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1. Introduction. In [18] Shioda proved that the space of holomorphic 2-forms on a
certain type of elliptic surface is canonically isomorphic to the space of modular forms of
weight three for the associated Fuchsian group. Later, Hunt and Meyer [6] made an
observation that the holomorphic 2-forms on a more general elliptic surface should in fact
be identified with mixed automorphic forms associated to an automorphy factor of the
form

J(&,2) = (cz + d)*(c,0(2) + dy)

b
for z in the Poincaré upper half plane %, g = [Z d] and x(g) = [‘:" Z"], where g is an
X X

element of the fundamental group I' = PSL(2, R) of the base space of the elliptic fibration,
x:I'-SL(2,R) the monodromy representation, and w: 3 — # the lifting of the period
map of the elliptic surface. )

Mixed automorphic forms of higher weight can also be defined using automorphy
factors of the form

J(v,2) = (cz + d)(c,w(2) + dy)

for nonnegative integers k and [/, and certain types of such automorphic forms can be
realized as the holomorphic forms of the highest degree on an elliptic variety, which is a
fiber variety over a Riemann surface whose generic fiber is a product of a finite number of
elliptic curves (see [8], [10]). Certain aspects of mixed automorphic forms of several
variables have also been investigated in [11] and [12].

The purpose of this paper is to discuss a mixed version of Hilbert modular forms.
More specifically, we introduce mixed Hilbert modular forms, describe some of their
properties and show that the space of certain mixed Hilbert modular forms of type (2,2v)
can be realized as holomorphic forms of the highest degree on a family of abelian
varieties parametrized by a Hilbert modular variety.

I would like to thank the referee for various helpful suggestions.

2. Mixed Hilbert modular forms. In this section we define mixed Hilbert modular
forms and discuss some of their properties. Let #™ = % X ... X & be the nth power of the
Poincaré upper half plane

#={zeC|Imz>0}
The usual operation of SL(2,R) on # by linear fractional transformations induces an
action of the nth power SL(2, R)" of SL(2, R) on #". Let F be a totally real number field

with [F:Q] = n. Thus there are n embeddings F & R, a+~> g; of F into R, which induce an
embedding

SL(2, F) < SL(2, R), M—(M,,...,M,)
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of the group SL(2, F) into SL(2, R)", where

M,:[“f b’] e SL(2,R) for M=[‘: Z] e SL(2, F)

¢ g
and j=1,...,n Throughout this paper we shall identify SL(2, F) with its embedded
image in SL(2, R)” under this embedding.
Let T = SL(2, F) be a discrete subgroup of SL(2, R)", x:I'— SL(2, F) a homomorph-
ism, and w: " — #" a holomorphic map such that
w(gz) = x(g)w(z)
for all g eT and z € #". We assume that the image of a parabolic element in I is a

1 A
parabolic element in x(I") and that the image of an element of the form [ 1] in T is of

0

1 A
the form [ 1"] for some A, € F. If g e [ < SL(2, F) and z € ", we set

0
JP2(8,2) = N(cz +d)™ . N(c,w(z) +d,)*

- Hl (cz; + i)™ H, (crjo(@)+dy )P
1= 1=

for k= (ky,...,k,),1=(l,...,1l,) € Z" with each [, k; nonnegative and

N
Then J&52,:T X %" — C is an automorphy factor, i.e., it satisfies the relation
TR gh, 2) =IR2 (8, hz) . T2 (h, 2)
for all g, hel and z e " If k=(k,...,k) and 1={(l,. l) for some nonnegative

integers k and /, then J32, will also be denoted simply by Jr 2

In order to discuss Fourier expansions we assume that f: %" — C is a function that
satisfies the functional equation

flgz) =22 (8, )f (2)

for all g e I and z € #". Then we can consider the Fourier expansion of f at the cusps of
I" as follows. Suppose first that « is a cusp of I'. We set

A=A(F)={)\eFl[(1) ;]EF},

and identify it with a subgroup of R” via the natural embedding F & R":A+(Ay,...,A,).
From our assumption on the homomorphism y, for each A € A, we have

2o 41=o ¥

for some A, € F, and therefore we obtain

1 A
wa(] )
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Thus fis periodic with f(z + A) = f(z) for all z € # and A € A, and hence it has a Fourier
expansion. Let A* denote the dual lattice given by

