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This study demonstrates a remarkable flexibility of advanced divertor configurations
created with the remote poloidal field coils. The emphasis here is on the configurations
with three poloidal field nulls in the divertor area. We are seeking the structures where
all three nulls lie on the same separatrix, thereby creating two zones of a very strong
flux expansion, as envisaged in the concept of Takase’s cusp divertor. It turns out that
the set of remote coils can indeed produce a cusp divertor, with additional advantages
of: (i) a large stand-off distance between the divertor and the coils and (ii) a thorough
control that these coils exert over the fine features of the configuration. In reference
to these additional favourable properties acquired by the cusp divertor, the resulting
configuration could be called ‘a super-cusp’. General geometrical features of the
three-null configurations produced by remote coils are described. Issues on the way
to practical applications include the need for a more sophisticated control system and
possible constraints related to excessively high currents in the divertor coils.

1. Introduction
During the last decade, attempts to find solutions to the power exhaust problem

in future tokamaks have led to emergence and analysis of several poloidal divertor
configurations deviating significantly from a ‘standard’ single-null divertor configur-
ation (e.g. Wesson & Campbell 2011). Among them are: a cusp divertor (Takase 2001)
and its close ‘relative’ called an X-divertor (Kotschenreuther et al. 2004, 2007), a Pitts
divertor (Pitts et al. 2001), a snowflake divertor (Ryutov 2007; Ryutov et al. 2008) and
a cloverleaf (Ryutov & Umansky 2013) divertor. All of them are utilizing poloidal flux
expansion; the latter two also exploit the increased number of divertor channels and
strike points. A desirable feature of the divertor magnetic field is a possibility to create
it by remote coils situated sufficiently far from the divertor zone, behind the neutron
shield and, desirably, even outside the toroidal field (TF) coils. General properties
of the poloidal field (PF) created by distant currents impose some constraints on the
realizable field geometry (Ryutov, Makowski & Umansky 2010). Still, as was shown
experimentally by Soukhanovskii et al. (2011, 2015), Reimerdes et al. (2013) and
Vijvers et al. (2014) for the case of a snowflake divertor, one can vary at will the
divertor field structure even if the coils are situated far away from the divertor.

Here we explore an analogous issue for a cusp-like divertor and assess a variety of
the related configurations.
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FIGURE 1. A generic cusp divertor. The currents in the neighbouring coils flow in
opposite directions, thereby minimizing the impact of these coils on the core plasma.
In Takase (2001), additional coils (not shown in our schematic) that would squeeze the
poloidal flux surfaces above the strike points have been considered, but the concept works
nicely without them. Reproduced from Ryutov et al. (2014b) with permission of AIP
Publishing, all rights reserved.

Before proceeding to this analysis, we briefly describe the original cusp divertor,
as presented in Takase (2001). It required producing PF nulls on each of the two
branches of the separatrix of the standard divertor, as shown in figure 1 for some
generic cusp divertor; for the original pictures with more detail, see figures 3 and 4
in Takase (2001) and figures 3 and 4 in Kotschenreuther et al. (2007). As seen from
figure 1, the divertor coils have been placed near the strike points in each divertor
leg. As these coils are dipole-like, with the currents in the adjacent coils flowing in
opposite directions, their magnetic field rapidly decreases with the distance, thereby
making their effect on the main null and the core plasma minimal. A nice verbal
summary of these features was presented in Kotschenreuther et al. (2007): ‘this extra
downstream X-point can be created with an extra pair of poloidal coils . . . . Each
divertor leg (inside and outside) needs such a pair of coils . . . . The distant main
plasma is hardly affected because the line flaring happens only near the extra coils’.

Now we want to produce a similar configuration with the coils situated far away
from the divertor area. Specifically, we assume that the distance from the divertor
PF nulls to the coils is larger than the distance between the nulls. In most of the
existing reactor designs the PF coils, including the ones that control the divertor
field, are placed outside the radiation shield and toroidal field coils. Or, putting it
differently, our approach does not lead to an increase of the reactor size compared
to reactors based on the standard single-null divertors of International Thermonuclear
Experimental Reactor (ITER) type. It does not require the use of the PF coils
interlinked with the TF coils.

