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Abstract
Let M be an affine variety equipped with a foliation, both defined over a number field K. For an algebraic 𝑉 ⊂ M
over K, write 𝛿𝑉 for the maximum of the degree and log-height of V. Write Σ𝑉 for the points where the leaves
intersect V improperly. Fix a compact subset B of a leaf L. We prove effective bounds on the geometry of the
intersection B ∩ 𝑉 . In particular, when codim𝑉 = dimL we prove that #(B ∩ 𝑉) is bounded by a polynomial in
𝛿𝑉 and log dist−1 (B, Σ𝑉 ). Using these bounds we prove a result on the interpolation of algebraic points in images
of B ∩ 𝑉 by an algebraic map Φ. For instance, under suitable conditions we show that Φ(B ∩ 𝑉) contains at most
poly(𝑔, ℎ) algebraic points of log-height h and degree g.

We deduce several results in Diophantine geometry. Following Masser and Zannier, we prove that given a
pair of sections 𝑃,𝑄 of a nonisotrivial family of squares of elliptic curves that do not satisfy a constant relation,
whenever 𝑃,𝑄 are simultaneously torsion their order of torsion is bounded effectively by a polynomial in 𝛿𝑃 , 𝛿𝑄;
in particular, the set of such simultaneous torsion points is effectively computable in polynomial time. Following
Pila, we prove that given 𝑉 ⊂ C𝑛, there is an (ineffective) upper bound, polynomial in 𝛿𝑉 , for the degrees and
discriminants of maximal special subvarieties; in particular, it follows that the André–Oort conjecture for powers
of the modular curve is decidable in polynomial time (by an algorithm depending on a universal, ineffective Siegel
constant). Following Schmidt, we show that our counting result implies a Galois-orbit lower bound for torsion
points on elliptic curves of the type previously obtained using transcendence methods by David.

1. Introduction

This paper is roughly divided into two parts. In Section 1 we state our main technical results on point
counting for foliations. This includes upper bounds for the number of intersections between a leaf
of a foliation and an algebraic variety (Theorem 1), a corresponding bound for the covering of such
intersections by Weierstrass polydiscs (Theorem 2) and consequently a counting result for algebraic
points in terms of height and degree (Theorem 3) in the spirit of the Pila–Wilkie theorem and Wilkie’s
conjecture. The proofs of these result are given in Sections 2–6.

In the second part, starting with Section 7, we state three applications of our point-counting results
in Diophantine geometry. These include an effective form of Masser–Zannier bound for simultaneous
torsions points on squares of elliptic curves, and in particular effective polynomial-time computability
of this set; a polynomial bound for Pila’s proof of the André–Oort conjecture forC𝑛, and in particular the
polynomial-time decidability (by an algorithm with an ineffective constant); and a proof of Galois-orbit
lower bounds for torsion points in elliptic curves following an idea of Schmidt. We also briefly describe
the results of [15] (joint with Schmidt and Yafaev), which uses a similar strategy to prove Galois-orbit
lower bounds for special points in Shimura varieties. The proofs of these results are given in Sections
8–10.
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2 Gal Binyamini

Finally, in Appendix A we prove some growth estimates for solutions of inhomogeneous Fuchsian
differential equations over number fields. These are used in our treatment of the Masser–Zannier result
and would probably be similarly useful in many of its generalisations.

1.1. Setup

In this section we introduce the main notations and terminology used throughout the paper.

1.1.1. The variety
Let M ⊂ A𝑁

K
be an irreducible affine variety defined over a number field K. We equip M with the

standard Euclidean metric from A𝑁 , denoted ‘ dist’, and denote by B𝑅 ⊂ M the intersection ofM with
the ball of radius R around the origin in A𝑁 . Set B := 𝐵1.

1.1.2. The foliation
Let 𝝃 := (𝜉1, . . . , 𝜉𝑛) denote n commuting, generically linearly independent, rational vector fields onM
defined over K. We denote by F the (singular) foliation ofM generated by 𝝃 and by ΣF ⊂ M the union
of the polar loci of 𝜉1, . . . , 𝜉𝑛 and the set of points where they are linearly dependent.

For every 𝑝 ∈ M \ ΣF, denote by L𝑝 the germ of the leaf of F through p. We have a germ of
a holomorphic map 𝜙𝑝 : (C𝑛, 0) → L𝑝 satisfying 𝜕𝜙𝑝/𝜕𝑥𝑖 = 𝜉𝑖 for 𝑖 = 1, . . . , 𝑛. We refer to this
coordinate chart as the 𝝃-coordinates on L𝑝 .

1.1.3. Balls and polydiscs
If 𝐴 ⊂ C𝑛 is a ball (resp., polydisc) and 𝛿 > 0, we denote by 𝐴𝛿 the ball (resp., polydisc) with the same
centre where the radius r (resp., each radius r) is replaced by 𝛿−1𝑟 . If 𝜙𝑝 continues holomorphically
to a ball 𝐵 ⊂ C𝑛 around the origin, then we call B := 𝜙𝑝 (𝐵) a 𝝃-ball. If 𝜙𝑝 extends to 𝐵𝛿 , we denote
B𝛿 := 𝜙𝑝

(
𝐵𝛿
)
.

1.1.4. Degrees and heights
We denote by ℎ : Qalg → R≥0 the absolute logarithmic Weil height. If 𝑥 ∈ Qalg has minimal polynomial
𝑎0
∏𝑑

𝑖=1(𝑥 − 𝑥𝑖) over Z[𝑥], then

ℎ(𝑥) = 1
𝑑

(
log|𝑎0 | +

𝑑∑
𝑖=1

log+|𝑥𝑖 |
)
, log+ 𝛼 = max{log𝛼, 0}. (1)

We also denote 𝐻 (𝑥) := 𝑒ℎ (𝑥) . We define the height of a vector x ∈
(
Qalg)𝑛 as the maximal height of

the coordinates.
For a polynomial P, we set 𝛿(𝑃) := max(deg 𝑃, ℎ(𝑃)), where h(P) denotes the logarithmic height

of the polynomial P. For a variety 𝑉 ⊂ M, we denote by deg𝑉 the degree with respect to the standard
projective embeddingA𝑛 → P𝑛; we define ℎ(𝑉) as the height of the Chow coordinates of V with respect
to this embedding. For a vector field 𝝃, we define deg 𝝃 (resp., ℎ(𝝃)) as the maximum degree (resp.,
logarithmic height) of the polynomials 𝝃 (x𝑖), where x𝑖 are the affine coordinates on the ambient space.
Finally we set

𝛿M := max([K : Q], degM, ℎ(M)) (2)

and

𝛿(𝑉) := max(𝛿M, deg𝑉, ℎ(𝑉)), 𝛿(𝝃) := max(𝛿M, deg 𝝃, ℎ(𝝃)). (3)

We sometimes write 𝛿𝑃 , 𝛿𝑉 , 𝛿𝝃 for 𝛿(𝑃), 𝛿(𝑉), 𝛿(𝝃), to avoid cluttering the notation.
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1.1.5. The unlikely intersection locus
Let 𝑉 ⊂ M be a pure-dimensional subvariety of codimension at most n defined over K. We define the
unlikely intersection locus of V and F to be

Σ𝑉 := ΣF ∪
{
𝑝 ∈ M : dim

(
𝑉 ∩ L𝑝

)
> 𝑛 − codim𝑉

}
, (4)

that is, the set of points p where V intersects L𝑝 improperly.

1.1.6. Weierstrass polydiscs
Let B be a 𝝃-ball. We say that a coordinate system x is a unitary coordinate system if it is obtained from
the 𝝃-coordinates by a linear unitary transformation.

Let 𝑋 ⊂ B be an analytic subset of pure dimension m. We say that a polydisc Δ := Δ 𝑧 × Δ𝑤 in
the unitary x = z × w-coordinates is a Weierstrass polydisc for X if Δ̄ ⊂ B and if dimΔ 𝑧 = 𝑚 and
𝑋 ∩

(
Δ̄ 𝑧 × 𝜕Δ𝑤

)
= ∅. In this case, the projection Δ ∩ 𝑋 → Δ 𝑧 is a proper ramified covering map, and

we denote its (finite) degree by 𝑒(Δ , 𝑋) and call it the degree of X in Δ .

1.1.7. Asymptotic notation
We use the asymptotic notation 𝑍 = poly𝑋 (𝑌 ) to mean that 𝑍 < 𝑃𝑋 (𝑌 ), where 𝑃𝑋 is a polynomial
depending on X. In this text the coefficients of 𝑃𝑋 can always be explicitly computed from X unless
explicitly stated otherwise. We similarly write 𝑍 = 𝑂𝑋 (𝑌 ) for 𝑍 < 𝐶𝑋 · 𝑌 , where 𝐶𝑋 ∈ R≥0 is a
constant depending on X.

Throughout the paper, the implicit constants in asymptotic notation are assumed to depend on the
ambient dimension ofM, which we omit for brevity. All implicit constants are effective unless explicitly
stated otherwise (this occurs only in Theorem 7 on the André–Oort conjecture for powers of the mdoular
curve).

