation phases, and turning off the

various Haskell-specific features that we have added (e.g., bang patterns). However,

this leads to questions on how to handle other features that these languages have

that can interact with GADTs, e.g., how should polymorphic variants be handled in

OCaml when they appear as (or interact with) to-be-erased type indicies? Handling

these language-specific features would present similar implementation challenges

to those that would be faced in implementing typeclass constraints for Haskell,

and could—depending on the feature—require non-trivial additions to both the

ambiguity criteria, core language, and algorithm.

8 Evaluation

8.1 Runtime performance

This section analyzes the performance of the conversion routines generated by

Ghostbuster. Benchmarks were conducted on a machine with a 4-core Intel i7-

4850HQ CPU (64-bit, 2.3 GHz, 16 GB RAM) running Mac OSX 10.12 and using

GHC version 8.0.2 at -O2 optimization level. Each data point is generated via linear

regression using the criterion package.18

Figure 13 compares the performance of the Ghostbuster generated conversion

routines for our simple expression language (Section 3.1). We generated large random

programs that included all of the important cases of up- and down-conversion (Abs,

App, etc.), and report the time to convert programs containing that number of terms.

Ghostbuster achieves comparable performance to a manually written up-

conversion routine. The hand-written down-conversion routine, however, which

uses embedded Typeable class constraints and is based on runtime type checks

provided by the Data.Typeable library, is significantly slower than the Ghostbuster

generated version with embedded TypeRep values. Profiling reveals that our

generated TypeRep encodings were more efficient than dictionary passing with

Data.Typeable. However, this may be an artifact of the closed-world simplification

we used to generate our TypeRep values, so this performance advantage may

disappear if we use the new open-world, type-indexed Typeable in GHC-8.2.

18 http://hackage.haskell.org/package/criterion

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 43

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

 1 10 100 1000 10000 100000

T
im

e
(s

)

Terms

Up conversion

Ghostbuster
Data.Typeable

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

 1 10 100 1000 10000 100000

T
im

e
(s

)

Terms

Down conversion

Ghostbuster
Data.Typeable

Hint

Fig. 13. Time to convert a program in our richly typed expression language (Section 3.1) with

the given number of terms (i.e., nodes in the AST), from original GADT to simplified ADT

(left) and vice-versa (right). Note the log-log scale.

Even so, the size of the Ghostbuster generated up- and down-conversion functions

are comparable to the Data.Typeable based implementation:

Contender SLOC Tokens Binary size

Ghostbuster 198 1,426 1 MB

Data.Typeable 122 1,011 1 MB

Hint 78 451 45 MB

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

44 T. A. K. Zakian et al.

For the down-conversion process, we also compare against using GHC’s

interpreter as a library via the Hint package.19 Due to the difficulty of writing

the down-conversion process manually, it is appealing to be able to re-use the GHC

Haskell type-checker itself in order to generate expressions in the original GADT.

In this method, a code generator converts expressions in the simplified type into

an equivalent Haskell expression using constructors of the original GADT, which

is then passed to Hint as a string and interpreted, with the value returned to

the running program. Unfortunately, (1) as shown in Figure 13, this approach is

significantly slower than the alternatives; (2) the conversion must live in the IO

monad; (3) generating strings of Haskell code is error-prone; and (4) embedding

the entire Haskell compiler and runtime system into the program increases the size

of the executable significantly.

Nevertheless, before Ghostbuster, this runtime interpretation approach was the

only reasonable way for a language implemented in Haskell with sophisticated AST

representations to read programs from disk. One DSL that took this approach is

Hakaru.20

8.2 Package survey

We conclude our experimental evaluation by testing our prototype implementation

against 9,026 packages currently available on hackage.haskell.org, the central open

source package archive of the Haskell community. We seek to gather some insight

into how many GADTs exist “in the wild” which might benefit from the automated

up- and down-conversions explored in this work.

In this survey, we extract all of the ADT and GADT datatype declarations of a

package, and group these data declarations into connected components. We elide

any connected components where none of the data declarations are parameterised

by a type variable, or do not contain at least one GADT. For each connected

component, we then vary which type variables are kept, checked, or synthesized,

and attempt to run ghostbuster on each configuration. For connected components

containing many datatypes and/or type variables, this can yield a huge search space,

so we explore at most 10,000 erasure variants for each connected component. A

summary of the results are shown in Table 1.

As discussed in Section 5, our current design has some restrictions on what

datatypes and erasure settings it will accept. However, out of the variants explored,

Ghostbuster was successfully able to erase at least one type variable in 2,582,572

cases. Moreover, out of the 8,773 “real” GADTs surveyed,21 we were able to

successfully ghostbust 5,525 (63%) of these down to regular ADTs.

