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A CLASS OF ITERATION METHODS FOR THE MATRIX EQUATION
AXB = C

KONGHUA GUO, XlYAN Hu AND LEI ZHANG

An iteration method for the matrix equation AXB = C is constructed. By this iter-
ation method, the least-norm solution for the matrix equation can be obtained when
the matrix equation is consistent and the least-norm least-squares solutions can be
obtained when the matrix equation is not consistent. The related optimal approxi-
mation solution is obtained by this iteration method. A preconditioned method for
improving the iteration rate is put forward. Finally, some numerical examples are
given.

1. INTRODUTION

The matrix equation problem is an active research topic in computational mathe-
matics, and has been widely applied in various areas, such as structural design, system
identification, principal component analysis, exploration and remote sensing, biology,
electricity, solid mechanics, molecular spectroscopy, structural dynamics, automatics con-
trol theory, vibration theory, and so on.

We use R" to denote the set of all real vectors of n dimensions, /„ the identity matrix
of order n, and Rnxm all n x m real matrices. Let \\A\\p,A+,AT denote especially the
Frobenius norm, the Moore-Penrose generalised inverse, and the transpose of a matrix
A. (tr(/l) means the trace of matrix A, R{A) the column space of matrix A), R±(A) the
orthogonal complement space of R{A), and for any A e Rmxn,B € Rnxp, A® B means
the Kronecker product of the matrices A and B.

The following problems are considered in this paper.

PROBLEM 1.1. Given A e Rmxn,Be Rnxp,C e fl171*", find X e Rnxn, such that

(1) AXB = C

PROBLEM 1.2. Suppose Problem 1.1 is consistent, and its solution set is SE, for Xo

6 Rnxn. Find X € SE, such that

(2) \\X - X0\\F = min \\X - X0\\F
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In fact, Problem 1.2 is to find the optimal approximation solution to the given
matrix XQ. In 1955, Penrose obtained necessary and sufficient conditions for solving
Problem 1.1 and the general expressions of the solution [10]. Since then Problem 1.1 has
been considered in the case of some special solution structures, for example, symmetric,
triangular or diagonal solution X. We can refer to Hua [3], Chu [2], Don [4], Magnus
[6], Morris and Odell [8], Bjerhammer [1] for more details. Mitra [7] considered common
solutions to a pair of linear matrix equations A\XBi = C\,A<iXBi — CV In these papers,
the problem was discussed by using matrix decompositions such as the singular value
decomposition, the generalised single valued decomposition, the quotient single valued
decomposition and the canonical correlation decomposition. However, it is difficult to
apply these methods to solving problems such as finding symmetric solutions of the
matrix equation AXB = C. In 2005, Y.X. Peng put forward an iteration method for
finding symmetric solutions of the matrix equation AXB = C ([9]). The advantage of
this iteration method is that when the problem is consistent, its solution can be obtained
theoretically within a finite number of steps, and the disadvantage of the method is that
the convergence rate can not be analysed.

In this paper, we construct a new iterative method for the matrix equation AXB
= C, by which we can obtain the least-norm solution of Problem 1.1 when the problem
is consistent and obtain the least-norm least-squares solution of Probleml.l when the
problem is not consistent. Furthermore, we show that the convergence rate of the method
is related to the singular value of the matrix A, and so the iteration method can be
improved by some preconditioned methods. When the solution set of Problem 1.1 is not
empty, Problem 1.2 has a unique solution and we can obtain it by the iteration method.

The paper is organised as follows: In Section 2 we first introduce a new iterative
method for finding the matrix equation AXB = C and prove the convergence of the
method. In Section 3 we solve Problem 1.2 by using this iteration method. In Section 4
we propose an improvement of the iteration method in order to increase the convergence
rate. In the last section, we shall give some numerical examples to verify the method and
compare the convergence rate between the original method and the improved method.

2. T H E SOLUTION OF PROBLEM 1.1

In this section, we shall introduce a new iteration method for solving Problem 1.1,
and then we shall prove the convergence of the iteration method.