1.2. Statement of the main results

Our first main theorem is the following bound for the number of intersections between a 𝝃-ball and an
algebraic variety of complementary dimension. Throughout this section, we let R denote a positive real
number.
Theorem 1. Suppose codim𝑉 = 𝑛 and let B ⊂ B𝑅 be a 𝝃-ball of radius at most R. Then

#
(
B2 ∩𝑉

)
= poly

(
𝛿𝝃 , 𝛿𝑉 , log 𝑅, log dist−1(B,Σ𝑉 )

)
, (5)

where intersection points are counted with multiplicities.
The reader may for simplicity consider the case 𝑅 = 1. The general case reduces to this case

immediately by rescaling the coordinates on M and the vector fields 𝜉 by a factor of R. This rescaling
factor enters logarithmically into 𝛿𝑉 and 𝛿𝝃 , hence the dependence on log 𝑅 in the general case. To
simplify our presentation, we will therefore consider only the case 𝑅 = 1 in the proof of Theorem 1.
Remark 1. Similar to the comment just made, by rescaling each coordinate separately we may also
work with arbitrary polydiscs instead of arbitrary balls.

We also record a corollary which is sometimes useful in the case of higher codimensions:
Corollary 2. Let 𝑉 ⊂ M have arbitrary codimension and set

Σ := ΣF ∪
{
𝑝 ∈ M : dim

(
𝑉 ∩ L𝑝

)
> 0

}
. (6)

Let B ⊂ B𝑅 be a 𝝃-ball of radius at most R. Then

#
(
B2 ∩𝑉

)
= poly

(
𝛿𝝃 , 𝛿𝑉 , log 𝑅, log dist−1 (B, Σ)

)
, (7)

where intersection points are counted with multiplicities.
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Our second main theorem states that the intersection between a 𝝃-ball and a subvariety admits a
covering by Weierstrass polydiscs of effectively bounded size:

Theorem 2. Suppose codim𝑉 ≤ 𝑛 and let B ⊂ B𝑅 be a 𝝃-ball of radius at most R. Then there exists a
collection of Weierstrass polydiscs {Δ𝛼 ⊂ B} for B ∩𝑉 such that the union of Δ2

𝛼 covers B2 and

#{Δ𝛼},max
𝛼
𝑒(B ∩𝑉,Δ𝛼) = poly

(
𝛿𝝃 , 𝛿𝑉 , log 𝑅, log dist−1(B, Σ𝑉 )

)
. (8)

The same comment on rescaling to the case 𝑅 = 1 applies to this theorem as well.

Remark 3. It would also have been possible to state our results in invariant language for a general
algebraic variety and its foliation without fixing an affine chart and a basis of commuting vector fields.
We opted for the less-invariant language in order to give an explicit description of the dependence of
our constants on the foliation F and the relatively compact domain B ⊂ F being considered.

1.3. Counting algebraic points

For this section we fix ℓ ∈ N, a map Φ ∈ O(M)ℓ defined over K, an algebraic K-variety 𝑉 ⊂ M and a
𝝃-ball B ⊂ B𝑅 of radius at most R. Set

𝐴 = 𝐴𝑉 ,Φ,B := Φ
(
B2 ∩𝑉

)
⊂ Cℓ . (9)

Denote

𝐴(𝑔, ℎ) := {𝑝 ∈ 𝐴 : [Q(𝑝) : Q] ≤ 𝑔 and ℎ(𝑝) ≤ ℎ}. (10)

Our goal will be to study the sets 𝐴(𝑔, ℎ) in the spirit of the Pila–Wilkie counting theorem [47]. Toward
this end, we introduce the following notation:

Definition 4. Let W ⊂ Cℓ be an irreducible algebraic variety. We denote by Σ(𝑉,W;Φ) the union of (i)
the points p where the germ Φ|L𝑝∩𝑉 is not a finite map and (ii) the points p where Φ

(
L𝑝 ∩𝑉

)
contains

one of the analytic components of the germ WΦ(𝑝) . We omit Φ from the notation if it is clear from the
context.

In most applications, Φ will be a set of coordinates on the leaves of our foliation and condition (i) will
be empty. Condition (ii) then states that Φ

(
L𝑝 ∩𝑉

)
contains a connected semialgebraic set of positive

dimension (namely a component of W). Our main result is the following:

Theorem 3. Set 𝜀 > 0. There exists a collection of irreducible Q-subvarieties
{
W𝛼 ⊂ Cℓ

}
such that

dist(B, Σ(𝑉,W𝛼)) < 𝜀,

𝐴(𝑔, ℎ) ⊂ ∪𝛼W𝛼 (11)

and

#{W𝛼},max
𝛼
𝛿W𝛼 = poly

(
𝛿𝝃 , 𝛿𝑉 , 𝛿Φ, 𝑔, ℎ, log 𝑅, log 𝜀−1

)
. (12)

As with Theorem 1, one can always reduce to the case 𝑅 = 1 in this theorem by rescaling, and we
will consider only the case 𝑅 = 1 in the proof.

Remark 5 (blocks from nearby leaves). Theorem 3 can be viewed as an analogue of the Pila–Wilkie
theorem in its blocks formulation [44]. Suppose for simplicity that Φ is such that condition (i) in
Definition 4 is automatically satisfied for all leaves. The {W𝛼} are similar to blocks in the sense that
they are algebraic varieties containing all of 𝐴(𝑔, ℎ). The difference is that in the Pila–Wilkie theorem,
these blocks are all subsets of 𝐴alg. In Theorem 3 one should think of the set A as belonging to a family
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𝐴L, parametrised by varying the leaf L while keeping 𝑉,Φ fixed. The blocks W𝛼 correspond to some
algebraic part, but possibly of an 𝐴L for a nearby leaf L (at distance 𝜀 from the original leaf). We
therefore refer to {𝑊𝛼} as blocks coming from nearby leaves.

Ideally one would hope to obtain a result with equation (12) independent of 𝜀, which would eliminate
the need to consider blocks from nearby leaves and give a result roughly analogous to a block-counting
version of the Wilkie conjecture. Unfortunately, due to the dependence in our main theorems on
log dist−1(B, Σ𝑉 ), we cannot expect to derive such a result. On the other hand, in practical applications
of the counting theorem one usually has good control over the possible blocks, not only on B but on all
nearby leaves. We briefly comment on the mechanism that allows this control.

The foliations normally used in Diophantine applications of the Pila–Wilkie theorem are highly
symmetric, usually arising as flat structures associated to a principal G-bundle for some algebraic group
G. This implies that the nearby leaves are obtained as symmetric images (by a symmetry 𝜀-close to the
identity) of the given leaf. To apply Theorem 3, one describes a transcendental set of interest in the form
A already given, where L is taken to be some specific leaf of a foliation. If the classical Pila–Wilkie
theorem is applicable, one must already have a description of the algebraic part 𝐴alg – usually as a
consequence of some functional transcendence statement. When the nearby leaves are obtained from L
by some algebraic transformation, this usually implies that one also understands the algebraic blocks
coming from these nearby leaves. Theorem 3 then gives an effective polylogarithmic version of the Pila–
Wilkie counting theorem, which usually leads to refined information for the Diophantine application.
We give several examples of this in Section 7.

As a simple example of this type, we have the following consequence of Theorem 3, in the case
where no blocks appear on any of the leaves:

Corollary 6. Suppose that for every 𝑝 ∈ M the germ Φ|L𝑝∩𝑉 is a finite map, and Φ
(
L𝑝 ∩𝑉

)
contains

no germs of algebraic curves. Then

#𝐴(𝑔, ℎ) = polyℓ
(
𝛿𝝃 , 𝛿𝑉 , 𝛿Φ, log 𝑅, 𝑔, ℎ

)
. (13)

1.4. A result for restricted elementary functions

Recall that the structure of restricted elementary functions is defined by

RRE =
(
R, <, +, ·, exp |[0,1] , sin |[0, 𝜋 ]

)
. (14)

For a set 𝐴 ⊂ R𝑚, we define the algebraic part 𝐴alg of A to be the union of all connected semialgebraic
subsets of A of positive dimension. We define the transcendental part 𝐴trans of A to be 𝐴 \ 𝐴alg.

In [12], together with Novikov we established the Wilkie conjecture for RRE-definable sets. Namely,
according to [12, Theorem 2], if 𝐴 ⊂ R𝑚 is RRE-definable then #𝐴trans(𝑔, ℎ) = poly𝐴,𝑔 (ℎ). Replacing
the application of [12, Proposition 12] with the stronger Proposition 28 established in the present paper
yields sharp dependence on g.

Theorem 4. Let 𝐴 ⊂ R𝑚 be RRE-definable. Then

#𝐴trans(𝑔, ℎ) = poly𝐴(𝑔, ℎ). (15)

We remark that the proofs of Proposition 28 and consequently Theorem 4 are self-contained and
independent of the main technical material developed in this paper. Still, we thought Theorem 4 worth
stating explicitly for its own sake, and for putting Theorem 3 into proper context.