The present study does not by any means pretend to propose ‘the best’ solution
for the divertor problem: there already exist several promising ideas, some of which
have been tested experimentally. Its purpose is much more modest: to identify and
characterize several intriguing magnetic configurations and their features that may
possibly provide a basis for modified divertor designs. These configurations may also
be used to ‘probe’ the plasma properties at the plasma edge.

2. Magnetic field characterization
We assume that the plasma current in the divertor area is small, so that we are

dealing with the vacuum magnetic field. In the zone whose dimension is small
compared to the major radius, one can neglect the toroidicity and consider the field
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FIGURE 2. Coordinate frame used in our analysis. The origin coincides with the poloidal
field null lying on the main separatrix.

as planar, with two components, Bx(x, y) and By(x, y) (the Cartesian coordinates x, y
are shown in figure 2). We choose the origin of the coordinate frame in the ‘main’
null, the one situated at the boundary of the confined plasma.

The two-dimensional vacuum magnetic field can be conveniently described using
complex variables (Brown & Churchill 2004). In the context of the divertor magnetic
field, this approach has been used in Ryutov & Umansky (2013) and Ryutov &
Soukhanovskii (2015). The complex variable z is introduced as z= x+ iy; the presence
of the conditions ∇ · B= 0 and ∇× B= 0 allows one to introduce a complex function
G(z)= Ψ + iΦ (a complex potential) and a function F(z)= Bx(z)− iBy(z) related to
the complex potential G by

F=−dG/dz. (2.1)

With these definitions, one finds that Φ = Im G is a poloidal flux function, Bx =
−∂Φ/∂y, By= ∂Φ/∂x, with the lines Φ(x, y)= const. being the PF flux surfaces. The
function Ψ is a scalar potential. As the conductors that are generating the magnetic
field in the divertor zone are situated far away from this zone, the functions F and G
are regular functions.

What we would like to produce is a configuration with three nearby nulls: one
on the boundary of the main plasma, and two nulls on the two branches of the
separatrix emerging from the ‘main’ null. In other words, we are interested in the
configuration with three nearby nulls, of the type shown in figure 3 that depicts one
of the configurations that appear as a result of our further analysis. This, in turn,
means that the configuration will be close to the cloverleaf configuration (Ryutov &
Umansky 2013), where the three nulls were merged into a third-order null. The trick
is to find conditions under which this third-order null splits in the way shown in
figure 3. An analysis presented in the present paper shows that such configurations
do indeed exist. We also consider a structure of the nearby configurations and assess
requirements to the location and the currents in the divertor coils.

A regular function in the area of interest for us can be represented as a third-order
polynomial of the form

F=Cz(z− z1)(z− z2), (2.2)

where z1,2 are the secondary nulls, whereas the ‘main’ null, per our convention of the
origin of the coordinate frame, is situated at z= 0. We assume that |z|, |z1| and |z2|
are all small compared to the plasma minor radius a and the distances to the divertor
coils. There is no reason to retain the higher-order terms in z as, for small z, they will
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FIGURE 3. A super-cusp divertor. The magnetic configuration is created by the coils
situated at a significant distance from the divertor area. Fat black line represents the
separatrix that passes through all three nulls. In the two lower nulls a cusp configuration
is created. The confinement zone is indicated by a set of red flux surfaces, whereas the
scrape-off layer is indicated by the yellow flux surfaces. In agreement with the original
idea of Takase (2001) (see also Kotschenreuther et al. (2004, 2007)), there is a significant
flux expansion in the area of the secondary nulls. In this case, the flux spreading occurs
due to purely geometrical factors, not due to enhanced transport in the area of the weak
field as in the models with very closely spaced nulls (Ryutov et al. 2014a). Shown in
purple are two of many conceptually possible positions of the divertor plates.

be subdominant compared to the retained terms. The constant C is determined by the
currents in the plasma and divertor coils. We represent it as

C=KBpmeiη/a3, (2.3)

where Bpm is the poloidal magnetic field strength at the separatrix in the midplane
and K is a dimensionless parameter that determines the rate of increase of the field at
|z|> |z1,2|. If the divertor coils are situated at the distance ∼a from the null, then this
coefficient is of the order of unity. Its exact value depends on the global magnetic
configuration. The parameter η determines the orientation of the branches of the
separatrix with respect to the coordinate frame (see Ryutov & Soukhanovskii 2015).
In what follows, we take it equal to π/2; as we show shortly, this corresponds to the
location of the main plasma above the main null, i.e. the configuration looks like that
in figure 3. The orientation of the field structure in a real device is determined by
the location of the PF coils. For our selection of η and for z1= z2= 0, we recover an
exact third-order null (figure 4) characteristic of the cloverleaf configuration described
in Ryutov & Umansky (2013).