ITERATION METHOD 2.1.

stepl: Select Co = C, Xo = O\
ll/4-rf'7i.f?7'!12

step2:

step3: Let AXk = akA
TCkB

T, (k = 0,1,2,...);
step4: If AXk = 0, stop, otherwise, let Xk+l = Xk + AXk, {k = 0,1,2,...);
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step5: Let Ck+i = Ck - AAXkB, (k = 0 ,1 ,2 , . . . ) , goto step2.

D E F I N I T I O N 2 .1 : Suppose A,B € i ? m x n , then t r (A T S) is called the inner product
of the matrices A,B, denoted by (A,B).

DEFINITION 2.2: Assume A,B € Rmxn. If (A, B) = 0, that is, tr(ATB) = 0, then
the matrices A, B are called orthogonal each other.

LEMMA 2 . 1 . In the iteration method 2.1, the selection of ak makes \\Ck+i\\F

minimal, and make Ck+\ and AAXkB orthogonal.

P R O O F : For the iteration method 2.1, we have

||Cfc+1||
2

F = (Ck - akA
TCkB

T,Ck - akA
TCkB

T)

= ||Cfc||
2

F - 2ak(Ck, AATCkB
TB) + a\\\AATCkB

TB\\F

From the above expression, we know that the necessary and sufficient conditions of mak-

ing | |CA:+ 1| |F the minimal is that

\\ATCkB
TfF

On the other hand, Let (Ck+i,AAXkB) = 0, we also have that

\\ATCkB
T\\l

k \\AATCkB
TB\\y

Hence, in Iteration method 2.1, selecting

ak = \\ATCkB
T\\l/\\AATCkB

TB\\2
F

will make Ck+\ and AAXkB orthogonal. D

LEMMA 2 . 2 . In the iteration method 2.1, we have ||C7A+i||^ = ||Cfc||F-||AAA'fcB||2=.

P R O O F : From the step5 of Iteration method 2.1, we have Ck = Ck+1 + AAXkB,
and so, ||Cjt||F — \\Ck+i + AAXkB\\2

F, according to Lemma 2.1, then we have

\\Ck\\F = \\Ck+1\\F + \\AAXkB\\F.

Hence,
\\Ck+l\\F = \\Ck\\F-\\AAXkB\\F. •

D E F I N I T I O N 2.3: For A = ( a y ) m x n € Rmxn, denote by vec(A) the following vector
containing all the entries of matrix A:

vec(A) = [ a U ) . . . , a i n , a 2 i , . . . , a 2 n , •• • , o m a , . . . , a m n ] ,

then vec{A) is called straightening of the matrix A.
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It is evident that the transform A —> vec(A) gives a linear isomorph of Rmxn

—• i?mn.

LEMMA 2 . 3 . ([5]) For any matrices A,B and C in suitable size, we have

vec(A + B) = vec(A) + vec{B),vec(ABC) = {A ® CT) vec(B)

LEMMA 2 . 4 . Suppose that the consistent system of linear equations My = b
has a solution y0 € R(MT), then j/o is the least-norm solution of the system of linear
equations.

PROOF: We decompose the matrix M by single valued decomposition:

where U = {Ui,U2) and V — (Vi,V2) are orthogonal matrices. Then the Moore-Penrose
generalised inverse of matrix M is

M + = vj:+i/[

and the general solution of the system of linear equations My — b is

y = M+b+{I- M+M)z

where z is an arbitrary vector with suitable size.

Since M+ = V^+Uj e R^), {I - M+M)z = (I - VxV?)z = V2Vfz € R{V2), and
V2 and Vi are orthogonal each other; that is, tr(VjrVi) = 0, then M+b is the least-norm
solution of the system of linear equations My = b.

On the other hand, MT = ViLlff, the solution y0 6 R(MT), therefore yo is the
least-norm solution of the system of linear equations My = b.

Obviously, the set of solutions of the system of linear equations My = b is closed
convex, and so the least-norm solution of the system is unique. D

Similarly, we have the following lemma.