9 Related work

Ornaments (McBride, 2010; Dagand & McBride, 2012; Ko & Gibbons, 2013), from

the world of dependent type theory, provides an interesting theoretical substrate for

19 http://hackage.haskell.org/package/hint
20 https://hackage.haskell.org/package/hakaru
21 Some types were written in GADT syntax that did not need to be.

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 45

Table 1. Summary of package survey

Metric

Total # packages 9,026

Total # source files 94,611

Total # SLOC 16,183,864

Total # datatypes using ADT syntax 9,261

Total # datatypes using GADT syntax 18,004

Total # connected components 15,409

ADTs with type variable(s) 1,341

GADTs with type variable(s) 11,213

GADTs with type indexed variable(s) 8,773

Actual search space 185,056,322,576,712

Explored search space 9,589,356

Ghostbuster succeeded 2,582,572

GADTs turned into ADTs 5,525

Ambiguity check failure 5,374,628

Unimplemented feature in Ghostbuster 1,632,156

moving between inductive data structures that share the same recursive structure,

where one type is refined, or ornamented, by adding and removing information.

Unlike ornaments, we focus on bidirectional conversions from a richer to simpler

type. Recent progress has been made in bringing ornaments from a theoretical topic

to a practical language (Williams et al., 2014). This prototype is semi-automated

and leaves holes in the generated code for the user to fill in, rather than being an

entirely in language and fully automatic abstraction like Ghostbuster.

The eqT of Haskell’s Typeable class and the (typecase/»τ) and TypeRep of our

core language, are both similar to typecase and Dynamic in Abadi et al. (1989;

1995). However, while typecase (from dynamic) allows querying the type of

expressions, it does not inject type-level evidence about the scrutinee into the local

constraints the way that GADT pattern matching (and our typecase) do.

Another closely related work is on staged inference (Shields et al., 1998), which

formulates dynamic typing as staged checking of a single unified type system. While

the mechanism is different, functions over Ghostbusted types defer type-checking

obligations until down-conversion. Likewise, Haskell’s deferred type errors (Vytiniotis

et al., 2012) are related, but are a coarse-grained setting at the module level and

hence not practical for writing code against GADTs while deferring type-checking

obligations.

The Yoneda lemma applied to Haskell provides a method of encoding GADTs as

regular ADTs.22 However, this encoding does not offer the benefits of Ghostbuster

simplified types because (1) the encodings include function types, which preclude

Show/Read deriving, and (2) the encoding cannot actually enforce its guarantees in

Haskell due to laziness (lack of an initial object).

22 The Yoneda lemma in Haskell is currently best explained in blog posts:
http://www.haskellforall.com/2012/06/gadts.html and
http://bartoszmilewski.com/2013/10/08/lenses-stores-and-yoneda/.

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

46 T. A. K. Zakian et al.

F# type providers (Syme et al., 2013) are related to Ghostbuster in that both

automatically generate datatype definitions against which developers are expected

to write code. Type providers do not include GADTs, but deal with type schemas

that are too large (e.g., all of Wikipedia) or externally maintained (e.g., in a database)

and must be populated dynamically, whereas Ghostbuster deals with maintaining

simplified types for existing GADTs.

Checking whether input–output modes are consistent in a logic program is often

approximated in practice based on a dependency graph of the variables. For example,

the Mercury programming language (Somogyi et al., 1995) has modes: input, output,

deterministic. Our ambiguity checking process is similar.

The rules in our ambiguity criteria for types in checked and synthesized mode

are very similar to those for synthesized and inherited attributes in attribute gram-

mars (Knuth, 1968): information for synthesized types must be determinable from

the children of that type just as synthesized attributes for a production are

determined from the attributes of its children; and checked types receive information

from their parents just as inherited attributes for a production are determined from

the attributes of its parents. Moreover, the ambiguity criteria—and in particular, the

restriction that checked types can only gather synthesized type information from

their left-hand-side is similar to what one would see in an L-attribute grammar.

However, while our ambiguity criteria are very similar to that in an L-attribute

grammar, we differ slightly due to the presence of kept type variables. In particular,

we allow non-erased type variables anywhere to be used in the determination of

checked typed variables—and in this sense our checked types do not fully align with

inherited attributes.

Ou et al. (2004) define a language that provides interoperability between simply

typed and dependently typed regions of code. Both regions are encoded in a common

internal language (also dependently typed), with runtime checks when transitioning

between regions. Similarly, the Trellys project (Casinghino et al., 2014) includes a

two-level language design where each definition is labelled logical or programmatic.