3. Super-cusp configuration
We now want to deliberately distort an exact third-order-null configuration of

figure 4, so that there would appear three nearby nulls, arranged in a special manner,
like in figure 3 that shows a configuration symmetric with respect to the vertical axis.
We will find the constraints under which such symmetric configuration and similar
asymmetric configurations can be created by the distant coils. The configuration
shown in figure 3 is very similar to the original cusp divertor, but has additional
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FIGURE 4. An exact third-order null of the poloidal field (Kotschenreuther et al. 2004).
Eight branches of the separatrix are present with the confinement zone identified with
the upper central octant. The presence of an apparent hole near the origin is a result of
insufficient resolution of the printer.

attractive features: first, it will be created by the coils that are much further from
the divertor than the distance between the divertor nulls; second, the configuration
will produce a clean cusp geometry, with one first-order null near each strike point,
not a more complex configuration produced by the nearby coils. (In particular, in the
case shown in figure 1, additional nulls are lurking around: in the vicinity of each
strike point there are at least two nulls.) For these two reasons we suggest to call
the configuration of figure 3 ‘a super-cusp’. Note also that significant compression
of the flux surfaces occurs on the way from the main null to the secondary nulls,
similarly to what has been discussed in the cusp- and X-divertor proposals (Takase
2001; Kotschenreuther et al. 2004, 2007). In the cusp divertor the effect was supposed
to be further enhanced by additional coils situated between the main null and the
secondary nulls.

For the analysis of the shape of the poloidal field flux surfaces, it is convenient
to operate with the functions F and G divided by the coefficient KBpm/a3. So, the
function F becomes

F= iz(z− z1)(z− z2). (3.1)

Performing an integration, we find the corresponding function G:

G=−i
[

z4

4
− (z1 + z2)

z3

3
+ z1z2

z2

2

]
. (3.2)

We take the additive constant equal to zero; then the equation G(z)= 0 corresponds
to the separatrix passing through the ‘main’ null, z= 0. To obtain a configuration of
the type shown in figure 3, we need to find the situation where the same separatrix
passes through two other nulls; in other words, we need to ensure that Im G(z1)= 0,
Im G(z2)= 0. We have accounted for the fact that the additive constant in (3.2) is zero
for the ‘main’ null. These two equations then become

Re[z3
1(−z1 + 2z2)] = 0; Re[z3

2(−z2 + 2z1)] = 0. (3.3a,b)

The positions of the two nulls will be characterized by their distances to the main
null, D1, D2 (both positive) and angles χ1, χ2 formed by the segments D1, D2 with
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FIGURE 5. The two secondary nulls of the super-cusp configuration. Note the sign
convention for the angles χ1,2: both are positive when the corresponding null moves away
from the vertical symmetry plane.

the vertical axis (figure 5). With this convention, the positive signs of χ1, χ2 mean
that the nulls are situated on the opposite sides of the vertical axis. If χ1 is positive,
whereas χ2 is negative, the nulls are situated on the same (‘left’ side). The change of
both signs corresponds simply to flipping the configuration with respect to the vertical
axis. One more constraint on the values of χ1, χ2 is that both nulls should lie below
the ‘main’ null, in the lower half-space, as is usually assumed in the divertor design.
As D1 and D2 are positive, we have

0<χ1 <π/2, −π/2<χ2 <π/2, (3.4a,b)

D1,D2 > 0. (3.4c)

Referring to figure 5 and the aforementioned definitions, we present the roots in the
form

z1 =D1(−sinχ1 − i cos χ1)=−iD1e−iχ1,

z2 =D1(sin χ2 − i cos χ2)=−iD2eiχ2 .

}
(3.5)

In this representation, (3.3a,b) become

D2 cos 4χ2 = 2D1 cos(χ1 − 3χ2),

D1 cos 4χ1 = 2D2 cos(χ2 − 3χ1).

