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1. Introduction. In [18] Shioda proved that the space of holomorphic 2-forms on a
certain type of elliptic surface is canonically isomorphic to the space of modular forms of
weight three for the associated Fuchsian group. Later, Hunt and Meyer [6] made an
observation that the holomorphic 2-forms on a more general elliptic surface should in fact
be identified with mixed automorphic forms associated to an automorphy factor of the
form

for z in the Poincare' upper half plane #?, g = and y(g) = * * , where g is an
Lc aJ lcx dx\

element of the fundamental group V c PSL(2, U) of the base space of the elliptic fibration,
X-T~*SL(2, U) the monodromy representation, and w: $f-> $? the lifting of the period
map of the elliptic surface.

Mixed automorphic forms of higher weight can also be defined using automorphy
factors of the form

for nonnegative integers k and /, and certain types of such automorphic forms can be
realized as the holomorphic forms of the highest degree on an elliptic variety, which is a
fiber variety over a Riemann surface whose generic fiber is a product of a finite number of
elliptic curves (see [8], [10]). Certain aspects of mixed automorphic forms of several
variables have also been investigated in [11] and [12].

The purpose of this paper is to discuss a mixed version of Hilbert modular forms.
More specifically, we introduce mixed Hilbert modular forms, describe some of their
properties and show that the space of certain mixed Hilbert modular forms of type (2,2v)
can be realized as holomorphic forms of the highest degree on a family of abelian
varieties parametrized by a Hilbert modular variety.

I would like to thank the referee for various helpful suggestions.

2. Mixed Hilbert modular forms. In this section we define mixed Hilbert modular
forms and discuss some of their properties. Let W = Mx... x $f be the nth power of the
Poincare upper half plane

The usual operation of SL(2, R) on %£ by linear fractional transformations induces an
action of the nth power SL(2, R)n of SL(2, U) on t3tn. Let F be a totally real number field
with [F: Q] = n. Thus there are n embeddings F <-» U, a t-» af of F into U, which induce an
embedding

), M^(MU... ,Mn)
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of the group SL(2, F) into SL(2, U)", where

M, = \"J bj] E SL(2, R) for M = \° *] e SL(2, F)
LCj dj\ \-c dl

and j = l,...,n. Throughout this paper we shall identify SL(2,F) with its embedded
image in SL(2, U)" under this embedding.

Let T c SL(2, F) be a discrete subgroup of SL(2, U)n, x • T-+ SL(2, F) a homomorph-
ism, and a>: $?" —»dK" a holomorphic map such that

o>(gz) = X(g)<»(z)

for all g B F and 2 e dKn. We assume that the image of a parabolic element in F is a

parabolic element in £(F) and that the image of an element of the form in F is of

[1 A 1
* for some \x e F. If g e F c SL(2, F) and z E 5if, we set

JlkZ!x(g, z) = N(cz + d)2k. N(cxco(z) + dxf

= f l (cjzj + dj)2k'. ft (cZJft»(z), + rfz>y)
a'

for k = (ku..., kn), \ = (/j, . . . , / „ ) e Z" with each /,, &, nonnegative and

Then Jj-^.Tx $?"-» C is an automorphy factor, i.e., it satisfies the relation

Jt^igh, z) = Jffjg, hi). JJkZ(h, Z)
for all g, h E F and z E $?". If k = (k,... ,k) and 1 = (/ , . . . , / ) for some nonnegative
integers k and /, then J^x will also be denoted simply by J^x-

In order to discuss Fourier expansions we assume that /:$?"—»C is a function that
satisfies the functional equation

f(gz)=rtk3!x(g,z)f(z)
for all g E F and z e $?". Then we can consider the Fourier expansion of / at the cusps of
F as follows. Suppose first that °° is a cusp of F. We set

and identify it with a subgroup of W via the natural embedding F<-»K":At-»(A1,..., An).
From our assumption on the homomorphism x, for each A e A, we have

^Lo I J Lo I
for some Â  E F, and therefore we obtain
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Thus / i s periodic with f(z + A) =/(z) for all z s "3tand A e A, and hence it has a Fourier
expansion. Let A* denote the dual lattice given by

A* = {£ e F | 7(£A) e Z for all A e A},

n

where T(£A) = E £,A;. Then the Fourier expansion of fat °° is given by

where 7( f t )= 2 £z,,
7 = 1

Now we consider an arbitrary cusp s of F. Let o- be an element of SL(2, F) c
SL(2, U)n such that <J(°°) = s. We assume that the homomorphism ^ :F—» SL(2, F) can be
extended to a mapping £: P —»SL(2, F), where

F' = T U {cr e SL(2, F) | tr(oo) = s , s a cusp of F}.