1.5. Comparison with other effective counting results

For restricted elementary functions, the approach developed in [12] gives results that are strictly stronger
than the results obtained in this paper – in the sense that the bounds obtained there do not depend on the
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heights of coefficients or on the distance to the unlikely intersection locus. This can also be generalised
to holomorphic-Pfaffian functions, including elliptic and abelian functions. The main limitation of this
approach is that it does not seem to apply to period integrals and other maps that arise in problems
related to variation of Hodge structures. It therefore does not seem to give an approach for effectivising
the main Diophantine applications considered in Theorems 6 and 7. It does apply in the context
considered in Theorem 8, but not in the corresponding analogue for Shimura varieties briefly discussed in
Section 10.2.

An alternative approach based on the theory of Noetherian functions has been developed in [7]. This
class does include period integrals and related maps. The results of the present paper have four main
advantages:

1. The asymptotic bounds in Theorem 3 depend polynomially on 𝑔, ℎ, whereas the results of [7] are for
fixed g and subexponential 𝑒𝜀ℎ in h.

2. The asymptotic bounds in Theorem 3 depend polynomially on the degrees of the equations, whereas
in [7] the dependence is repeated-exponential. The sharper dependence allows us to obtain the
natural asymptotic estimates in the Diophantine applications, leading for instance to polynomial-
time algorithms.

3. The results of [7] deal strictly with semi-Noetherian sets – that is, sets defined by means of equalities
and inequalities but no projections. Theorem 3, on the other hand, allows images under algebraic
maps. In many cases, for instance in the proof of Theorem 6, the use of projections is essential and
it is difficult, if not impossible, to use [7] directly.

4. Both the present paper and [7] count points only in compact domains. However, estimates in [7]
grow polynomially with the radius R of a ball containing the domain, whereas in the present paper
they grow polylogarithmically. In many applications this sharper asymptotic allows us to deal with
noncompact domains by restricting to sufficiently large compact subsets.

On the other hand, the approach of [7] has one main advantage: it gives bounds independent of
the log-heights of the equations and the distance to the unlikely intersection locus. Unfortunately, the
technical tools used in [7] to achieve this are of a very different nature, and we currently do not see a
way to combine these approaches. This seems to be a fundamental difficulty related to Gabrielov and
Khovanskii’s conjecture on effective bounds for systems of Noetherian equations [26, Conjectures 1 and
2], which is formulated in the local case and is still open even in this context (but see [9] for a solution
under a mild condition).

1.6. Sketch of the proof

In [12], the notion of Weierstrass polydiscs was introduced for the purpose of studying rational points
on analytic sets. The sets under consideration there are Pfaffian, and an analogu of Theorem 1 (with
bounds depending only on deg𝑉) was already available due to Khovanskii’s theory of fewnomials [32].
One of the main results of [12] was a corresponding analogue of Theorem 2, established by combining
Khovanskii’s estimates with some ideas related to metric entropy.

In the context of arbitrary foliations there is no known analogue for Khovanskii’s theory of fewnomi-
als. It was therefore reasonable to expect that the first step toward generalising the results of [12] would
be to establish such a result on counting intersections, following which one could hopefully deduce a
result on covering by Weierstrass polydiscs using a similar reduction. Surprisingly, our proof does not
follow this line. Instead, we prove Theorems 1 and 2 by simultaneous induction, using crucially the
Weierstrass polydisc construction in dimension 𝑛 − 1 when proving the bound on intersection points in
dimension n. We briefly review the ideas for the two simultaneous inductive steps.

1.6.1. Proof of Theorem 1𝒏 assuming Theorem 1𝒏−1 and Theorem 2𝒏
We start by reviewing the argument for one-dimensional foliations. This case is considerably simpler
and was essentially treated in [6]. The problem in this case reduces to counting the zeros of a polynomial
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P restricted to a ball B2 in the trajectory 𝛾 of a polynomial vector field. Our principal zero-counting tool
is a result from value distribution theory (see Proposition 23) stating that

#
{
𝑧 ∈ B2 : 𝑃(𝑧) = 0

}
≤ const · log

max𝑧∈B |𝑃(𝑧) |
max𝑧∈B2 |𝑃(𝑧) |

. (16)

In our context the logarithm of the numerator can be suitably estimated from above easily, and the key
problem is to estimate the logarithm of the denominator from below.

By the Cauchy estimates, it is enough to prove

− log
���𝑃 (𝑘) (0)

��� ≤ poly
(
𝛿𝜉 , 𝛿𝑃 , log dist−1(0, Σ𝑉 )

)
(17)

for some 𝑘 = poly
(
𝛿𝜉 , 𝛿𝑃

)
. Note that 𝑃 (𝑘) = 𝜉𝑘𝑃 are themselves polynomials. Using multiplicity

estimates (e.g., [25, 42]), one can show that for 𝜇 = poly
(
𝛿𝜉 , 𝛿𝑃

)
, the ideal generated by these

polynomials for 𝑘 = 1, . . . , 𝜇 defines the variety Σ𝑉 . A Diophantine Łojasiewicz inequality due to
Brownawell [20] then shows that one of these polynomials can be estimated from below in terms of the
distance to Σ𝑉 , giving formula (17).

Consider now the higher dimensional setting, where for instance V is given by 𝑉 (𝑃1, . . . , 𝑃𝑛). The
first difficulty in extending the scheme to this context is to find a suitable replacement for the ideal
generated by the 𝜉-derivatives. This problem has been addressed in our joint paper with Novikov [10],
where we defined a collection of differential operators

{
𝑀 (𝑘)

𝛼

}
of order k on maps 𝐹 : C𝑛 → C𝑛, such

that all operators 𝑀 (𝑘) (𝐹) vanish at a point if and only if that point is a common zero of 𝐹1, . . . , 𝐹𝑛
of multiplicity at least k. Combined with the multidimensional multiplicity estimates of Gabrielov and
Khovanskii [26] this allows one to find a multiplicity operator 𝑀 (𝑘) (𝑃) of absolute value comparable
to dist(B, Σ𝑉 ) (see Proposition 14).

The other, more substantial, difficulty is to find an appropriate analogue for the value distribution
theoretic statement. It is well known that the Nevanlinna-type arguments used in the foregoing in
dimension 1 generally become much more complicated to carry out for sets of codimension greater
than 1, and indeed this has been the primary reason that many works on point counting using value
distribution have been restricted to the one-dimensional case.

Our main new idea is that one can overcome this difficulty by appealing to the notion of Weierstrass
polydiscs. Namely, using the inductive hypothesis we may reduce to studying the common zeros of
𝑃1, . . . , 𝑃𝑛 inside a Weierstrass polydisc Δ := 𝐷𝑧 × Δ𝑤 for the curve

Γ := B ∩𝑉 (𝑃1, . . . , 𝑃𝑛−1). (18)

This is equivalent to studying the zeros of the analytic resultant

R(𝑧) =
∏

𝑤 :(𝑧,𝑤) ∈Γ∩Δ
𝑃𝑛 (𝑧, 𝑤). (19)

We are thus reduced to the case of holomorphic functions of one variable, and it remains to show that
R(𝑧) can be estimated from below in terms of the multiplicity operators (similar to how 𝑃(𝑧) was
estimated from below in terms of the usual derivatives in the one-dimensional case). This is indeed
possible, using some properties of multiplicity operators developed in [10], and the precise technical
statement is proved in Lemma 11.

1.6.2. Proof of Theorem 2𝒏 assuming Theorem 1𝒏−1
In [12], the proof of the analogue of Theorem 2 is based on a simple geometric observation. Namely,
one shows that to construct a Weierstrass polydisc containing a ball of radius r around the origin for a
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set 𝑋 ⊂ B, it is essentially enough to find a ball 𝐵′ ⊂ B of radius ∼ 𝑟 disjoint from 𝑆1 · 𝑋 (where 𝑆1

acts on B by scalar multiplication).
To find such a ball, in [12] we appeal to Vitushkin’s formula. Unfortunately, this real argument would

require restricting to real codimension 1 sets. Since our inductions works by decreasing the complex
dimension (in order to use arguments from value distribution theory), this approach is not viable in our
case. Instead, we show in Proposition 17 that one can always find such a ball 𝐵′ with

1/𝑟 = 𝑂
(

𝛼
√

vol(𝑋)
)
, 𝛼 := 2𝑛 − 2𝑚 − 1. (20)

The proof is based on the fact that the volume of a complex analytic set passing through the origin of a
ball of radius 𝜀 is at least const ·𝜀2 dim𝑋 . An analytic set that meets many disjoint balls must therefore
have large volume. We remark that this is an essentially complex-geometric statement which fails in the
real setting.