Because of the shared syntax, one can migrate code from programmatic to logical

when ready to prove non-termination.

Recent work by Dagand et al. (2016) defines a system based on partial type

equivalences and runtime checks that provides interoperability between simply and

dependently typed regions of code in a similar manner to us. However, while they

are interested in partial type equivalences in general (and user-specified equivalences

in particular) and how this can be used to allow cross-world usage—by lifting and

lowering functions over the more- and less-specified datatypes—we are interested

in a very specific partial equivalence between the more and less specified datatypes

that permits us to round-trip them.

Gradual typing is an approach to integrating static and dynamic typing within a

single language (Siek & Taha, 2006). The gradual typing approach is characterized

by implicit conversions in the source language, while our work makes use of explicit

conversions. Our work is therefore more closely related to calculi with explicit

conversions (Abadi et al., 1989; Henglein, 1994), including blame calculi (Findler

& Felleisen, 2002; Tobin-Hochstadt & Felleisen, 2006; Wadler & Findler, 2009).

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 47

However, our work involves inhabiting expressions at a more or less detailed version

of the same datatype, rather than integrating dynamically typed code. Blame calculi

allocate blame to the origin of the conversion error in the source language, which is

essential when running code in which implicit conversions have been compiled into

explicit conversions. Due to the coarse-grained nature of our usage scenario implicit

casting is not needed, and while blame tracking would be a nice feature we see this

as only complicating the theory with little real-world benefit.

It is folklore in dependently typed programming communities (Idris, Agda, etc.)

that if you need to write a parser for a compiler, you would parse to a raw, untyped

term and write a type-checking function (i.e., down-conversion) manually. To our

knowledge, there are not currently any tools that automate this process. However,

most fully dependent languages make these type checkers easier to write than they

are in Haskell.

10 Conclusions and future work

We have shown how Ghostbuster enables the automatic maintenance of simplified

datatypes that are easier to prototype code against. This resulted in some

performance advantages in addition to software engineering benefits. Because of

these advantages, we believe that in the coming years gradualization of type checking

obligations for advanced type systems will become an active area of work and widely

used language implementations may better support gradualization of type-checking

obligations directly.

Future work. While the theory presented here can handle a number of different

GADT features, the class of GADTs that we can handle is still restricted. An

interesting avenue of future work is to not treat GADTs as a primitive in

the language, and instead explore re-phrasing the theory and implementation

presented here in terms of existential types, types witnesses, and Guarded Recursive

Datatypes (Weirich, 2000; Baars & Swierstra, 2002b; Cheney & Hinze, 2002;

Sulzmann & Wang, 2004), and then see if, and how, this might change the class of

datatypes that can be handled.

Another interesting aspect to be explored is how the conversion process interacts

with GADTs (and ADTs) that use linear types (Bernardy et al., 2018). In particular,

we feel as though it should be possible to show that while the down-conversion

process might use type-level information in a non-linear way, the actual converted

datatypes retain the original linearity properties.

At the moment, we do not support multiple erasure variants and furthermore,

we do not support transforming one erasure variant into the other. It would be

interesting to see whether the round-trip property could be shown for a set of

erasure variants, ensuring that given an up-converted datatype of any variance, we

could transform from one erasure datatype variant to another while still allowing

down-conversion to happen at any point. This would be interesting, however we feel

that it may be quite tricky and difficult to show the round-trip property for a set of

erasures; since any up-converted datatype for a given erasure variant would have to

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

48 T. A. K. Zakian et al.

retain enough information for all the other erasure variants and their corresponding

down-conversion functions to succeed.23

Acknowledgments

This work has benefited greatly from several conversations with Chung-chieh Shan

and Jeremy Siek. We would also like to thank the anonymous reviewers of ICFP

2016 and this journal for their helpful feedback on this paper.

References

Abadi, M., Cardelli, L., Pierce, B., & Rémy, D. (1995) Dynamic typing in polymorphic

languages. J. Funct. Program. 5, 111–130.

Abadi, M., Cardelli, L., Pierce, B. & Plotkin, G. (1989) Dynamic typing in a statically-typed

language. ACM Trans. Program. Lang. Syst. 13(2), 237–268.

Altenkirch, T. & Reus, B. (1999) Monadic presentation of lambda terms using generalised

inductive types. In Computer Science Logic, Flum, J. & Rodriguez-Artalejo, M. (eds). Berlin,

Heidelberg: Springer, pp. 453–468.