We fix k, 1 e Z", and set
LEMMA 2.1. If f satisfies

for all g e F and z e $?", f/ien f/ie function /|[cr]: 2f ^ C satisfies the functional equation

(f\[<r]Xgz)=Jlk3!x(g,z)(f\[ar])(z)

for all gmT^andze 2T.

Proo/. Let g = cr"1^^ e rCT with y E F. Then we have

since
^ r ^ ( 7 , crz) = 72

r^>cr-17, crz) =7^(or , a~x

However, we have

Thus we obtain

(/1 W])(gz) = /£*(o--V,

hence the lemma follows.

Since °° is a cusp of T", the function /1 [cr] has a Fourier expansion at °° of the form

(/IM)(z)= 2 fl
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This series is called a Fourier expansion of fat the cusp s, and the coefficients a( are called
the Fourier coefficients of fat s.

DEFINITION 2.2. Let F e SL(2, U)n be a discrete subgroup with cusp s, and let
/ : # f -»C be a holomorphic function satisfying the relation

(i) The function / is regular at s if the Fourier coefficients of / at s satisfy the
condition that f > 0 whenever af ¥= 0.

(ii) The function f vanishes at s if the Fourier coefficients of/at s satisfy the condition
that £ > 0 whenever a^ ¥= 0.

REMARK 2.3. Given a cusp 5 of F there may be more than one element a e SL(2, F)
such that o-(o°) = s. However the above definition makes sense because of the next
lemma.

LEMMA 2.4. Let s be a cusp of F and assume that o-(°°) = a'(°°) = s for a,
cr' e SL(2, F). Then f | [cr] is regular (resp. vanishes) at °° if and only if f | [cr'] is regular
(resp. vanishes) at °°.

Proof. It is sufficient to prove the lemma for the case when cr' is the identity element
in SL(2, F) and s = °°. Then we have a(°°) = °°, and hence

rs o i n 6]
" " L O 8-JLo lJ

for some b,S e F. Let A,, = A ^ ) = Aicr'^o-). Then A e A^ if and only if

fl Al , f l 52A1

'lo J' -lo J s r ;

hence we have A,,. = S~2A. Therefore A* = 52A*, and we have the Fourier expansions

/(*)= 2 a?W\ (f\[a])(z)= 2 <e

On the other hand, we have

Thus we obtain
Z) e a

for all f e A * The lemma follows from this relation.

DEFINITION 2.5. Let T, %, and a> be as above, and assume that the quotient space
F\ $f" U {cusps} is compact. A mixed Hilbert modular form of type (2k, 21) associated to F,
X and w is a holomorphic function / : 3£" —> C satisfying the following conditions:

(i) f{yz)=J2tf]x{y,z)Kz) for all y e F;
(ii) / is regular at the cusps of F.
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The holomorphic function / is a mixed Hilbert modular cusp form if (ii) is replaced with
the following condition:

(ii)' /vanishes at the cusps of T.
If k = (k,... ,k) and 1 = (/ , . . . , /) with nonnegative integers k and /, then a mixed

Hilbert modular form of type (2k, 21) will also be called a mixed Hilbert modular form of
type(2k,2l).

As in the case of the usual Hilbert modular forms, Koecher's principle also holds true
in the mixed case as is described in the next proposition. Thus the condition (ii) is not
necessary for n ^ 2.

PROPOSITION 2.6. / / n 3= 2, then any holomorphic function f: Si?" —» C satisfying the
condition (i) in Definition 2.5 is a mixed Hilbert modular form of type (2k, 21) associated to
F, a and X-

Proof. Let e be an element in F such that the transformation z >-*• ez + b is contained
in F for some b. Then we have

if

A o e~m J" L o E-m

for some elements ex, d e F (note that the image of a parabolic element under ^ is a
parabolic element). Hence, if f(z) = 2 aie

2"iT(u) is the Fourier expansion of f(z) at °°,
then we have feA*

Now suppose £ = (£i, . . . ,£„) e R" with ,̂ < 0 for some /, and choose a unit e » 0
such that £, > 1 and e, < 1 for j ^ i. Let c be any positive real number, and consider the
subseries

of the Fourier series of f{ic). Since we have

the above subseries cannot converge unless af = 0. Therefore £ is positive whenever

3. Families of abelian varieties. In this section we discuss a relation between mixed
Hilbert modular forms and holomorphic forms on a family of abelian varieties
parameterized by a Hilbert modular variety. Let W, T, o> and % be as in Section 2. Thus
r<=SL(2,F) is a discrete subgroup of SL(2,R)", ^ : T-^ SL(2, F) cr SL(2, R)" is a
homomorphism of groups, and w: W" -» Si?" is a holomorphic map satisfying
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for all g e T and z e 2£n. Throughout the rest of this paper, we shall assume that

y . ( Z x Z ) n c ( Z x Z ) n for all yeT.