A*={(eF|T(éX) e Z for all A e A},

where T(éA) = ﬁ‘, £A;. Then the Fourier expansion of f at = is given by
j=1
f@= 3 ae e,

£e A"
where T(£z) = f}l £z
j=

Now we consider an arbitrary cusp s of I'. Let o be an element of SL(2, F)c
SL(2, R)" such that o () =s. We assume that the homomorphism y:I'— SL(2, F) can be
extended to a mapping x:I'"— SL(2, F), where

=T U{o e SL(2,F)|o(®)=s,s acusp of T'}.
We fix k, 1 € Z”, and set
" =0""To,
(flleD)(z) =I¥(o, 2) " 'f(02).
Lemma 2.1. If f satisfies
f(g2) =J20%(8, 2)f (2)
forall g €T and z € ", then the function f|[o]: " — C satisfies the functional equation
(f 1 [oD(82) = R385, 2)(f | [oD)(2)

forallg eT? and z € #".

Proof. Let g =0 'yo € T'° with y € I'. Then we have

(f | [e])(gz) -J%"f'z(tr o~ 'voz) 'f(oo ™ yoz)

%“3',,(0 o lyoz) U (y, oz)f(voz)
2k2|

I‘ wx(a Y, O'Z)f(O'Z)
since

JE2 (v, 02) =JE2 (00 y, 02) = 120, o yor NPy (a 7y, 02).

However, we have

JE2 a7 e, 2) = IR ey, o) (0, 2).

Thus we obtain
(f I [e)(gz) = IR (o ya, 22 (0, 2) " 'f(02)
=J3 2 (07 o, 2)(f | [e))(o2);
hence the lemma follows.

Since « is a cusp of I'?, the function f | [o] has a Fourier expansion at « of the form

FloD@)= S e,

EcA"
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This series is called a Fourier expansion of f at the cusp s, and the coefficients a, are called
the Fourier coefficients of f at s.

DEerinimioN 2.2, Let T e SL(2,R)” be a discrete subgroup with cusp s, and let
f:3" — C be a holomorphic function satisfying the relation

flgz) =J22 (8, )f (2).

(i) The function f is regular at s if the Fourier coefficients of f at s satisfy the
condition that § =0 whenever a, 0.

(ii) The function f vanishes at s if the Fourier coefficients of f at s satisfy the condition
that £ > 0 whenever a, #0.

RemaRk 2.3. Given a cusp s of I' there may be more than one element o € SL(2, F)
such that o(>)=s. However the above definition makes sense because of the next
lemma.

LemMMA 2.4. Let s be a cusp of T and assume that o(®)=cg'(®)=s for o,
o' € SL(2, F). Then f |[o] is regular (resp. vanishes) at = if and only if f|[o'] is regular
(resp. vanishes) at «.

Proof. 1t is sufficient to prove the lemma for the case when o' is the identity element
in SL(2, F) and s = ». Then we have o(w) = =, and hence

7=[g s llo 1]

for some b, & € F. Let A, = A(T°) = A(c"'T'o). Then A € A, if and only if

1 A _1_[1 52)\] _
"[0 1]” “lo 1D

hence we have A, = 6 2A. Therefore A* = §2A*, and we have the Fourier expansions

@)= 3 ae O, (f][o)@)= 3 age T

EecAr £eAd

On the other hand, we have
(fHoD(@) =I5 (0, 2)7f (02) = J2 (0, 2) 7 'f(8%(z + b))

2 2
%_kaIZ(a_ 2)” 1 2 a o 2T (5%6)  2miT(£6%2)

£eA*
2k 21 1 27riT(b§) 24T (£2)
l'wz(o' z)” Z g5 e .
e}
Thus we obtain
— 12K,21 =-1_2#iT (b
af=J2(0,2) e T 4,

for all £ € A% The lemma follows from this relation.

DerintTiON 2.5. Let T, y, and o be as above, and assume that the quotient space
'\ &" U {cusps} is compact. A mixed Hilbert modular form of type (2K, 21) associated to T,
x and w is a holomorphic function f: " — C satisfying the following conditions:

(i) f(vz) =J22(y, 2)f(z) for all y € T;

(ii) fis regular at the cusps of I.
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The holomorphic function f is a mixed Hilbert modular cusp form if (ii) is replaced with
the following condition:

(ii)’ f vanishes at the cusps of I'.