LEMMA 2 . 5 . Suppose that the inconsistent system of linear equations My — b

has a solution y0 € R{MT), then j/o is t ie least-norm least-squares solution of the system

of linear equations, and the solution is unique.

LEMMA 2 . 6 . ([11]) The matrix equation AXB = C has a unique least-norm

solution X = A+CB+ when the equation is consistent, and has a unique least-norm

least-squares solution X = A+CB+ when the equation is not consistent.

DEFINITION 2.4: Let A,B e Rmxn. If cos0 = (A,B)/(\\A\\F • \\B\\F) (0^6

^ TT), then 8 is called the included angle of the matrices A, B.
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THEOREM 2 . 1 . T i e iteration method 2.1 is convergent. Let the maximum sin-

gular value and the minimum singular value of the matrix A be O\,oT, the maximum

singular value and the minimum singular value of the matrix B be Xi,Xs. Then the

convergence rate of the iteration method 2.1 is no less than — 0.51n(l - (cr2X2)/(a2\\)).

P R O O F : . Suppose rank(^4) = r, rank(B) = s, and the singular value decomposi-
tions of matrix A and matrix B are

A = UDVT = fAEVf, B = PEQT = Px hQ\

where U = {Uu U2), V = (Vi, V2), P = {PUP2), and Q = {QUQ2) are orthogonal matri-

ces,, D = \Q O ) ' E = \ O Ol' E = dias(CTi'CT2.---><7r), 0i(i = 1,2,...,r) are the

singular values of matrix A; A — diag(Ai, A2,. . . , A3), A,(i = 1,2, . . . , s) are the singular

values of matrix B.

If Problem 1.1 is consistent, then for Ck there exits a matrix G which makes C*

= UGQT, where G = (g{j - (gu...,gn), ft 6 R?,(i = 1,2,. . . ,n),ft = 0,t > s.gij

€ R,{i,j = l,2,...,n),gij = 0,i >r,j > s

Let 9 be the included angle of Ck and AAXkB, then we have that

cos(0)= (C*>AAXkB) _ \\ATCkB
T\\l

\\Ck\\F • \\A/\XkB\\F \\Ck\\F • \\AATCkBPB\\F

\\VDTUTUGQTQETP\\F

\\UGQT\\F • \\UDVTVDTUTUGQTQETPTPEQT\\F

\\DTGE\2
F ti{EGTDDTGET)

\\G\\F • \\DDTGETE\\F (ti^G))1'2 • (tT{ETEGTDDTDDTGETE))l/2

j=\ t=i

1=1

j=li=l i=\

Notice that \\Ck\\F = ||Cfc+i||F + ||ylAX/tB||F, then we have

IT2 A2

Therefore, Iteration method 2.1 is convergent, and the convergence rate of the iteration

method(2.1) is no less than -0.51n(l - {o2\\)/{o\\2)). D
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THEOREM 2 . 2 . The iteration method 2.1 will converge to the least-norm solution

of Problem 1.1 when the problem is consistent and will converge to the least-norm least-

square solution of Problem 1.1 when the problem is not consistent.

PROOF: According to Theorem 2.1, if Problem 1.1 is consistent, we can obtain a
solution X* by Iteration method 2.1, and the solution X* can be represented as that

X* = ATYBT

In the sequel, we shall prove that the X* is just the least-norm solution of Problem

1.1.

Denote vec(X) = x,vec(X*) = x*,vec(F) = y,vec(C) = b, then the matrix equa-

tions AXB = C is equivalent to the system of linear equations

(2.1) (A®BT)x = b

Notice that

x* = vecpf) = vec{ATYBT) = (AT ® B)y

= (A®BT)TyeR((A®BT)T)

So x* is the least-norm solution of the system of linear equation 2.1 by Lemma 2.4,
Since the vector operator is isomorphic, X* is the unique least-norm solution of Problem
1.1.