}
(3.6)

Here D1, D2 > 0. For z1 and z2 satisfying (3.3), all three nulls lie on the same
separatrix, an equation for which is Φ = Im G = 0. Substituting (3.5) into (3.2)
and using the polar representation of z, z = reiθ , we find this equation in the polar
coordinates r, θ :

−Φ = r4

4
cos 4θ − r2

3
[D1 sin(3θ − χ1)+D2 sin(3θ + χ2)] − r2

2
D1D2 cos(2θ + χ2 − χ1).

(3.7)
We first consider the case of symmetric location of secondary nulls, D1 =D2 =D,

χ1 = χ2 = χ (this is the case shown in figure 3). In this case (3.6) both lead to the
same equation for the angle χ :

cos 4χ − 2 cos 2χ = 0, (3.8)
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this yielding the following expression for cos χ :

cos χ =
√

3−√3
2

≈ 0.56302, (3.9)

or χ = 0.97276. With that, the condition Φ = 0 leads to the following equation for
the separatrix (see (3.7)):

r4

4
cos 4θ − 2r3D

3
sin 3θ cos χ − r2D2

2
cos 2θ = 0. (3.10)

The result is shown in figure 3. By putting divertor plates near the secondary nulls,
one reduces the heat flux on the plates by strong flaring of the magnetic field. The
distance D is determined by the divertor coil configuration and the currents in these
coils. We will return to this relation later.

We now show several examples of the asymmetric nulls, the ones that are described
by (3.6). These equations cover a broad variety of the three-null super-cusp (and
related) configurations. Taking as a parameter an angle χ1, we can find from (3.6)
the corresponding values of χ2 and the ratios D2/D1 and thereby get a family of
configurations characterized by the parameter χ1. As mentioned, distances D1, D2 are
determined by the position of the divertor coils; for now, looking only for the shapes
of these configurations, we normalize the distances to D1, making thereby D1 = 1.

Eliminating D2 from (3.6), one finds the relation between χ1 and χ2:

(cos 4χ1)(cos 4χ2)= 4 cos(χ2 − 3χ1) cos(χ1 − 3χ2). (3.11)

In the domain defined by (3.4a,b), this equation describes several branches of solutions
illustrated by figure 6. As mentioned, we are not interested in the secondary nulls
lying above the primary null. Also, there is no need to consider negative χ1 – these
configurations are obtained simply by flipping a configuration with χ1 > 0 around the
vertical axis – hence the conditions of (3.4a,b).

The second equation of (3.6) allows us to find D2 in the form

D2 = cos 4χ1

2 cos(χ2 − 3χ1)
. (3.12)

As D2 is positive (3.4c), we have to consider solutions of (3.11) only in the domain
where the right-hand side of (3.12) is positive; these domains are highlighted by a
light shading in figure 6.

The solution describing the symmetric null of figure 3 corresponds to point 1 in
figure 6. If one moves along the branch where this solution lies, the ratio D2/D1
increases in one direction (smaller χ1) and decreases in the opposite direction (larger
χ1). An example is shown in figure 7(a) and corresponds to point 2. One of the
two nulls is now situated significantly farther from the main plasma than the other.
The configuration can be flipped around the vertical axis, if needed. Having different
lengths of the divertor legs provides additional flexibility to the divertor design.

In the configuration of figure 7(b) (point 3 in figure 6), one of the secondary nulls
merges with the primary null, thereby creating a second-order null (a snowflake) at the
boundary of the confinement zone, with a first-order null situated nearby. Whether this
peculiar configuration has an additional potential for the divertor improvement remains
to be seen.
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FIGURE 6. The solutions of (3.11), red lines. Lightly shaded area correspond to the
positive right-hand side of (3.12) – only these areas produce solutions satisfying (3.4). The
dots identify locations of several particular structures shown in the subsequent figures.

(a) (b)

FIGURE 7. Some of the asymmetric super-cusp configurations: (a) one divertor leg is
much longer than the other. Corresponds to point 2 in figure 6 (χ1= 0.938, χ2= 1.0484).
Can be flipped around the vertical axis; (b) configuration with one of the secondary nulls
merging with the primary null, thereby forming a snowflake configuration (χ1 = π/8,
χ2=0.6545). A secondary null stands at some distance. Corresponds to point 3 in figure 6.