Having established the estimate (20), we see that to construct a reasonably large Weierstrass polydisc
around the origin for B ∩ 𝑉 (and then cover B2 by a simple subdivision argument), it is enough to
estimate the volume of this set. Moreover, a simple integral estimate shows that having found such a
Weierstrass polydisc Δ , the multiplicity 𝑒(𝑋,Δ) is also upper bounded in terms of vol(B ∩ 𝑉). We
reduce the estimation of this volume, using a complex analytic version of Crofton’s formula, to counting
the intersections of B ∩ 𝑉 with all linear planes of complementary dimension. We realise these planes
as leaves of a new (lower dimensional) foliated space and finish the proof by inductive application of
Theorem 1.

1.6.3. Under the rug
The two inductive steps of our proof are carried out by restricting our foliationF to its linear subfoliations
(where the leaves are given by linear subspaces, in the 𝝃-variables, of the original leaves). It may happen
coincidentally that new unlikely intersections are created in this process. For example, if 𝑃1, 𝑃2 are
two polynomial equations intersecting properly with a two-dimensional leaf L𝑝 , it may happen that the
restriction of 𝑃1 to some one-dimensional 𝝃-linear subspace of L𝑝 vanishes identically. In this case one
cannot control the log dist−1(B, Σ𝑉 ) term coming up in the induction.

To avoid this problem, we note that the particular choice of linear 𝝃-coordinates plays no special role
in the argument, and one can use any other parametrisation (sufficiently close to the identity to maintain
control over the distortion of the 𝝃-unit balls). We therefore replace the vector fields 𝝃 with a new tuple
�̃� generating the same foliation F but producing a different parametrisation of the leaves. We show that
for a sufficiently generic choice of �̃�, one can avoid creating new unlikely intersections in any of the
linear sections considered in the proof. The main technical difficulty is to show that �̃� can be constructed
with 𝛿𝝃 = poly

(
𝛿𝝃 , 𝛿𝑉

)
.

1.6.4. Counting algebraic points
Having proved the general results on counting intersection points between algebraic varieties and leaves
and covering such intersections with a bounded number of Weierstrass polydiscs, one can attempt to
approach a Pila–Wilkie-type counting theorem using the strategy in [11, 12]. A direct application of
this strategy yields adequate estimates for the algebraic points in a fixed number field (as a function
of height) but fails to produce such estimates when one fixes only the degree of the number field. To
achieve this greater generality, we use an alternative approach suggested by Wilkie [53], which replaces
the interpolation determinant method by a use of the Thue–Siegel lemma. We remark that Habegger
has used this approach in his work on an approximate Pila–Wilkie-type theorem [29], and our result is
influenced by his idea. Similar ideas have also been used earlier in more specific settings by Wilkie [52]
and Masser (see [34] and [55, Appendix F]).

Since we, unlike Wilkie and Habegger, use Weierstrass polydiscs in place of the traditional 𝐶𝑟 -
smooth parametrisation, some technical preparations parallel to [29, 53] must be made. This material is
developed in Section 6.1.
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2. Multiplicity operators and local geometry on F
Let 𝐹 = (𝐹1, . . . , 𝐹𝑛) denote an n-tuple of holomorphic functions in some domain Ω ⊂ C𝑛. In [10],
a collection

{
𝑀𝛼

𝐵

}
of ‘basic multiplicity operators’ of order k is defined. These are partial differential

operators of order k – that is, polynomial combinations of 𝐹1, . . . , 𝐹𝑛 and their first k derivatives.1 We
will usually denote a multiplicity operator of order k by 𝑀 (𝑘) and write 𝑀 (𝑘)

𝑝 (𝐹) for [𝑀 (𝑘) (𝐹)] (𝑝).
The key defining property of the multiplicity operators is the following. Denote by mult𝑝 𝐹 the

multiplicity of p as a common zero of 𝐹1, . . . , 𝐹𝑛 (with mult𝑝 𝐹 = 0 if p is not a common zero and
mult𝑝 𝐹 = 0 if p is a nonisolated zero).

Proposition 7 ([10, Proposition 5]). We have mult𝑝 𝐹 > 𝑘 if and only if 𝑀 (𝑘)
𝑝 𝐹 = 0 for all multiplicity

operators of order k.

2.1. Multiplicity operators and Weierstrass polydiscs

In this section we denote by 𝐵 ⊂ C𝑛 the unit ball. The norm ‖·‖ always denotes the maximum norm.
We will need the following basic lemma on multiplicity operators:

Lemma 8. Set 𝐹1, . . . , 𝐹𝑛 : 𝐵 → 𝐷 (1). Suppose that 𝑠 =
��𝑀 (𝑘)

0 𝐹
�� ≠ 0 for some multiplicity operator

𝑀 (𝑘) . Let ℓ ∈ (C𝑛)∗ have unit norm and set 0 < 𝜌 < 𝑠. Then there is a ball 𝐵′ around the origin of
radius at least 𝑠/poly𝑛 (𝑘) and a union of at most k discs𝑈𝜌 of total radius at most poly𝑛 (𝑘) ·𝜌, such that

z ∈ 𝐵′ \ ℓ−1 (𝑈𝜌) =⇒ log ‖𝐹 (z)‖ ≥ (𝑘 + 1) log 𝜌 − poly𝑛 (𝑘). (21)

Proof. The statement follows from the proof of [10, Theorem 2]. To see this, it suffices to check in the
proof that the various constants appearing there indeed have logarithms of order poly𝑛 (𝑘). This boils
down to estimating the constants 𝐶𝑘 and 𝐶𝐷

𝑛,𝑘 . The former is given explicitly in [16, Lemma 4.1], in the
form 𝐶𝑘 = 2−𝑂 (𝑘) . The latter arises in the proof of [10, Proposition 6] from applying Cramer’s rule to a
determinant of size poly𝑛 (𝑘), and is easily seen to satisfy log𝐶𝐷

𝑛,𝑘 = poly𝑛 (𝑘). �

We now state a result relating the multiplicity operators to the construction of a Weierstrass polydisc
for a curve:

Lemma 9. Set 𝐹1, . . . , 𝐹𝑛−1 : 𝐵→ 𝐷 (1). Suppose that 𝑠 =
��𝑀 (𝑘)

0 𝐹
�� ≠ 0 for some (𝑛 − 1)-dimensional

multiplicity operator 𝑀 (𝑘) with respect to the variables w = 𝑧2, . . . , 𝑧𝑛. Then there exists a Weierstrass
polydisc for the set {𝐹 = 0} in the standard coordinates Δ = 𝐷 (𝑟1) × · · · × 𝐷 (𝑟𝑛) with all the radii
satisfying

log 𝑟𝑖 ≥ poly𝑛 (𝑘) log 𝑠. (22)

Proof. We claim that one can find a polydisc Δ𝑤 = 𝐷 (𝑟2) × · · · × 𝐷 (𝑟𝑛) such that

log ‖𝐹 (0,w)‖ ≥ (𝑘 + 1) log 𝑠 − poly𝑛 (𝑘) for every w ∈ 𝜕Δ𝑤 , (23)

and moreover,

log 𝑟𝑖 ≥ poly𝑛 (𝑘) log 𝑠 for 𝑖 = 2, . . . , 𝑛. (24)

To prove this, apply Lemma 8 to 𝐹 (0,w), with ℓ given by each of the z2, . . . , z𝑛-coordinates with a
suitable choice 𝜌 = 𝑠/poly𝑛 (𝑘), and then choose Δ𝑤 to be a polydisc inside the balls 𝐵′ and with each
𝜕𝐷

(
𝑟 𝑗
)

disjoint from the set𝑈𝜌 obtained for ℓ = z 𝑗 .

1We remark that in [10], a general multiplicity operator is defined as an element of the convex hull of the basic ones; however,
in the present paper, since we are concerned with heights over a number field, we will stick to using only the basic operators, and
write ‘multiplicity operator’ for a basic operator.
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Since 𝐹1, . . . , 𝐹𝑛−1 have unit maximum norms, their derivatives are bounded by 𝑂 (1) in 𝐵2 by the
Cauchy estimate. It follows that 𝐹 (𝑧,w) cannot vanish on 𝜕Δ𝑤 for 𝑧 ∈ 𝐷 (𝑟1), where

log 𝑟1 ∼ (𝑘 + 1) log 𝑠 − poly𝑛 (𝑘), (25)

so 𝐷 (𝑟1) ×Δ𝑤 indeed gives a Weierstrass polydisc satisfying the final condition log 𝑟1 ≥ poly𝑛 (𝑘) log 𝑠.
�

Suppose that Γ ⊂ C𝑛 is an analytic curve, Δ = 𝐷𝑧 × Δ𝑤 is a Weierstrass polydisc for Γ and
𝐺 : Δ → C is holomorphic.

Definition 10. We define the analytic resultant of G with respect to Δ to be the holomorphic function
RΔ ,Γ (𝐺) : 𝐷𝑧 → C given by [

RΔ ,Γ (𝐺)
]
(𝑧) =

∏
𝑤 :(𝑧,𝑤) ∈Γ∩Δ

𝐺 (𝑧, 𝑤). (26)

Our second result concerns a lower estimate for analytic resultants in terms of multiplicity operators.