If Problem 1.1 is not consistent, let C = C(1) + C(2), where C1*1* e R{A) and C(2)

€ R^{A). For any X € Rnxn, C<x> - AXB € R(A), and C<x> - AXB is orthogonal with
C'2', so we have that

(2.2) \\C - AXB\?F = \\C^ - AXB + <7<2) ||J, = ||C(1) - AXB\\2
F + \\C™ ||J.

which means that the sufficient and necessary condition of X being the least-squares

solution of AXB = C is that X is the solution of consistent equation AXB =

From the step5 of Iteration method 2.1, we have

(2.3) Ci% + Cft\ - C<1} + Cf > - AXk+lB

Noticing that AXk+iB e R(A), we know Cflx = C^2\ and (2.3) is equivalent to

(2.4) C & = C*1' - AXMB

Thus the iteration process is conducted in R(A). Then from the iteration method
2.1, we can obtain the least-norm solution of the consistent equation AXB — C^lK It
means that the iteration method will converge to the unique least-norm least-squares
solution of Problem 1.1 when the problem is not consistent. D
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3. THE SOLUTION OF PROBLEM 1.2

When Problem 1.1 is solvable, it is easy to test that SE is a closed convex set. Hence
we know that for the given XQ € #"*", we can find a unique X € SE which will make
11-^-^O||F = min \\X — X0\\F- Next we give the iteration method which find the X € SE

If SE is not empty, for any X & SE,

AXB = C<* A{X - X0)B = C- AXQB

Let X* — X - XQ, C* — C - AX0B, then solving the problem 1.2 is equivalent to
finding the least-norm solution X* of the consistent matrix equation AX'B = C*, which
can be obtained by using Iteration method 2.1, and the solution of the problem 1.2 can
be represented as X = X* + Xo.

4. THE IMPROVEMENTS OF THE ITERATION METHOD

From Theorem 2.1, if the ratio (orX3)/{aiXi) is near to 1, then the convergence of
Iteration 2.1 will be fast, but if oi\i » <7rAa, the convergence of Iteration Method 2.1
may be slow. To improve its convergence rate we may deal with the equation before
solving it by using preconditioning methods.

In this paper, we adopt polynomial preconditioning methods to improve the con-
vergence rate, that is, we transform the original equation AXB = C to the equation
C(A)AXC(B) = C(A)CC(B), where C{A),C{B) are polynomial on A,B with low or-
der.

In next section, we shall give some example to verify Iteration method 2.1 and com-
pare the convergence rate between original iteration method and preconditioned method.

5. EXAMPLE

In this section, we denote t as the computing time (unit:second), and k as the number
of iterations. The computations were performed using MATLAB, version 6.5.1, under
the operation system of Windows Me, and the CPU rate of the machine is 2.40GHz.