Consider the semidirect product T tx (Z x Z)m" consisting of elements of the form

(g, 0*, v)) = (gi, • • • >gn\ (M. V)I, • • •, (M, v)n)

with its multiplication operation given by

(g, 0*, v)). (g\ (/*', V)) = (gg\ (M, v)g' + (/x\ V)),
where

(p, v) = ((/., v ) , , . . . , ( / , , v)n) = (OtJ, v l ) , . . . . (n?, < ) ; . . . , (Mi, v j ) , . . . , (JJLT, <))

with (if,, vf e Z for 1 ^ j " ̂  n and 1 ̂  /c ^ m, and

0*. v)#' = ((/*. v)igi, •••,(/*. v)ng«)

for g' = ( g j , . . . , g'n) e T c SL(2, R)n. Then the discrete group TK (Z x T)mn operates on
Sf X C""1 by

+ vl + f 1

where

g = (gi,---,g«)er with g,= h ^leSL(2,R) for 1 </</i ,
Lc;- djj

(M, v) = ((MJ, v j ) , . . . , (Mf, < ) ; . . . ; (Mi, v i ) , . . . , (M-, v^1)) E (Z X Z)

= (X(8)u..-,X(g)«) with ^(g)7 = h ! / MeSL(2, for 1 <

Now we assume that T does not contain elements of finite order, and set

E™ZX = r tx (z x z)m n \ xn x cmn,

where the quotient is taken with respect to the operation of Ttx (Z x Z)m" on X" X Cm"
described above. If Xr denotes the Hilbert modular variety T\k", then the canonical
projection §T x C""1-* 5Sf" determines the mapping ^ :£?.£*-» ^r-

https://doi.org/10.1017/S001708950003202X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950003202X


MIXED HILBERT MODULAR FORMS 137

PROPOSITION 3.1. (i) When m = 1, the corresponding map Trf"" :££>,*—»-^r is a fiber
variety over the Hilbert modular variety Xr = T\X" whose fiber C"/(ZxZ)" has a
canonical structure of an abelian variety.

(ii) The space £?",£,* is on m-fold fiber power of £r>,* in (i) over Xr.

Proof. These statements are proved in [14, Proposition 7.4] for the case of E^)MM.
The proof for the general case follows from the observation that £?,£,* can be obtained by
pulling back the fiber bundle E^f)Miid over Xx(C) = x(X)\Xn via the natural map
Xr-+ Xx(r) induced by co: #?"-» X" so that the diagram

Xr • Xx(r)

is commutative (see also [7], [9], [13], [17, Chapter IV]).
Given a nonnegative integer v, let Jlfjy.T X X"^*C be the automorphy factor

described in Section 2, that is, the automorphy factor Jf^jc f°r k = (1. • • •, 1) and
1 = (v , . . . , v). Then the discrete subgroup F c G operates on %£" XC by

for all g e F and (z, £) e X" X C. We set

where the quotient is taken with respect to the operation described above. Then the
natural projection X" X C -» X" induces on J£r?J,x

 t n e structure of a line bundle over the
arithmetic variety Xr = T\X", and the sections of this bundle can be identified with
functions f:X"-+C satisfying

f(gz)=J2fl:x(g,z)f(z)
for all g s T and z e X".

THEOREM 3.2. Let n(2v+1>" be the sheaf of holomorphic (2v + l)n-forms on Ef^x.
Then the space of sections of the line bundle i?2-;2^ over Xr is canonically isomorphic to
the space H°(Ef%x, Q<2v+»n) of holomorphic (2v + \)n-forms on E\^x.

Proof. From the construction of E™£x it follows that a holomorphic (2v + l)/i-form
on ET^X can be regarded as a holomorphic (2v + l)n-form on X" x C2v" that is invariant
under the operation of Fx (Z X Z)2vn. Since (2v + l)n is the complex dimension of the
space X" X C2wi, a holomorphic (2v + l)n-form on X" x C2v" is of the form

e=?(z,OdzAd$,
where

/ _ >*\ __ /— —, . >*1 i*2v. . J*1 ^*2v\ ®ipn V (021^1

and / is a holomorphic function. Given a fixed point Zo& X", the holomorphic form 9
descends to a holomorphic 2vn-form on the corresponding fiber of the fiber bundle
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Since the complex dimension of the fiber is 2vn, the dimension of
the space of holomorphic 2vn-forms is one. Thus the mapping £>-»/(z,£) is a
holomorphic 2vn -variable function with 2vn independent variables, and therefore must be
constant. Hence the function f{z,C) depends only on z, and / (z , £) = /(z) where / is a
holomorphic function on $?". Given (g, (ji, v)) e Tx (Z xZ)2™1 as above, we have the
operations

dzj | (g, On, v)) = (cjZj + dj)-2dzj, 1 s / < n,

for 1 ^ A: <2v, 1 < / < n, and some functions f-(z, £). Thus the operation of (g, (/A, V)) on
0 is given by