Lemma 11. Let 𝐹1, . . . , 𝐹𝑛 : 𝐵 → 𝐷 (1) be holomorphic. Set Γ = {𝐹1 = · · · = 𝐹𝑛−1 = 0} and suppose
that Δ = 𝐷 (𝑟) × Δ𝑤 ⊂ 𝐵 is a Weierstrass polydisc in the standard coordinates for Γ with multiplicity
𝜇. Suppose that 𝑠 =

��𝑀 (𝑘)
0 (𝐹)

�� ≠ 0 for some multiplicity operator 𝑀 (𝑘) . Set 0 < 𝜌 < 𝑠. Then for z in a
ball of radius Ω𝑛 (𝑠) around the origin and outside a union of balls of radius 𝑂𝑛 (𝜌), we have

log|𝑅(𝑧) | > 𝜇 · ((𝑘 + 1) log 𝜌 − poly𝑛 (𝑘)), 𝑅 := RΔ ,Γ (𝐹𝑛) : 𝐷 (𝑟) → C. (27)

Proof. Apply Lemma 8 with ℓ = z1 and 𝜌. We see that log ‖𝐹 (z)‖ ≥ (𝑘 + 1) log 𝜌 − poly𝑛 (𝑘) in a ball
𝐵′ of radius Ω𝑛 (𝑠) whenever z1 lies outside𝑈𝜌. In particular, this is true for the 𝜇 points (z1, 𝑤) where
𝐹1, . . . , 𝐹𝑛−1 vanish. At these points we have log|𝐹𝑛 (z) | = log ‖𝐹 (z)‖. Taking the product over the 𝜇
different points, as in the definition of R, proves the statement. �

2.2. Multiplicity operators along F
When 𝑃 = (𝑃1, . . . , 𝑃𝑛) ∈ O(M)𝑛, we may apply the multiplicity operator 𝑀 (𝑘) to P by evaluating
the derivatives along 𝝃1, . . . , 𝝃𝑛. This amounts to computing, for each point 𝑝 ∈ M, the multiplicity
operator of 𝑃 |L 𝑝 in the 𝝃-chart.

Lemma 12. For any multiplicity operator 𝑀 (𝑘) , we have

𝛿 (𝑀 (𝑘)𝑃) = poly
(
𝛿𝑃 , 𝛿𝝃 , 𝑘

)
. (28)

Proof. This is a simple computation, owing to the fact that 𝑀 (𝑘) is defined by expanding a determinant
of size poly𝑛 (𝑘) with entries defined in terms of P and its 𝝃-derivatives up to order k. �

We will require the following result of Gabrielov and Khovanskii [26]:

Theorem 5. With P as before and 𝑝 ∈ M \ Σ𝑉 (𝑃) ,

mult𝑝 𝑃 < poly(deg 𝝃, deg 𝑃). (29)

As a consequence, we have the following:

Proposition 13. Let 𝑉 ⊂ M be a complete intersection 𝑉 = 𝑉 (𝑃1, . . . , 𝑃𝑚) with 𝑚 ≤ 𝑛. Then

𝛿(Σ𝑉 ) = poly
(
𝛿𝝃 , 𝛿𝑉

)
. (30)
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Moreover, if 𝑚 = 𝑛, then Σ𝑉 is set-theoretically cut out by the functions {𝑀 (𝑘) (𝑃)}, where 𝑀 (𝑘) varies
over all multiplicity operators of order 𝑘 = poly(deg 𝝃, deg 𝑃).

Proof. We have 𝑝 ∈ Σ𝑉 if and only if 𝑝 ∈ ΣF or dim
(
L𝑝 ∩𝑉

)
> 𝑛−𝑚. Since clearly 𝛿(ΣF) = poly

(
𝛿𝝃
)
,

we only have to write equations for the latter condition. This is equivalent to the statement that for every
𝝃-linear subspace of L𝑝 of dimension m, the intersection 𝑉 ∩ 𝐿 is nonisolated – that is, has infinite
multiplicity. We express this using multiplicity operators as follows.

Let c1, . . . , c𝑚 be n-tuples of indeterminate coefficients and let

𝝃c =
(
c1 · 𝝃, . . . , c𝑚 · 𝝃

)
(31)

denote the subfoliation of 𝝃 generated by the corresponding linear combinations. Then for every 𝑝 ∈
M \ ΣF, we obtain a linear subspace L𝑝,c ⊂ L𝑝 and we seek to express the condition that L𝑝,c ∩ 𝑉 is
an intersection of infinite multiplicity for every c. By Theorem 5, if the multiplicity of the intersection
is finite, then it is bounded by 𝑘 = poly(deg 𝝃, deg 𝑃). It is enough to express the condition that the
multiplicity exceeds this number for every c. According to Proposition 7, for every fixed value of c
this condition can be expressed by considering all multiplicity operators 𝑀 (𝑘) (𝑃) with respect to 𝝃c.
Expanding these expressions with respect to the variables c and taking the ideal generated by all the
coefficients, we obtain equations for the vanishing for every c. The estimates on the degrees and heights
of these equations follow easily from Lemma 12. �

We record a useful corollary of Proposition 13:

Corollary 14. Let 𝑉 = 𝑉 (𝑃1, . . . , 𝑃𝑛) be a complete intersection and set 𝑝 ∈ B. There exists a
multiplicity operator 𝑀 (𝑘) of order 𝑘 = poly(deg 𝝃, deg𝑉) such that

log
��𝑀 (𝑘)

𝑝 (𝑃)
�� ≥ poly

(
𝛿𝝃 , 𝛿𝑉

)
· log dist(𝑝, Σ𝑉 ). (32)

Proof. According to Proposition 13, the set Σ𝑉 is set-theoretically cut out by the multiplicity operators
𝑀 (𝑘) (𝑃) as before. Since the degrees and heights of these polynomials are bounded according to Lemma
12, the result follows by application of the Diophantine Łojasiewicz inequality due to Brownawell
[20]. �

3. Covering by Weierstrass polydiscs

Let 𝐵 ⊂ C𝑛 denote the unit ball around the origin and 𝑋 ⊂ 𝐵 an analytic subset of pure dimension m.
In this section we prove that one can find a Weierstrass polydisc around the origin for X, where the size
of the polydisc depends on the volume of X.

For a subset 𝐴 ⊂ C𝑛, denote by 𝑁 (𝐴, 𝜀) the size the smallest 𝜀-net in A and by 𝑆(𝐴, 𝜀) the size of
the maximal 𝜀-separated set in A. One easily checks that

𝑆(𝐴, 2𝜀) ≤ 𝑁 (𝐴, 𝜀) ≤ 𝑆(𝐴, 𝜀). (33)

Lemma 15. For 𝜀 ≤ 1, we have

𝑆
(
𝑋 ∩ 𝐵2, 𝜀

)
≤ 2𝑚

𝑐(𝑚) vol(𝑋) · 𝜀−2𝑚, (34)

where 𝑐(𝑚) denotes the volume of the unit ball in C𝑚.

Proof. Suppose 𝑆 ⊂ 𝑋 ∩ 𝐵2 is an 𝜀-separated set. Then balls 𝐵𝑝 := 𝐵(𝑝, 𝜀/2) for 𝑝 ∈ 𝑆 are disjoint,
and according to [19, Theorem 15.3] we have

vol
(
𝑋 ∩ 𝐵𝑝

)
≥ 𝑐(𝑛) (𝜀/2)2𝑚. (35)

The conclusion follows because the disjoint union of these sets is contained in X. �
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Let the unit circle 𝑆1 ⊂ C act on C𝑛 by scalar multiplication.

Lemma 16. Let 𝐴 ⊂ 𝐵. Then

𝑁
(
𝑆1 · 𝐴, 2𝜀

)
≤ (1 + �𝜋/𝜀�) · 𝑁 (𝐴, 𝜀). (36)

Proof. Build a 2𝜀-net for 𝑆1 · 𝐴 by multiplying an 𝜀-net in 𝑆1 by an 𝜀-net in A. �

The following proposition is our key technical result:

Proposition 17. There exists a ball 𝐵′ ⊂ 𝐵 of radius 𝜀 disjoint from 𝑆1 · 𝑋 , where

1/𝜀 = 𝑂𝑛

(
𝛼
√

vol(𝑋)
)
, 𝛼 := 2𝑛 − 2𝑚 − 1. (37)

Proof. Set 𝑋 ′ = 𝑆1 ·
(
𝑋 ∩ 𝐵2) . By Lemmas 15 and 16, we have

𝑁 (𝑋 ′, 𝜀) = 𝑂𝑛

(
vol(𝑋)𝜀−2𝑚−1

)
. (38)

On the other hand, clearly

𝑆
(
𝐵2, 𝜀

)
= Θ𝑛

(
𝜀−2𝑛

)
. (39)

Suppose that N is an 𝜀-net for 𝑋 ′ and S is a 4𝜀-separated set in 𝐵2. Suppose that every 𝜀-ball 𝐵𝑝 around
a point 𝑝 ∈ 𝑆 meets 𝑋 ′. Then the 𝐵1/2

𝑝 meets N. Since S is 4𝜀-separated, no two balls 𝐵1/2
𝑝 , 𝐵

1/2
𝑞 for

𝑝, 𝑞 ∈ 𝑆 meet the same point of N, so #𝑆 ≤ #𝑁 . In conclusion, as soon as we have 𝑆
(
𝐵2, 𝜀

)
> 𝑁 (𝑋 ′, 𝜀),

there exists an 𝜀-ball 𝐵𝑝 that does not meet 𝑋 ′. �

As a corollary, we obtain our main result for this section:

Corollary 18. There exists a Weierstrass polydisc Δ ⊂ 𝐵 for X which contains 𝐵𝜂 , where 𝜂 =
poly𝑛 (vol(𝑋)). Moreover, 𝑒(𝑋,Δ) = poly𝑛 (vol(𝑋)).