4. Other related configurations

Equations (3.6) also have solutions corresponding to configurations significantly
different from the super-cusp. Among them there is a configuration of figure 8(a),
where all three nulls lie on the boundary of the confinement zone (it corresponds to
point 4 in figure 6). It may possess some interesting properties in terms of the core
confinement and in terms of the divertor physics. For the latter, the presence of a
long contact zone between the core and the private flux can be important. The present
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(a) (b)

FIGURE 8. Some three-null configurations that do not possess super-cusp features. (a)
corresponds to point 4 in figure 6 (χ1 = π/2, χ2 =−0.9727), (b) corresponds to point 5
(χ1 = 0.5632, χ2 =−0.1110).

paper is, however, focused on the super-cusp geometry, and we will not dwell on this
alternative.

The configuration shown in figure 8(b) (point 5 in figure 6) has two nulls lying
on the same flux surface as the ‘main’ null, but only one of them connected to the
scrape-off layer. So, they cannot serve in the same way as a cusp configuration of
figure 3.

Although these configurations are indeed very different from the super-cusp
of figure 3 or of figure 7(a), they belong to the same family of the magnetic
configurations and can be transformed to the super-cusp by a mere rotation in the
(x, y) plane. The apparent difference is caused simply by the identification of the
confinement zone, whereas the magnetic structures are essentially the same. The
reader can easily imagine transforming the configurations of figures 7(b) and 8(a) by
flipping them around the horizontal axis and shifting the origin. Still, with respect to
divertor properties, these configurations are very different.

Each of the nulls of the three-null configuration is a first-order null. The magnetic
field in the immediate vicinity of such a null grows linearly with the distance from the
null. Consider, for example, the vicinity of the ‘main’ null. For |z| � |z1|, |z2|, (2.2)
yields F≈Czz1z2, or Bp=|C|rD1D2, where r is the distance to the main null. Note that
the absolute value of the poloidal field near the null does not depend upon direction,
so that the derivative of Bp over the distance is simply a constant:

B′p =K(Bpm/a3)D1D2, (4.1)

where we used (2.3) for C. This derivative characterizes the ‘flatness’ of the poloidal
field near the null and is important for the evaluation of the zone of high poloidal
beta in the vicinity of the null.

Remarkably, the flatness of the field in the other two nulls is the same as that
defined by (4.1) for the first null. This is clear from an inspection of (2.2). This fact
emphasizes that the nulls are not independent from each other: they belong to the
same family and are ‘conversing’ with each other. This is another significant difference
from the original cusp divertor.
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FIGURE 9. Positions of conductors in the four-wire model and the global shape of the
corresponding super-cusp configuration. Parameters of this configuration: p = 0.5a, q =
0.2a, s = 0.372a, I1/Ip = 0.424, I2/Ip = 0.132, D = 0.098a. Note that for the geometry
presented in this figure the minor radius is ∼0.5a.

The equal flatness of the poloidal field in all three nulls can also be used to test
the approximation that the nulls are close to each other – an issue mentioned at the
end of the introduction.

5. Geometry of the global field
In the previous sections we looked at the properties of the magnetic field in the zone

situated far away from the currents generating this field. Now we consider the whole
magnetic configuration that would include the plasma current and the current in the PF
coils. The solution of the plasma equilibrium problem and determination of the shape
of the separatrix in this situation are generally provided by the use of sophisticated
equilibrium codes. On the other hand, some preliminary insights into geometry of the
resulting system can be developed within a much simpler model, where the plasma
and divertor currents are represented as a set of current-carrying wires. At the present
stage of characterization of the super-cusp configuration we will limit ourselves to
the wire model. With that, we will consider a relatively easily manageable symmetric
situation.

The conductor imitating the plasma current will be situated at the distance a from
the ‘main’ null. Unlike a second-order null divertor (Ryutov 2007), we need at least
three divertor coils in order to control three PF nulls. We place these coils in the
configuration used in the analysis of the cloverleaf divertor (Ryutov & Umansky
2013): two conductors are placed symmetrically with respect to the vertical axis,
whereas the third conductor lies on the vertical axis (figure 9). The quantities a, p,
q and s shown in the figure are all positive. Adding more conductors would lead to
a greater flexibility of configurations and will also allow one to reduce the currents
per conductor, but for now we stay with the simplest configuration.

By adjusting the currents in the three conductors, one can create an exact third-order
null at the origin, as was shown in Ryutov & Umansky (2013). This reference also
contains a characterization of the deviations from this state caused by the imposition
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of a uniform magnetic field. The arising magnetic configuration contains three nulls
forming an equilateral triangle and never lying on the same separatrix. To generate a
super-cusp configuration, one needs to adjust the currents in the coils in a different
way, as considered below.