Appel, A. W. (2007) Compiling with Continuations. New York, NY, USA: Cambridge

University Press.

Appel, A. W. & Jim, T. (1997) Shrinking lambda expressions in linear time. J. Funct. Program.

7(5), 515–540.

Baars, A. I. & Swierstra, S. D. (2002a) Typing dynamic typing. In ICFP02: International

Conference on Functional Programming, pp. 157–166.

Baars, A. I. & Swierstra, S. D. (2002b) Typing dynamic typing. In Proceedings of the 7th

ACM SIGPLAN International Conference on Functional Programming, ICFP ’02. New

York, NY, USA: ACM, pp. 157–166.

Benton, N., Kennedy, A., Lindley, S. & Russo, C. (2005) Shrinking Reductions in sml.net.

Berlin, Heidelberg: Springer, pp. 142–159.

Bernardy, J.-P., Boespflug, M., Newton, R. R., Peyton Jones, S. & Spiwack, A. (2018) Linear

Haskell: Practical linearity in a higher-order polymorphic language. Proc. ACM Program.

Lang. 2 (POPL), 5:1–5:29

Brady, E., McBride, C. & McKinna, J. (2004) Inductive families need not store their indices.

In Types for Proofs and Programs, Stefano, B., Mario, C. & Damiani, F. (eds). Berlin,

Heidelberg: Springer, pp. 115–129.

Casinghino, C., Sjöberg, V. & Weirich, S. (2014) Combining proofs and programs in a

dependently typed language. In POPL’14: Principles of Programming Languages, pp. 33–

45.

Chakravarty, M. M. T., Keller, G., Lee, S., McDonell, T. L. & Grover, V. (2011) Accelerating

Haskell array codes with multicore GPUs. In DAMP’11: Declarative Aspects of Multicore

Programming, pp. 3–14.

Chakravarty, M. M. T., Keller, G. & Peyton Jones, S. (2005) Associated type synonyms. In

POPL’05: Principles of Programming Languages, pp. 241–253.

Cheney, J. & Hinze, R. (2002) A lightweight implementation of generics and dynamics. In

Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell’02. New York, NY,

USA: ACM, pp. 90–104.

23 Although one could possibly prove this by first down-converting and then up-converting using the
specific up-conversion function.

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

Ghostbuster: A tool for simplifying and converting GADTs 49

Cheney, J. & Hinze, R. (2003) First-Class Phantom Types. Technical Report, Cornell University.

Dagand, P.-E. & McBride, C. (2012) Transporting functions across ornaments. In ICFP’12:

International Conference on Functional Programming, pp. 103–114.

Dagand, P.-E., Tabareau, N. & Tanter, É. (2016) Partial type equivalences for verified

dependent interoperability. In Proceedings of the 21st ACM SIGPLAN International

Conference on Functional Programming, ICFP’16. New York, NY, USA: ACM, pp. 298–

310.

Findler, R. B. & Felleisen, M. (2002 October) Contracts for higher-order functions. In

Proceedings of the International Conference on Functional Programming, ICFP, pp. 48–59.

Hall, C. V., Hammond, K., Peyton Jones, S. & Wadler, P. L. (1996) Type classes in Haskell.

ACM Trans. Program. Lang. Syst. 18(2), 109–138.

Henglein, F. (1994) Dynamic typing: Syntax and proof theory. Sci. Comput. Program. 22(3),

197–230.

Knuth, D. E. (1968) Semantics of context-free languages. Math. Syst. Theory 2(2), 127–145.

Ko, H.-S. & Gibbons, J. (2013) Relational algebraic ornaments. In DTP’13: Dependently-

Typed Programming, pp. 37–48.

Leroy, X. & Mauny, M. (1991) Dynamics in ML. In Functional Programming Languages and

Computer Architecture, pp. 406–426.

McBride, C. (2005) Type-preserving renaming and substitution [online]. Accessed March 30,

2018. Available at: http://strictlypositive.org/ren-sub.pdf

McBride, C. (2010) Ornamental algebras, algebraic ornaments [online]. Accessed March

30, 2018. Available at: https://personal.cis.strath.ac.uk/conor.mcbride/pub/OAAO/

Ornament.pdf

McDonell, T. L., Chakravarty, M. M. T., Keller, G. & Lippmeier, B. (2013) Optimising

purely functional GPU programs. In ICFP’13: International Conference on Functional

Programming, pp. 49–60.

McDonell, T. L., Chakravarty, M. M. T., Grover, V. & Newton, R. R. (2015) Type-safe

runtime code generation: Accelerate to LLVM. In Proceedings of the Haskell Symposium,

pp. 201–212.