61 (g, (/*, v)) =
;=i

Hence it follows that

figz) =f(z) ft (%• + rfy)

and therefore / can be identified with a section of

COROLLARY 3.3. Let sd2t2V(X,a),x) be the space of mixed Hilbert modular forms of
type (2,2v) associated to T, w and %• If n^ 2, then there is a canonical isomorphism

Proof. The corollary follows from Theorem 3.2 and Proposition 2.6.

4. Compactifications. Arithmetic varieties such as the Hilbert modular variety
Xr = r\$f" considered in Section 3 can be regarded as connected components of Shimura
varieties [3]). Mixed Shimura varieties generalize Shimura varieties, and they play an
essential role in the theory of compactifications of Shimura varieties ([1], [4], [5]). A
typical mixed Shimura variety is essentially a torus bundle over a family of abelian
varieties parametrized by a Shimura variety (see [15], [16]). A Shimura variety and a
family of abelian varieties which it parametrizes can also be considered as special cases of
mixed Shimura varieties. In this section we discuss extensions of the results obtained in
Section 3 to the compactifications of families of abelian varieties using the theory of
toroidal compactifications of mixed Shimura varieties developed in [1] (see also [4]).

Let nr:Er'%,x-*Xr be the family of abelian varieties parametrized by an arithmetic
variety described in Section 3. Using the language of Shimura varieties, E\^x can be
regarded as the mixed Shimura variety MKf(P, #f)(C) associated to the group

P = ResF/QSL(2,F)KK4vn

and the subgroup Kf<zP(/\f) with Kf D P(Q) = T X (Z x Z)2v", where Res is Weil's
restriction map and VAvn is a Q-vector space of dimension 4vn. Thus if is a left
homogeneous space under the subgroup P(IR). £/(C) <= P(C), where U is a subgroup of
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the unipotent radical W of P, and MK'{P, %){£.) = P(Q)\%X (P(Af)/Kf), where the
operation of P{Q) on if is via % ar*d <» (see [15], [16] for details). The arithmetic variety
AY is the mixed Shimura variety MK/((P, #)/W)(C), which is in fact a pure Shimura
variety. Furthermore, the mapping nT can be considered as the natural projection map

MK'(P, %)(£)-» MKi(P, %)IW)(C).

There are a number of ways of compactifying Shimura varieties. Among those are
Baily-Borel compactifications (see [2]) and toroidal compactifications. The toroidal
compactifications of mixed Shimura varieties were constructed by R. Pink in [16]. Let XT

be the Baily-Borel compactification of Xr, and denote by

the toroidal compactification of E\^x = MKf(P, $£){£.) associated to a ^-admissible
partial cone decomposition & for (/>, &). Then nT induces the mapping ftr:Erfj,x—*Xr of
compactifications (see [16] for details).

THEOREM 4.1. Let n(2v+1)n(log BE) be the sheaf of holomorphic (2v + l)n-forms on
£r,lv^ with logarithmic poles along the boundary

— C-2,2v _ p2,2v
^T.u.X ^T.ai.x-

Then there exists an extension !£v?Zx °f -̂ r,w!* to tne Baily-Borel compactification Xr of
Xr, which depends only on (P,!%)/U up to isomorphism, such that there is a canonical
isomorphism

of sheaves, where the line bundle 2r%v,x " regarded as an invertible sheaf.

Proof. By Proposition 8.1 in [16], there is an invertible sheaf SP on the Baily-Borel
compactification Xr of X such that there is a canonical isomorphism

On the other hand, using Theorem 3.2 we obtain a canonical isomorphism
Q(2v+i)n T h u s i t f o l l o w s t h a t j£2,2v̂  = g i s t h e d e s i r e d extension of £.

REMARK 4.2. Let ^ r be the toroidal compactification of XT, and let 3%>?JtX be the
canonical extension of i?r',i^ to Xr. Let i:Xr—*XT be the canonical embedding of Xr

into its Baily-Borel compactincation Xr. Then the image of the restriction map

.i *

is the subspace of sections regular at infinity, and hence it is the space of sections in
H°(Xrj, * $r?J,x) which vanish on AY-A"r, i.e., the space of mixed Hilbert modular
cusp forms (see [5, p. 40], [2, Section 10]).
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