Proof. The proof of the first part is the same as [12, Theorem 7], where we replace the use of Vitushkin’s
formula and sub-Pfaffian arguments with Proposition 17. Briefly, after finding a ball 𝐵′ disjoint from
𝑆1 · 𝑋 , one notes that 𝐵′ contains a set which has the form Δ ×𝜕𝐷 (𝑟) in some unitary coordinate system,
where the radii of Δ and 𝐷 (𝑟) are roughly the same as the radius of 𝐵′. It is then easy to reduce the
problem to finding a Weierstrass polydisc for 𝜋(𝑋) inside Δ . Since 𝜋(𝑋) is again an analytic set and
vol(𝜋(𝑋)) ≤ vol(𝑋), the proof is concluded by induction over the dimension.

For the second part, write

vol(𝑋 ∩ Δ) =
∫
𝑋∩Δ

d vol𝑋 ≥
∫
𝑋∩Δ

(
𝜋∗ d volΔ𝑧

)
= 𝑒(𝑋,Δ)

∫
Δ𝑧

d volΔ𝑧 = 𝑒(𝑋,Δ) vol(Δ 𝑧) (40)

and note that vol(Δ 𝑧)−1 = poly𝑛 (vol(𝑋)), by what was already proved. �

4. Achieving general position

Let 𝑉 ⊂ M be a variety of pure dimension m. We will assume until Section 4.5 that V is a complete
intersection variety defined by 𝑄1, . . . , 𝑄𝑛−𝑚 ∈ O(M). In Section 4.5 we prove a result that allows us
to reduce the general case to the case of complete intersections.

As explained in Section 1.6, a part of our inductive scheme involves studying intersections between
the variety defined by 𝑄1, . . . , 𝑄𝑘 and subfoliations of F defined by k-dimensional linear subspaces of

https://doi.org/10.1017/fmp.2021.20 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2021.20


Forum of Mathematics, Pi 13

〈𝜉1, . . . , 𝜉𝑛〉. To carry this out uniformly, we add the coefficients of such a linear combination to M. It
may happen that the process of restricting to a linear subfoliation introduces new unlikely intersections
(e.g., if 𝑄1, while not vanishing identically on a leaf, happens to vanish on a linear hyperplane in the
𝝃-coordinates). To avoid such degeneracies, we perturb the time parametrisation, changing the fields 𝝃
while preserving the leaves L𝑝 themselves. We show that this can be done while preserving suitable
control over 𝛿𝝃 .

4.1. Parametrising linear subfoliations

Set 𝑘 ≤ 𝑛 and let 𝐴(𝑛, 𝑘) denote the affine variety of full rank matrices (𝜶1, . . . ,𝜶𝑘 ) ∈ Mat𝑛×𝑘 . Define
𝐿𝑘M := 𝐴(𝑛, 𝑘) ×M and consider the vector fields

𝐿𝑘 (𝝃)𝑖 = 𝜶𝑖 · 𝝃, 𝑖 = 1, . . . , 𝑘 . (41)

The leaves of 𝐿𝑘Mwith 𝐿𝑘 (𝝃) correspond to the leaves obtained by choosing a k-dimensional subspace
of 〈𝝃1, . . . , 𝝃𝑛〉 and using it to span a k-dimensional subfoliation of F.

4.2. Main statement

Our goal is to construct an affine variety M̃ := 𝑁×M depending only onM, and vector fields �̃� depending
onM, 𝑉 , with the following properties:

1. If we denote by 𝜋M : M̃ → M the projection and by 𝜙𝑝 , 𝜙𝑎,𝑝 the 𝝃, �̃� charts, respectively, then for
any (𝑎, 𝑝) ∈ M̃ we have 𝜋M ◦ 𝜙𝑎,𝑝 = 𝜙𝑝 ◦Φ𝑎,𝑝 , where Φ𝑎,𝑝 is the germ of a self map of (C𝑛, 0). In
particular, L𝑝 = 𝜋M

(
L𝑎,𝑝

)
.

2. Whenever 𝜙𝑝 extends to the unit ball, the germ Φ𝑎,𝑝 extends to 𝐵2 and��Φ𝑎,𝑝 − id
��
𝐵2 < 0.1. (42)

In other words, the reparametrisation is close to the identity.
3. We have effective estimates

deg �̃� = deg 𝝃 +𝑂 (1), ℎ
(
�̃�
)
= poly

(
𝛿𝝃 , deg𝑉

)
. (43)

4. For 𝑘 = codim𝑉 , if we set M̃𝑘 := 𝐿𝑘M̃ and denote by �̃� the natural pullback to M̃𝑘 , then

𝜋M
(
Σ�̃�
)
⊂ Σ𝑉 . (44)

In other words, no ‘new’ unlikely intersections are formed when considering linear subfoliations of
M̃, �̃�.

We also remark that one can similarly achieve general position with respect to any 𝑂 (1) different
varieties 𝑉𝑖 ⊂ M, by the same argument.

4.3. Polynomial time reparametrisation

Fix 𝐷 ∈ N and let M𝐷 denote the space of polynomial maps Φ : C𝑛 → C𝑛 with coordinate-wise
degree at most D. Let 𝑃𝐷 (M) denote the affine variety obtained from M𝐷 × C𝑛𝑠 ×M by imposing the
condition det 𝜕Φ(s)

𝜕s ≠ 0, where we use Φ for the coordinate on M𝐷 and s for the coordinate on C𝑛.
Consider the vector fields

𝑃𝐷 (𝜉𝑖) = 𝜕
𝜕s𝑖 +

𝜕Φ(s)
𝜕s · 𝝃 . (45)
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Then the local 𝑃𝐷 (𝝃)-chart at a point (Φ, 𝑎, 𝑝) is given by

𝜙Φ,𝑎, 𝑝 (x) =
(
Φ, 𝑎 + x, 𝜙𝑝 (Φ(𝑎 + x) −Φ(𝑎))

)
. (46)

In particular, the projection of the leaf 𝑃𝐷 (L)Φ,𝑎, 𝑝 to M is the germ L𝑝 , but the time parametrisation
is adjusted according to Φ around a.

4.4. Codimension of unlikely intersection

Set

M̃ = 𝐿𝑘 (𝑃𝐷M) = 𝐴(𝑛, 𝑘) ×M𝐷 × C𝑛𝑠 ×M. (47)

Denote by �̃� the pullback of V to M̃.

Lemma 19. Let 𝑝 ∈ M \ Σ𝑉 , 𝐴 ∈ 𝐴(𝑛, 𝑘) and 𝑎 ∈ C𝑛𝑠 . Then the set{
Φ ∈ M𝐷 : (𝐴,Φ, 𝑎, 𝑝) ∈ Σ�̃�

}
⊂ M𝐷 (48)

is algebraic of codimension at least D.

Proof. Algebraicity follows from Proposition 13. Replacing a by 0 and Φ(x) by Φ(𝑎 + x) − Φ(𝑎), we
may assume without loss of generality that 𝑎 = 0. Similarly, replacing A by (𝝃1, . . . , 𝝃𝑘 ) and Φ(x) by its
appropriate linear change of variable, we may assume without loss of generality that 𝐴 = (𝝃1, . . . , 𝝃𝑘 ).

Denote Φ′
𝑗 = Φ 𝑗 −Φ 𝑗 (0). Then the leaf at (𝐴,Φ, 0, 𝑝) is defined by

(𝐴,Φ, 0) × L′
𝑝 , L′

𝑝 = L𝑝 ∩
{
Φ′
𝑘+1 = · · · = Φ′

𝑛 = 0
}
. (49)

We must check when the intersection of L′
𝑝 and V is a complete intersection. It is enough to bound the

codimension of the condition that Φ′
𝑘+1 vanishes identically on (a component of) L𝑝 ∩ 𝑉 , that Φ′

𝑘+2
vanishes identically on (a component of) L𝑝 ∩

{
Φ′
𝑘+1 = 0

}
∩𝑉 and so on.