The complex potential for the set of coils shown in figure 9 is

G= 2i
c
[Ip ln(z− ia)+ I1 ln(z+ p+ iq)+ I1 ln(z− p+ iq)+ I2 ln(z+ is)]. (5.1)

The factor ‘i’ makes the direction of the plasma field consistent with the current
direction: we assume that the plasma current flows into the plane of the picture. The
coil currents also flow in this direction. The currents are all positive. The current in
each of the two symmetric conductors is I1; the current in the conductor lying in the
symmetry plane is I2. The total current in the divertor coils is 2I1 + I2.

The field function is

F=−2iIp

c

[
1

z− ia
+ Ĩ1

z+ p+ iq
+ Ĩ1

z− p+ iq
+ Ĩ2

z+ is

]
, (5.2)

where Ĩ1,2 = I1,2/Ip are the coil currents normalized to the plasma current. As before,
we choose the ‘main’ null to be located at the origin. This immediately yields the
following relation between the coil currents:

Ĩ2 = s
a

(
1− 2Ĩ1aq

p2 + q2

)
. (5.3)

As is clear from (5.2), the condition F= 0 that determines the location of the three
field nulls is a cubic equation in z. With condition (5.3) satisfied, one of the three
nulls lies at z= 0. Then the positions of the other two nulls are determined from the
quadratic equation that follows from (5.2) for Ĩ2 as in (5.3):

z2 + iQ1z+Q2 = 0, (5.4)

where

Q1 = 1
W

{
2q(1+ s)− 2Ĩ1

[
1− q− s+ (1− 2q)qs

p2 + q2

]}
,

Q2 = 1
W
[−q2 + p2 − qs− s(q2 + p2)+ 2Ĩ1(q+ s+ qs)],

W = 1+ s+ 2Ĩ1

(
1− qs

p2 + q2

)
.


(5.5)

Here the parameters p, q and s are normalized to a (a distance of the plasma ‘wire’
from the origin).

If one makes both Q1 and Q2 zero, one creates an exact third-order null of Ryutov
& Umansky (2013). We, however, are now interested in a different situation, where the
two secondary nulls would be separated from the primary null by some finite distance
D and, at the same time, would be lying on the same separatrix as the main null, in
the arrangement of figure 3. One can check that, by the order of magnitude, Q1 ∼D,
Q2 ∼D2.
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As Q1,2 are real, the nulls of (5.4) are symmetric with respect to the vertical axis.
Therefore, the condition that they lie on the same separatrix as the main null imposes
one constraint on the parameters of the system, namely that Im G(0)= Im G(z1), where
z1 is, say, a ‘left one’ of the two secondary nulls (5.4). So, choosing the geometrical
parameters p, q, s, one can find a current I1 for which the desired configuration would
form. An example is shown in figure 9 where the global separatrix is shown, with the
super-cusp geometry formed near the ‘main’ null.

One can make the following observations regarding these results: (i) the total current
in the divertor coils, 2I1 + I2, is 0.98Ip. (ii) The distance from the main null to the
secondary nulls can be substantial, up to a half of the minor radius (which is for this
configuration ∼0.5a), thereby allowing for a significant volume for deployment of the
divertor components. With that, it is still within the applicability limit of a three-null
model, with the distances to all the conductors being large compared to D.

Denoting by I1 the difference between the current I∗1 that corresponds to the third-
order null of Ryutov & Umansky (2013) and the current I(cusp)

1 corresponding to the
super-cusp configurations shown in figure 9, one finds that the distance D between
the secondary nulls and the primary null scales asD/p∼√1I1/I∗1 . So, for the case of
figure 9 the current has to be changed by a few per cent compared to the current of
an exact third-order null. The distance from the main null to the two secondary nulls
is determined by the proximity of the currents to those that create an exact cloverleaf
configuration. In order to have enough space to place the divertor targets in a way
compatible with the presence of the two nulls, an overall size of the divertor would
probably have to be (1.5–2)D. In the example shown in figure 9, this would be ∼
of order of 0.3–0.4 of the minor radius, i.e. comparable to the size used in the ITER
design, e.g. Pitts et al. (2013). If needed, the parameter D can be reduced by adjusting
the currents in the divertor coils.