If k=(k,...,k) and 1=(l,...,]) with nonnegative integers k and /, then a mixed
Hilbert modular form of type (2k, 2l) will also be called a mixed Hilbert modular form of
type (2k,2l).

As in the case of the usual Hilbert modular forms, Koecher’s principle also holds true
in the mixed case as is described in the next proposition. Thus the condition (ii) is not
necessary for n =2.

ProrosiTION 2.6. If n =2, then any holomorphic function f:#" — C satisfying the
condition (i) in Definition 2.5 is a mixed Hilbert modular form of type (2k, 2l) associated to
I', wand y.

Proof. Let € be an element in F such that the transformation z — ez + b is contained
in T for some b. Then we have

se+ny =[5 " @
=7k e ket L 7L f(2)
= N(sT")N(ez )f (x)
81/2 b€_l/2 8;’2 ds;uz
x[ 0 s-m]=[ 0 8;1’2]
for some elements ¢,, d € F (note that the image of a parabolic element under y is a

parabolic element). Hence, if f(z)= ¥ a,*™7%?) is the Fourier expansion of f(z) at e,
then we have fe

if

a. = ae” " TEIN(e )N (g7 ).
Now suppose &= (£,...,¢,) € R" with £ <0 for some i, and choose a unit &> 0

such that ¢;,>1 and ¢ <1 for jsi. Let ¢ be any positive real number, and consider the
subseries

E aemfez”ir(smfic)=a§ez”ir(5b) 2 N(G—ka)N((EZIn);I)e—ZItCT(sz”'é)
m=1

m=1

of the Fourier series of f(ic). Since we have

= gm 2m
T(e"¢) = el"¢+ 2, &,
Fiald
the above subseries cannot converge unless a,=0. Therefore ¢ is positive whenever
a;#0.

3. Families of abelian varieties. In this section we discuss a relation between mixed
Hilbert modular forms and holomorphic forms on a family of abelian varieties
parameterized by a Hilbert modular variety. Let %", T,  and x be as in Section 2. Thus
IF'cSL(2,F) is a discrete subgroup of SL(2,R)", x:I'->SL(2, F)cSL(2,R)" is a
homomorphism of groups, and w:#" — " is a holomorphic map satisfying

w(gz) = x(g)w(2)
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for all g e I" and z € &". Throughout the rest of this paper, we shall assume that
v.@ZXZY c(ZXZ)' forall yel.
Consider the semidirect product I'X (Z X Z)™" consisting of elements of the form

(gs (/"", V)) = (gl,' <+ s8ns (l"” V)l,- L] (I“w V)n)
= (g]’ te ’g’l; (i"ll’ V}),. tte ("LT’ V’ln); e ;(Mflﬂ v:l)" R (#nm9 v:ln))
with its multiplication operation given by
(8 (1, v). (8", (', v')) = (88", (u, v)g' + (1", V")),
where
(1, V) = (s Vs (5 V)0) = (1, VDo (T VD5 (s Vi) - (RIS V)
with uf, vk eZfor1<j<nand 1<k =m, and
(n, )8 = (1, V)181s- - - 5 (ms V)ng;l)
= (1, V1)ghs- - - » (T, VgL - - - 5 (s Va)Bis - - - » (175 Vi)ER)
for g’ =(g1,...,8n) € I =SL(2,R)". Then the discrete group I'X (Z X Z)™" operates on
H" X C™ by
alzl+b1 anzn+bn_
C121+d1 T ,C,,Z,,'*‘d,,’
plo@) +vi+ 4 rTw(@h + v+ {7
Cz'lw(Z)l + dz,l ’ ’ Cx']w(Z)l + dx'] ’
 a0(@)n+ Vot u,'?w(z),.+%"+{’n")
LI ) Cx‘"w(z)n +dx,n g vy cx'nw(z)n +dz'" ’

(& (). 2 0) =

where

. a b;
g=Gen....g el witn g=[7 ]
(s V)= (el v1)soo s (T VDYs s (i V), - (T, V) € (Z X )™,