From the foregoing we conclude that it is enough to prove the following simple claim: let 𝛾 ⊂ (C𝑛, 0)
be the germ of an analytic curve. Then the set of polynomials of degree at most D without a free term
vanishing identically on 𝛾 has codimension at least D. Note that this set is linear. Choose t to be a
(linear) coordinate on C𝑛 which is nonconstant on 𝛾. Then clearly 𝑡, . . . , 𝑡𝐷 are linearly independent on
𝛾, and the claim follows. �

Now choose 𝐷 = dim 𝐴(𝑛, 𝑘) + 𝑛 + dimM + 1. Denote by 𝜋Φ : M̃→ M𝐷 the projection. Then by a
dimension-counting argument using Lemma 19, the codimension of 𝜋Φ

(
Σ�̃�
)

is positive. By Proposition
13 the degree of the Zariski closure 𝑍 := Clo 𝜋Φ

(
Σ�̃�
)

is bounded by poly(deg𝑉, deg 𝝃). If we choose
any Φ0 ∉ 𝑍 and restrict M̃ to Φ = Φ0, then the final condition in Section 4.2 is satisfied by definition. It
remains only to show that Φ0 can be chosen close to the identity map and with appropriately bounded
height. This follows immediately from the following general statement:

Lemma 20. Let 𝑍 ⊂ A𝑁 be an affine subvariety of total degree at most d. Then there exists a point
x ∈ Q𝑁 \ 𝑍 satisfying ‖x‖∞ ≤ 1 and 𝐻 (x) ≤ 𝑑.

Proof. Let 𝐶 ⊂ C denote the set of points z such that Z has a component contained in {x1 = 𝑧}. Clearly
#𝐶 ≤ 𝑑. Choose 𝑥 ∈ [−1, 1] ∩ (Q \ 𝐶) with 𝐻 (𝑥) ≤ 𝑑. The claim now follows by induction over N for
the variety 𝑍 ∩ {x1 = 𝑥}, naturally identified as a subvariety of A𝑁−1. �
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4.5. Generic choice of a complete intersection

Let 𝑉 ⊂ M be a variety defined over K. In this section we show that one can choose a complete
intersection W containing V with Σ𝑊 being ‘as small as possible’ and with effective control over 𝛿𝑊 .
We will need the following elementary lemma:

Lemma 21. The variety V is set-theoretically cut out by a collection of polynomial equations 𝑃1, . . . , 𝑃𝑆
with 𝛿(𝑃𝛼) = poly(𝛿𝑉 ) and S depending only on the dimension of the ambient space ofM.

Proof. Recall that we define ℎ(𝑉) in terms of the height of its Chow coordinates. The statement thus
follows from a classical construction due to Chow and van der Waerden that produces a canonical system
of equations for V in terms of the Chow coordinates [27, Corollary 3.2.6]. �

The following is our main result for this section:

Proposition 22. Let 0 ≤ 𝑚 ≤ dimM be an integer. There exists a complete intersection W of pure
codimension m that contains V and satisfies 𝛿𝑊 = poly

(
𝛿𝝃 , 𝛿𝑉

)
and

Σ𝑊 =
{
𝑝 ∈ M : dim

(
𝑉 ∩ L𝑝

)
> 𝑛 − 𝑚

}
. (50)

Proof. We remark that the inclusion ⊂ in equation (50) is trivial. Suppose that we have already
constructed a complete intersection𝑊𝑘 of pure codimension 𝑘 < 𝑚 satisfying the conditions. We will
show how to choose a polynomial equation P vanishing on V, with 𝛿𝑃 bounded, such that 𝑊𝑘+1 =
𝑊 ∩𝑉 (𝑃) satisfies

Σ𝑊𝑘+1 =
{
𝑝 ∈ M : dim

(
𝑉 ∩ L𝑝

)
> 𝑛 − 𝑘 − 1

}
. (51)

The claim then follows by induction on k.
Let 𝐷 = dimM + 1 and let P𝐷 denote the space of polynomials in the ambient space ofM of degree

at most D. Consider M̃ := P𝑆
𝐷 ×M and let �̃� ∈ O

(
M̃
)

be given by

�̃�(𝑄1, . . . , 𝑄𝑆 , ·) = 𝑄1𝑃1 + · · · +𝑄𝑆𝑃𝑆 , (𝑄1, . . . , 𝑄𝑆) ∈ P𝑆
𝐷 . (52)

Set �̃�𝑘+1 = �̃�𝑘 ∩𝑉
(
�̃�
)
, where �̃�𝑘 := P𝑆

𝐷 ×𝑊𝑘 .

Let p satisfy dim
(
𝑉 ∩ L𝑝

)
< 𝑛− 𝑘 . By assumption, 𝑝 ∉ Σ𝑊𝑘 . We claim that the codimension in P𝑆

𝐷
of the set {

𝑄 ∈ P𝑆
𝐷 : (𝑄, 𝑝) ∈ Σ�̃�𝑘+1

}
(53)

is at least D. Indeed, the condition is equivalent to the fact that �̃� does not vanish identically on any
of the irreducible components of L𝑝 ∩𝑊𝑘 . It is enough to check the codimension for each component
C separately. Since V is set-theoretically cut out by 𝑃1, . . . , 𝑃𝑆 and dim

(
𝑉 ∩ L𝑝

)
< 𝑛 − 𝑘 , one of the

polynomials 𝑃 𝑗 – say, without loss of generality, 𝑃1 – does not vanish identically on C. Then for any
fixed value of 𝑄2, . . . , 𝑄𝑆 , at most one value of𝑄1 |𝐶 can give �̃� |𝐶 ≡ 0, and we have already seen in the
proof of Lemma 19 that the codimension of this affine linear condition is at least D.

We now finish as in Section 4.4. Namely, by Proposition 13 we see that Σ�̃�𝑘+1
is algebraic and

degΣ�̃�𝑘+1
= poly(deg(𝝃), deg(𝑉)). (54)

Set 𝑍 = Clo 𝜋
(
Σ�̃�𝑘+1

)
, where 𝜋 : �̃� → P𝑆

𝐷 , and note that by a dimension-counting argument Z has
positive codimension. Choosing a point 𝑄 ∉ 𝑍 using Lemma 20 and setting 𝑃 = �̃�(𝑄, ·) finishes the
proof. �
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5. Proofs of the main theorems

In this section we prove Theorems 1 and 2 by a simultaneous induction. We will assume in both proofs
that V is given by a complete intersection 𝑉 = 𝑉 (𝑃1, . . . , 𝑃𝑚). For the general case, we replace V by
a complete intersection W containing it, as in Proposition 22. Since Σ𝑉 = Σ𝑊 , the statements for V
follow immediately from the statements for W.

To avoid repeating the expression poly
(
𝛿𝝃 , 𝛿𝑉 , log dist−1 (B,Σ𝑉 )

)
, we will say simply that a quantity

is appropriately bounded if it admits such a bound. Recall that, as explained in Section 1.2, we can and
do assume that 𝑅 = 1.

5.1. Proof of Theorem 1

We prove Theorem 1 in dimension n assuming that it holds for dimension at most 𝑛−1 and that Theorem
2 holds for dimension at most n.

Set𝑉 ′ := 𝑉 (𝑃1, . . . , 𝑃𝑛−1). Note that Σ𝑉 ′ ⊂ Σ𝑉 . We start by passing to general position with respect
to V and 𝑉 ′ as in Section 4.2. This has the effect of slightly reparametrising the time variables, and
in the new parametrisation the original balls B,B2 are contained in balls of radius slightly larger than
1, 1/2. However, dividing these balls into 𝑂 (1) balls and rescaling time (i.e., rescaling 𝝃), we see that
it is enough to prove Theorem 1 for B,B2 in the new parametrisation.

Applying Theorem 2, we construct a collection of Weierstrass polydiscs {Δ𝛼 ⊂ B} for 𝑉 ′ such that
the union of the Δ2

𝛼 covers B2. Since #{Δ𝛼} is appropriately bounded, it will suffice to count the zeros
of 𝑃𝑛 on 𝑉 ′ inside each Δ2

𝛼 separately. Fix one such polydisc Δ := Δ𝛼 and set Δ = 𝐷𝑧 × Δ𝑤 (in some
unitary system of coordinates). We also have that 𝜇 := 𝑒(𝑉 ′ ∩ B,Δ) is appropriately bounded.