EXAMPLE 1. Let

A =

/ 8.2462

8.9443
9.5917

10.1980

10.7703

2.6458

4.3589

5.5678

6.5574

7.4162

7.4833

9.0000
9.6437

10.2470
10.8167

2.8284

4.4721

5.6569

6.6332

6.7082

7.5498

8.3066

9.6954

10.2956

10.8628

3.0000

4.5826

5.7446

9.8310

6.7823

7.6158

8.3666

9.0554

10.3441
10.9087

3.1623

4.6904

4.7958

5.9161

6.8557

7.6811

8.4261

9.1104

9.7468

10.9545
3.3166

3.4641

4.8990

6.0000

6.9282

7.7460

8.4853

9.1652

9.7980

10.3923

1.0000

3.6056

5.0000

6.0828

7.0000
7.8102

8.5440

9.2195

9.8489

10.4403

11.0000

3.7417

5.0990
6.1644

7.0711

7.8740

8.6023

9.2736

9.8995

10.4881

10.5357

1.4142

5.1962
6.2450

7.1414

7.9373

8.6603
9.3274

9.9499

10.0000

10.5830

1.7321

3.8730

6.3246
7.2111

8.0000

8.7178

9.3808

9.4340

10.0499

10.6301

2.0000

4.0000

5.2915

7.2801

8.0623

8.7750

8.8318

9.4868

10.0995

10.6771

2.2361

4.1231
5.3852

6.4031

8.1240
8.1854

8.8882

9.5394

10.1489

10.7238
2.4495

4.2426

5.4772

6.4807

7.3485
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B = A, and let C =

/ 904.6936

923.8008
911.8758

892.7852

835.6333
725.1206

784.2758

834.0055

862.2418

890.7232

\ 895.9263

913.2006

932.8133

921.1333

901.9109

843.6018
728.6117

789.1816

840.0351

869.0409

898.3408

903.8165

907.3617

927.1399

915.9313
897.0814

838.9989
722.1176

782.7550
833.5978

862.6897

892.1058
897.6516

881.3187

900.7094

890.2094

872.4388

816.6930

702.2365
760.8806

809.9872

838.1054

866.5343
871.8114

820.4256
838.2387

828.5479

812.9149

763.3729

660.9599
713.6275
757.7157

782.7825

808.0409

812.3613

655.7400

667.1675

656.6847

644.4845

611.6509

563.0691

595.9011

623.9719

638.6341

653.1216

654.3113

751.2413
765.4937

754.3255
739.5227

697.6750

626.5100
669.1322

705.2647

724.9469

744.5845

747.2089

810.0672

826.0158

814.3715
797.8934

750.4725

665.8320

714.4161
755.4724

778.2080

800.9802

804.4829

853.1009
870.3427

858.4038

840.6953

789.0757

694.0489

747.1302

791.8953
816.9464

842.1045

846.2916

883.1039
901.3351

889.2931

870.7534

816.0686

712.9421

769.3535

816.8518

843.6336

870.5854

875.3039

898.1381 \

916.9743

905.0192

886.1313

829.8106

721.5573
779.8532

828.8779

856.6556

884.6472

889.6836 )

(1) Find the least-norm solution of Problem 1.1.

(2) Let SB denote the set of all solutions of the matrix equation AXB = C,
suppose Xo =.

/ 1.3701

-0.6231

-2.7381

-3.9526

-4.1968
-2.8254

-0.5413

2.0459
3.8297

4.2991
\ 3.3747

-4.8758

-1.6490

2.0104

3.6712

2.2302

-3.3452

-3.8440

0.3452

3.4886

3.2883

-1.3949

2.1230

2.3485
-1.1974

-2.2277

0.6011

4.0723
-3.5421

-2.6328

5.0435
0.0882

-4.6599

0.7781
1.0349

-0.5989

-1.0113

0.5023
1.6831

-3.5699

5.0286

-5.3804

4.3508

-2.8194

3.6417
-5.6921

1.7949

4.2979

-4.9471

2.3066

-0.8585

0.0968

0.3609

0.3813

-1.3521

2.5740

-4.2331

5.4612

-5.3661

3.5160
-1.7267

0.4972

0.0902

O.17S8
0.1274

-1.0905

2.4194

0.0966

-2.5518

1.5700

1.1593
-3.1906

4.6667

-3.5274

-1.0414

4.5694

-4.1776

4.3440
-1.6502

-4.5650

2.0865

4.0253
-2.9813

-2.1376

3.0677

1.1182
-3.5804

0.2709

0.3185
3.5918

2.7999

0.2286

-3.4762

-3.6434

1.8821

4.1941

1.6169

-2.9543
-4.6121

3.9318
3.8883

3.0393

1.2513
-1.1058

-3.4390
-4.4475

-3.8691

-2.1467

0.3095

2.4728

-3.0110 \
-3.0388 *
-3.0322
-3.0349
-3.0181
-2.9897
-2.9977
-3.0076
-3.0099
-3.0140
-3.0121