McDonell, T. L., Zakian, T. A. K., Cimini, M. & Newton, R. R. (2016) Ghostbuster: A

tool for simplifying and converting GADTs. In Proceedings of the 21st ACM SIGPLAN

International Conference on Functional Programming, ICFP’16. New York, NY, USA:

ACM, pp. 338–350.

Ou, X., Tan, G., Mandelbaum, Y. & Walker, D. (2004 August) Dynamic typing with dependent

types (extended abstract) In TCS’04: International Conference on Theoretical Computer

Science, pp. 437–450.

Peterson, J. & Jones, M. (1993 June) Implementing type classes. In PLDI’93: Programming

Language Design and Implementation, pp. 227–236.

Peyton Jones, S., Weirich, S., Eisenberg, R. A. & Vytiniotis, D. (2016) A Reflection on Types.

Cham: Springer International Publishing, pp. 292–317.

Schrijvers, T., Peyton Jones, S., Chakravarty, M. M. T. & Sulzmann, M. (2008) Type

checking with open type functions. In ICFP’08: International Conference on Functional

Programming, pp. 51–62.

Schrijvers, T., Peyton Jones, S., Sulzmann, M. & Vytiniotis, D. (2009a) Complete and

decidable type inference for GADTs. In ICFP’09: International Conference on Functional

Programming, pp. 341–352.

Schrijvers, T., Peyton Jones, S., Sulzmann, M. & Vytiniotis, D. (2009b) Complete and decidable

type inference for GADTs. In Proceedings of the 14th ACM SIGPLAN International

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

50 T. A. K. Zakian et al.

Conference on Functional Programming, ICFP’09. New York, NY, USA: ACM, pp. 341–

352.

Sheard, T. & Peyton Jones, S. (2002) Template meta-programming for Haskell. In Proceedings

of the Haskell Workshop, pp. 1–16.

Shields, M., Sheard, T. & Peyton Jones, S. (1998) Dynamic typing as staged type inference. In

POPL’98: Principles of Programming Languages, pp. 289–302.

Siek, J. G. & Taha, W. (2006) Gradual typing for functional languages. In Proceedings of the

Scheme and Functional Programming Workshop, vol. 6, pp. 81–92.

Simonet, V. & Pottier, F. (2007) A constraint-based approach to guarded algebraic data types.

ACM Trans. Program. Lang. Syst. 29(1), 1.

Somogyi, Z., Henderson, F. J. & Conway, T. C. (1995) Mercury, an efficient purely declarative

logic programming language. Aust. Comput. Sci. Commun. 17, 499–512.

Sulzmann, M. & Wang, M. (2004) A Systematic Translation of Guarded Recursive Data Types

to Existential Types. Technical Report, National University of Singapore.

Syme, D., Battocchi, K., Takeda, K., Malayeri, D. & Petricek, T. (2013) Themes in information-

rich functional programming for internet-scale data sources. In DDFP’13: Data Driven

Functional Programming, pp. 1–4.

Tobin-Hochstadt, S. & Felleisen, M. (2006) Interlanguage migration: From scripts to

programs. In Proceedings of the Dynamic Languages Symposium.

Tobin-Hochstadt, S. & Felleisen, M. (2010a) Logical types for untyped languages. In

Proceedings of the 15th ACM SIGPLAN International Conference on Functional

Programming, ICFP’10. New York, NY, USA: ACM, pp. 117–128.

Tobin-Hochstadt, S. & Felleisen, M. (2010b) Logical types for untyped languages. In

Proceedings of the 15th ACM SIGPLAN International Conference on Functional

Programming, ICFP’10. New York, NY, USA: ACM, pp. 117–128.

Vytiniotis, D., Peyton Jones, S. & Magalhães, J. P. (2012) Equality proofs and deferred

type errors: A compiler pearl. In ICFP’12: International Conference on Functional

Programming, pp. 341–352.

Wadler, P. & Findler, R. B. (2009 March) Well-typed programs can’t be blamed. In Proceedings

of the European Symposium on Programming, ESOP, pp. 1–16.

Weirich, S. (2000) Type-safe cast: (functional pearl). In Proceedings of the 5th ACM SIGPLAN

International Conference on Functional Programming, ICFP’00. New York, NY, USA:

ACM, pp. 58–67.

Williams, T., Dagand, P.-É. & Rémy, D. (2014) Ornaments in practice. In WGP’14: Workshop

on Generic Programming, pp. 15–24.

https://doi.org/10.1017/S0956796818000114 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000114