@, =(z,..., 2 L8, 00 L (™) e " X C™,

]eSL(Z,R) forlsj=n,

. ayj byj .
1E) = G@n- 2@ with 2= "] esLaR) for 1sjsn,
Cxi i

w(z) = (0(2)1,. .., w(z),) € #"
Now we assume that I does not contain elements of finite order, and set
ERS,=TX(@XZ)y"\ %" xC™,

where the quotient is taken with respect to the operation of I'X (Z X Z)™ on #" X C™
described above. If X denotes the Hilbert modular variety I'\#", then the canonical

projection " X C™ — #" determines the mapping #f": EF. , — Xr.
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ProposiTioN 3.1. (i) When m =1, the corresponding map n"*:EY.,,— Xr is a fiber
variety over the Hilbert modular variety Xr=T\¥" whose fiber C"/(Z X Z)" has a
canonical structure of an abelian variety.

(ii) The space ET', is an m-fold fiber power of E}%, ,, in (i) over Xy.

Proof. These statements are proved in [14, Proposition 7.4] for the case of EY)iqia-
The proof for the general case follows from the observation that Ef'; x can be obtained by
pulling back the fiber bundle E7f)iq.a over X,ory=x()\&" via the natural map
Xr— X, induced by w:#" — #" so that the diagram

ETS 2= EXiidia
Xr— X,m)

is commutative (see also [7], [9], [13], [17, Chapter IV)).

Given a nonnegative integer v, let J§2,:T' X #"—C be the automorphy factor
described in Section 2, that is, the automorphy factor J&72, for k=(1,...,1) and
1=(v,...,v). Then the discrete subgroup I' = G operates on #" X C by

8- (2, 0) = (g2, 7828, 2)0)
forallg eI and (z,{) e #" X C. We set
$22 =T\ %" X C,

where the quotient is taken with respect to the operation described above. Then the

natural projection %" X C— " induces on 7%, the structure of a line bundle over the

arithmetic variety Xr=T\3", and the sections of this bundle can be identified with
functions f: " — C satisfying

f(g2) =T,(8, 2)f (2)
forallgeTl and z € #".

THEOREM 3.2. Let Q®¥*V" be the sheaf of holomorphic (2v + 1)n-forms on ELZ,.
Then the space of sections of the line bundle $%2, over Xy is canonically isomorphic to
the space HY(EX%,, Q®"* V") of holomorphic (2v + 1)n-forms on EF%,.

Proof. From the construction of EY';, it follows that a holomorphic (2v + 1)n-form
on EfJ, can be regarded as a holomorphic (2v + 1)n-form on %" X C*” that is invariant
under the operation of I'X (Z X Z)*™. Since (2v + 1)n is the complex dimension of the
space #" X C>", a holomorphic (2v + 1)n-form on #" X C* is of the form

8=F(z,{)dz Adg,

where

(21{)=(Zl"",zn;{ia"': 1, "v{m “,IiV)E%nchW’
dz=dun...adz,,
di=dOn. . AL A ADEEA. . ALY,

and f is a holomorphic function. Given a fixed point z, € #", the holomorphic form
descends to a holomorphic 2vn-form on the corresponding fiber of the fiber bundle
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Toz— Xr=T\#". Since the complex dimension of the fiber is 2vn, the dimension of
the space of holomorphic 2vn-forms is one. Thus the mapping {—f(z,{) is a
holomorphic 2vn-variable function with 2vn independent variables, and therefore must be
constant. Hence the function f(z, ¢) depends only on z, and f(z,{) =f(z) where fis a
holomorphic function on %". Given (g, (u, v)) e X (Z X Z)*"™ as above, we have the
operations

de I (ga (,u'9 V)) = (cjzj + dj)_zdzj9 1 S] = n,
dZf 1 (g, (m, v)) = (cpyo(2) + dyy)'dlf + 2 F(z,{)dz

for 1=k =2v,1=<j=n, and some functions F(z, {). Thus the operation of (g, (u, v)) on
6 is given by

6(g, (r, v)) = f(gz) 13 (6 + &) ey 0(2); + dy ) dz adl.

Hence it follows that

f(g2) =f2) H (6 + A cy (@) + dy ) = FEVE 50 2),

and therefore f can be identified with a section of £27%,.