By deliberately making the current lower or higher than the value needed for the
‘perfect’ super-cusp, one finds the situations shown in figure 10, with the secondary
separatrices split from the primary one. Similarly to a snowflake divertor, there are two
different cases here: the secondary separatrix can either enclose the primary one as in
figure 10(a) or be isolated from the primary one as in figure 10(b). By the analogy
to the snowflake divertor, one can call the first (the second) case super-cusp-minus
(super-cusp-plus).

In the case of super-cusp-minus one can ‘activate’ four divertor legs without relying
on plasma convection in the weak poloidal field zone (Ryutov et al. 2014a). Indeed,
by choosing the current so that the secondary separatrix would go through a middle
of the scrape-off layer, one would activate simultaneously the two outermost and two
innermost divertor legs (four total), as seen from figure 10(a). This mechanism of the
flux sharing has been discussed in relation to the snowflake divertor by Ryutov et al.
(2010), and observed experimentally with the snowflake divertor in Soukhanovskii
et al. (2011, 2015), Reimerdes et al. (2013) and Vijvers et al. (2014).

Using divertor plates forming a small angle with the plasma flow, one recovers a
conventional divertor configuration, but with four (instead of two) divertor legs. Note
that if the magnetic field is small in a sufficiently large area near the main null, then
a plasma convection can appear that would lead to the broadening of the plasma flow
in each of the divertor legs, as discussed in Ryutov et al. (2014a).

6. Discussion
In this article we explored a possibility of creating the cusp geometry similar to

that of Takase (2001) by a set of remote coils. It turned out that this is indeed
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(a) (b)

FIGURE 10. The divertor area of the previous configuration but with the divertor coil
current 2 % lower (a) and 2 % higher (b) from the exact super-cusp. In (a) two additional
strike points are activated, similarly to the activation of additional strike points in the
snowflake-minus divertor. Shown in yellow are scrape-off layer flux surfaces situated
inside and outside the secondary separatrix. They are split between four divertor legs. This
effect is absent in (b).

possible: by a proper adjustments of the current one can create configurations where
additional nulls are produced downstream from the main X-point on both outgoing
branches of the separatrix. This allows exploring the original idea of Takase (2001)
and Kotschenreuther et al. (2004, 2007), of reducing the divertor heat flux by a
strong flaring of the magnetic field lines in both strike points of a standard divertor,
but without the coils situated near the targets.

Our approach is the same as that used before for the snowflake divertor: a
representation of the field by a power series of the coordinates. If the secondary
nulls are situated very close to the primary one, we recover a concept of a cloverleaf
(third-order null) divertor of Ryutov & Umansky (2013). If, however, the distance
increases, the system would act as envisaged by Takase (2001), with the main effects
on divertor operation coming from the flux expansion near two separate strike points.

The transition from one configuration to another can probably be studied with the
same set of coils. The weak poloidal field at the divertor targets and the corresponding
shallow intersection angle of the total magnetic field vector with a target may also
provide conditions for the studies of specific sheath-driven instabilities strongly
affected by this intersection angle (Farina, Pozzoli & Ryutov 1993; Cohen & Ryutov
1996). No analyses of these effects are available at present for the specific situation
of a cusp or super-cusp divertors.

The control of the new configuration may be more complex than for the standard
X-point or a snowflake configuration, since the control system has now to juggle
with three nulls and keep them in the assigned positions. On the other hand, there is
encouraging progress in development of advanced control algorithms for the two-null
configurations (Kolemen et al. 2015) and extrapolations to three-null systems may
become possible.

Another issue with divertor performance may be associated with the constraints on
the minimum angle between the magnetic field line and divertor plate at the strike
point: at very small angle (that can be reached in the cusp divertor) imperfect flatness
of the tiles may create ‘hot spots’ creating damage to the tiles. It was argued by
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Covele et al. (2014) that this constraint may actually become much less severe in the
detached regimes.

Finally, concerns are sometime expressed regarding the divertor coil requirements
associated with relatively high divertor currents needed for the multi-null systems
compared to the single-null divertors. The solution here would probably come from
increased number of coils and optimization of their positions, as has been done
for the snowflake divertor, e.g. in Albanese, Ambrosino & Mattei (2014) and Peng
et al. (2015). Increased number of the coils in the divertor area also provides more
flexibility in controlling the magnetic field structure.
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