/ 1.0000

0.5000

0.3333
0.2500

0.2000

0.1667

0.1429

0.1250

0.1111

0.1000

\ 0.0909

0.5000

0.3333

0.2500
0.2000

0.1667

0.1429

0.1250

0.1111

0.1000
0.0909
0.0833

0.3333

0.2500

0.2000
0.1667

0.1429

0.1250

0.1111

0.1000

0.0909

0.0833

0.0769

0.2500

0.2000

0.1667

0.1429

0.1250

0.1111

0.1000

0.0909

0.0833

0.0769
0.0714

0.2000

0.1667

0.1429

0.1250

0.1111

0.1000

0.0909

0.0833

0.0769
0.0714

0.0667

0.1667

0.1429

0.1250

0.1111

0.1000

0.0909

0.0833

0.0769

0.0714
0.0667

0.0625

0.1429

0.1250

0.1111
0.1000

0.0909

0.0833

0.0769
0.0714

0.0667

0.0625

0.0588

0.1250

0.1111
0.1000

0.0909

0.0833

0.0769
0.0714

0.0667

0.0625

0.0588

0.0556

0.1111

0.1000

0.0909
0.0833

0.0769

0.0714

0.0667

0.0625

0.0588
0.0556
0.0526

0.1000

0.0909
0.0833

0.0769

0.0714

0.0667

0.0625

0.0588
0.0556

0.0526

0.0500

0.0909 \
0.0833 '

0.0769

0.0714
0.0667

0.0625

0.0588

0.0556

0.0526

0.0500 ,

0.0476 /

find the solution of Problem 1.2.
(1) At first, we find the least-norm solution of Problem 1.1 by iteration method

2.1. Let £ = l.Oe - 10, and when ||A.X*|| < e, stop the iteration, then we have that

X =

where, aT /ax = \s /% = 4.4456/81.1530, t = 7.2210, Jfc = 6756. In comparison, by using
the iteration method from the paper [9], we can get the same result with t = 28.6520,
k = 18317.

Secondly, by using preconditioned iteration method, let C{A)A = /n — 4 x (0.001
x A - J u ) 3 + 3 x (0.001 x A)2, denote C(A)A as A, C{A)C as C, solving the equation
AX A = C, we can obtain the same X with the original method, but where, crT/o\
= A3 /Ai = 4.1228/5.1832, t = 0.1000, k = 17. And under the same situation, by using
the iteration method from the paper [9], we find that the iteration is not convergent.

(2) Denotes the set of all solutions of the matrix equation AXB = C in this
example as SE- In order to find the optimal approximate solution to a given matrix Xo,
let X* = X - Xo C* = C - AX0B, and e = l.Oe - 10, by iteration method 2.1, when

< e, stop the iteration, then we can obtain the least-norm solution X* of the
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1.0000
0.5000
0.3333
0.2500
0.2000
0.1667
0.1429
0.1250
0.1111
0.1000
0.0909

0.5000
0.3333
0.2500
0.2000
0.1667
0.1429
0.1250
0.1111
0.1000
0.0909
0.0833

0.3333
0.2500
0.2000
0.1667
0.1429
0.1250
0.1111
0.1000
0.0909
0.0833
0.0769

0.2500
0.2000
0.1667
0.1429
0.1250
0.1111
0.1000
0.0909
0.0833
0.0769
0.0714

0.2000
0.1667
0.1429
0.1250
0.1111
0.1000
0.0909
0.0833
0.0769
0.0714
0.0667

0.1667
0.1429
0.1250
0.1111
0.1000
0.0909
0.0833
0.0769
0.0714
0.0667
0.0625

0.1429
0.1250
0.1111
0.1000
0.0909
0.0833
0.0769
0.0714
0.0667
0.0625
0.0588

0.1250
0.1111
0.1000
0.0909
0.0833
0.0769
0.0714
0.0667
0.0625
0.0588
0.0556

0.1111
0.1000
0.0909
0.0833
0.0769
0.0714
0.0667
0.0625
0.0588
0.0556
0.0526

0.1000
O.09O9
0.0833
O.0769
0.0714
0.0667
0.0625
O.05S8
0.0556
0.0526
O.05O0

0.0909 \
0.0833 1
0.0769
0.0714
O.0667
0.0625
O.0S88
0.0556
0.0526
0.0500
0.0476 /

consistent matrix equation AX'B = C*, and so the optimal approximation solution X
to the given matrix Xo is that