CoroLLARY 3.3. Let o,,/T, w, ) be the space of mixed Hilbert modular forms of
type (2,2v) associated to T', w and y. If n =2, then there is a canonical isomorphism

2T, , 7) = HUERZ,, Q@+0m,

Proof. The corollary follows from Theorem 3.2 and Proposition 2.6.

4. Compactifications. Arithmetic varieties such as the Hilbert modular variety
Xr=T\3" considered in Section 3 can be regarded as connected components of Shimura
varieties [3]). Mixed Shimura varieties generalize Shimura varieties, and they play an
essential role in the theory of compactifications of Shimura varieties ([1], [4], [5]). A
typical mixed Shimura variety is essentially a torus bundle over a family of abelian
varieties parametrized by a Shimura variety (see [15], [16]). A Shimura variety and a
family of abelian varieties which it parametrizes can also be considered as special cases of
mixed Shimura varieties. In this section we discuss extensions of the results obtained in
Section 3 to the compactifications of families of abelian varieties using the theory of
toroidal compactifications of mixed Shimura varieties developed in [1] (see also [4]).

Let nr: EF%,— Xr be the family of abelian varieties parametrized by an arithmetic
variety described in Section 3. Using the language of Shimura varieties, E¥%, can be
regarded as the mixed Shimura variety M*/(P, &)(C) associated to the group

P= RCSF/QSL(z, F) X V4vn

and the subgroup K;c<P(A;) with K;NP(Q)=TX(ZXZ)*", where Res is Weil’s
restriction map and Vi, is a Q-vector space of dimension 4vn. Thus & is a left
homogeneous space under the subgroup P(R). U(C) < P(C), where U is a subgroup of
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the unipotent radical W of P, and MX(P,Z)(C) = P(Q)\Z X (P(A;)/K;), where the
operation of P(Q) on & is via y and w (see [15], [16] for details). The arithmetic variety
Xr is the mixed Shimura variety M*/((P, x)/W)(C), which is in fact a pure Shimura
variety. Furthermore, the mapping - can be considered as the natural projection map

M* (P, )(C)— M*/((P, %)/ W)(C).

There are a number of ways of compactifying Shimura varieties. Among those are
Baily-Borel compactifications (see [2]) and toroidal compactifications. The toroidal
compactifications of mixed Shimura varieties were constructed by R. Pink in [16]. Let X
be the Baily-Borel compactification of Xr, and denote by

ERS, = MY(P,Z,9)(C)

the toroidal compactification of E}%, = M*(P,Z)(C) associated to a K;-admissible
partial cone decomposition & for (P, &). Then a- induces the mapping #r: Ef%, — X of
compactifications (see [16] for details).

__Tueorem 4.1. Let Q®*D"(log 9E) be the sheaf of holomorphic (2v + 1)n-forms on
E}Z, with logarithmic poles along the boundary

OF = ER2,~ B2y
Then there exists an extension F¢2, of £&%, to the Baily-Borel compactification Xy of
X, which depends only on (P,Z)/U up to zsomorphzsm such that there is a canonical
isomorphism
Q@ *n(log ) = ¥ L2,
of sheaves, where the line bundle L? f,”z is regarded as an invertible sheaf.

Proof. By Proposition 8.1 in [16], there is an invertible sheaf & on the Baily-Borel
compactification Xt of X such that there is a canonical isomorphism

nEF = Q@ O(log 9E).
On the other hand, using Theorem 3.2 we obtain a canonical isomorphism #¥$22!, =
Q®*" Thus it follows that ZZ2%, = F is the desired extension of £.

ReMARK 4.2. Let X be the toroidal compactification of Xy, and let %2, be the
canonical extension of $%E,”x to Xr. Let ¢: Xr— Xr be the canonical embedding of X

into its Baily-Borel compactification Xr. Then the image of the restriction map
HO(XI', wa)'-)HO(XI" Igz:vx) HO(XI"'* ?ivx
is the subspace of sections regular at infinity, and hence it is the space of sections in

H°(Xru* LE2Y,) which vanish on Xp— Xr, ie., the space of mixed Hilbert modular
cusp forms (see [S, p. 40], [2, Section 10]).
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