X = X' + Xo =

EXAMPLE 2. Let A, B is as the same matrix as of the Example 1,

C =

In this example, the equation AXB = C is not consistent, by using Iteration method
2.1, we can obtain the least-norm least-squares solution of the equation as

/ 112.9234
102.7098
97.5420
93.6942
86.9268
75.4483
80.6782
85.1314
87.5688
90.0943

\ 90.3920

101.6547
99.8743
96.8334
93.8054
87.2927
75.3918
80.9804
85.6985
88.3184
91.0130
91.3856

97.0850
97.4271
95.2690
92.6886
86.4117
74.4059
80.1255
84.9325
87.6244
90.3820
90.7946

92.5469
93.6838
92.0052
89.7610
83.8490
72.1537
77.7547
82.4481
85.0862
87.7802
88.1901

85.4087
86.7587
85.3728
83.4736
78.2639
67.8220
72.8791
77.1117
79.4751
81.8769
82.2090

68.6364
69.3091
67.9033
66.4063
62.9107
57.8860
60.9908
63.6465
64.9886
66.3291
66.3601

77.4207
78.6322
77.2982
75.6278
71.2892
64.0435
68.1686
71.6630
73.5321
75.4082
75.5981

82.7639
84.3071
83.0183
81.2426
76.3890
67.8242
72.5765
76.5880
78.7816
80.9873
81.2772

86.6531
88.4434
87.1934
85.3412
80.1000
70.5189
75.7453
80.1474
82.5879
85.0452
85.4134

89.3282
91.3066
90.0975
88.1977
82.6749
72.3014
77.8800
82.5711
85.1971
87.8443
88.2738

90.5845
92.6865
91.5227
89.6139
83.9463
73.0736
78.8S56
83.7116
86.4471
89.2067
89.6746

X =

/ 0.1013
0.0514
0.0353
0.0270
0.0227
0.0074
0.0152
0.0136
0.0122
0.0112

\ 0.0103

0.0513
0.0347
0.0269
0.0219
0.0194
0.0053
0.0134
0.0122
0.0111
0.0103
0.0096

0.0369
0.0293
0.0269
0.0241
0.0300

-0.0262
0.0136
0.0130
0.0121
0.0119
0.0111

0.0279
0.0239
0.0237
0.0219
0.0358

-0.0341
0.0121
0.0116
0.0108
0.0107
0.0100

0.0234
0.0229
0.0264
0.0231
0.0839

-0.0952
0.0123
0.0120
0.0113
0.0116
0.0108

0.0032
-0.0040
-0.0194
-0.0207
-0.1108
0.2294

-0.0018
-0.0042
-0.0047
-0.0076
-0.0075

0.0155
0.0138
0.0128
0.0116
0.0118
0.0003
0.0086
0.0082
0.0077
0.0074
0.0071

0.0138
0.0123
0.0114
0.0105
0.0075
0.0036
0.0081
0.0077
0.0073
0.0071
0.0068

0.0135
0.0129
0.0135
0.0128
0.0197

-0.0190
0.0085
0.0084
0.0080
0.0080
0.0077

0.0116
0.0108
0.0108
O.01O2
0.0116

-0.0058
0.0074
0.0072
0.0069
0.0068
0.0065

0.0108 \
0.0102 '
0.0104
0.0099
0.0118
-0.0079
0.0072
0.0070
0.0067
0.0067
0.0064

where, aT /ax = \s /Xi = 4.4456/81.1530, t = 7.6710, k = 7272.
By using preconditioned method as Example 1, we can obtain the same result, but

where, oT/ai = X3 /\x = 4.1228/5.1832, t = 0.0200, k = 17.
From the above two examples, we see that the converge rate of the iteration method

is surely related to the singular value of the matrices A, B, and by using preconditioning
methods which increase the ratio (crrAJ)/((71Ai), we can obtain a faster iteration rate.
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