Recall the analytic resultant defined in equation (26). The zeros of 𝑃𝑛 on 𝑉 ′ inside Δ correspond
(with multiplicities) to the zeros of RΔ ,B∩𝑉 ′ (𝑃𝑛) in 𝐷𝑧 . We want to count those zeros contained in 𝐷2

𝑧 .
Recall the following consequence of Jensen’s formula [30]:

Proposition 23. Let 𝑓 : �̄� → C be holomorphic. Denote by M (resp., m) the maximum of | 𝑓 (𝑧) | on �̄�
(resp., �̄�2). Then there exists a constant C such that

#
{
𝑧 ∈ 𝐷2 : 𝑓 (𝑧) = 0

}
≤ 𝐶 · log

𝑀

𝑚
. (55)

We apply this proposition toRΔ ,B∩𝑉 ′ (𝑃𝑛) in 𝐷𝑧 . We first note that M is a product of |𝑃𝑛 | evaluated at
𝜇 points 𝑝1, . . . , 𝑝𝜇 ∈ B. It is clear that log

��𝑃𝑛 (𝑝 𝑗 ) �� ≤ poly(𝛿(𝑃𝑛)), so log𝑀 is appropriately bounded.
It remains to show that log(1/𝑚) is appropriately bounded. Let 𝑝1, . . . , 𝑝𝜇 denote the points of 𝑉 ′

lying over the origin in Δ ′. Consider the multiplicity operators 𝑀 (𝑘) (𝑃1, . . . , 𝑃𝑛−1) with respect to the
direction of the w-coordinates (which we think of as a leaf of the foliated space 𝐿𝑛−1M). By Corollary
14, at every point 𝑝 𝑗 there is such a multiplicity operator with log

���1/𝑀 (𝑘)
𝑝 𝑗

(𝑃1, . . . , 𝑃𝑛−1)
��� appropriately

bounded in absolute value (here we use the fact that we perturbed to general position). According to
Lemma 9, each point 𝑝 𝑗 is the centre of a Weierstrass polydisc Δ 𝑗 in the same coordinate system, and
with the logarithms of all radii appropriately bounded in absolute value.

Denote R 𝑗 := RΔ 𝑗 ,B∩𝑉 ′ (𝑃𝑛). The domains of all these functions (and of R itself) contain a disc D
of radius r, with log(1/𝑟) appropriately bounded. Note that

|R(𝑧) | ≥
∏

𝑗=1,...,𝜇
��R 𝑗 (𝑧)

��
𝑒poly( 𝛿𝝃 , 𝛿𝑉 )

, (56)

since the numerator contains the value of 𝑃𝑛 evaluated at every point of B ∩ 𝑉 ′ over z (possibly more
than once), and these evaluations are always bounded from above by 𝑒poly(𝛿 (𝑃𝑛)) , as we have already
seen. It will therefore suffice to find a point in D where log

(
1/
��R 𝑗

��) is appropriately bounded for every
j. For this we use Lemma 11. Namely, the lemma shows that log

(
1/
��R 𝑗

��) is appropriately bounded
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outside a union of balls of total radius smaller than 𝑟/𝜇, and taking the union over 𝑗 = 1, . . . , 𝜇, one can
find a point where this happens simultaneously for every j. This shows that log(1/𝑚) is appropriately
bounded and concludes the proof of Theorem 1.

5.2. Proof of Corollary 2

This follows immediately by applying Proposition 22 with 𝑚 = 𝑛 and applying Theorem 1 to the W that
one obtains.

5.3. Proof of Theorem 2

We will prove Theorem 2 in dimension n assuming that Theorem 1 holds in smaller dimensions. It will
be enough to find a Weierstrass polydisc Δ ⊂ B around the origin containing a ball of radius r such that
1/𝑟 and 𝑒(𝑉 ∩ B,Δ) are appropriately bounded. Indeed, if we can do this, then by a simple rescaling
and covering argument we can find a collection of polydiscs covering B2.

According to Corollary 18, it will be enough to show that vol(B∩𝑉) is appropriately bounded. This
volume can be estimated using complex integral geometry in the spirit of Crofton’s formula. Namely,
according to [19, Proposition 14.6.3] we have

vol(𝑉 ∩ B) = const(𝑛)
∫
𝐺 (𝑛,codim𝑉 )

#(𝑉 ∩ B ∩ 𝐿) d𝐿, (57)

where𝐺 (𝑛, 𝑘) denotes the space of all k-dimensional linear subspaces of C𝑛 with the standard measure.
We now pass to general position with respect to V, as in Section 4.2. Since our reparametrising map

can be assumed to be close to the identity, this does not change the volume by a factor of more than
(say) 2. Hence it is enough to estimate the volume in the new coordinates, and by equation (57) it will
suffice to show that #(𝑉 ∩ B ∩ 𝐿) is appropriately bounded for every 𝝃-linear subspace of dimension
𝑘 = codim𝑉 . Since the B∩ 𝐿 are all unit balls in leaves of 𝐿𝑘M, the result now follows by the inductive
application of Theorem 1 (using the fact that 𝐿𝑘M has no new unlikely intersections with V).

6. Proof of Theorem 3

We start by developing some general material on interpolation of algebraic points in Weierstrass
polydiscs. It is convenient to state these results in the general analytic context without reference to
foliated spaces, and we take this viewpoint in Section 6.1. In Section 6.2 we finish the proof of
Theorem 3.

6.1. Interpolating algebraic points

Set 𝑛 ∈ N. The asymptotic constants in this section will depend only on n. Let Δ = Δx × Δw ⊂ C𝑛 be a
Weierstrass polydisc for an analytic set 𝑋 ⊂ C𝑛 of pure dimension m. Set 𝐹 ∈ O

(
Δ̄
)
. Let M ⊂ N𝑛 be

the set

M := N𝑚 × {0, . . . , 𝑒(𝑋,Δ) − 1}𝑛−𝑚. (58)

We also set 𝐸 := 𝑒(𝑋,Δ)𝑛−𝑚. Recall the following result combining [12, Theorem 3] and [11, Proposi-
tion 8]:

Proposition 24. On Δ2 there is a decomposition

𝐹 =
∑
𝛼∈M

𝑐𝛼x𝛼 +𝑄, 𝑄 ∈ O
(
Δ2
)
, (59)
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where Q vanishes on Δ2 ∩ 𝑋 and

‖𝑐𝛼x𝛼‖Δ2 = 𝑂
(
2−|𝛼 | · ‖𝐹‖Δ

)
. (60)

We now fix Φ ∈ O(Δ)𝑚+1. In [12], Proposition 24 was used in combination with the interpolation
determinant method of Bombieri and Pila [17] to produce an algebraic hypersurface interpolating the
points of 𝑋 ∩Δ2 where Φ takes algebraic values of a given height in a fixed number field. However, this
method does not produce good bounds when one considers the more general

[
𝑋 ∩ Δ2] (𝑔, ℎ;Φ), where

the number field may vary. Instead, we will use an alternative approach proposed by Wilkie [53], which
is based on the following variant of the Thue–Siegel lemma. This idea was used in a slightly different
context by Habegger in [29].

Lemma 25 ([51, Lemma 4.11]). Set 𝐴 ∈ Mat𝜇×𝜈 (R). For any 𝑁 ∈ N, there exists a vector v ∈ Z𝜈 \ {0}
satisfying

‖v‖∞ ≤ 𝑁 + 1, ‖𝐴v‖∞ ≤ 𝑁
𝜇−𝜈
𝜇 ‖𝐴‖∞ . (61)

By combining Proposition 24 and Lemma 25, we obtain the following:

Lemma 26. Set 𝑑, 𝑁 ∈ N. There exists a polynomial 𝑃 ∈ Z[𝑦1, . . . , 𝑦𝑚+1] \ {0} with deg 𝑃 ≤ 𝑑 and all
coefficients bounded in absolute value by N, such that

‖(𝑃 ◦Φ) |𝑋∩Δ2 ‖ ≤ poly(𝑑)𝐸 ‖Φ‖𝑑Δ (𝑁 log 𝑁)2−𝑑(𝐸−1 log 𝑁 )
1

𝑚+1
. (62)

Proof. Let Φ𝛼 for 𝛼 ∈ N𝑚+1 denote the monomial in the Φ variables with the usual multiindex notation.
Note that ‖Φ𝛼‖ ≤ ‖Φ‖ |𝛼 | . For each |𝛼 | ≤ 𝑑, apply Proposition 24 to Φ𝛼 to get

Φ𝛼 =
∑
𝛽∈M

𝑐𝛼,𝛽x𝛽 +𝑄, 𝑄 ∈ O
(
Δ2
)
, (63)

where Q vanishes on Δ2 ∩ 𝑋 and ��𝑐𝛼,𝛽x𝛽
��
Δ2 = 𝑂

(
2−|𝛽 | · ‖Φ‖𝑑Δ

)
. (64)

Fix 𝑘 ∈ N to be chosen later. Using Lemma 25, we find a linear combination
∑

|𝛼 | ≤𝑑 𝑣𝛼Φ
𝛼 with 𝑣𝛼

integers and |𝑣𝛼 | < 𝑁 , not all zero, such that for every |𝛽 | ≤ 𝑘 we have������ ∑|𝛼 | ≤𝑑
𝑣𝛼𝑐𝛼,𝛽𝑥

𝛽

������
Δ2

= 𝑂
(
‖Φ‖𝑑Δ

)
· 𝑁

𝜇−𝜈
𝜇 , 𝜇 ∼ 𝐸𝑘𝑚, 𝜈 ∼ 𝑑𝑚+1. (65)

We now write ∑
|𝛼 | ≤𝑑

𝑣𝛼Φ
𝛼 =

∑
|𝛽 | ≤𝑘

∑
|𝛼 | ≤𝑑

𝑣𝛼𝑐𝛼,𝛽𝑥
𝛽 +

∑
|𝛽 |>𝑘

∑
|𝛼 | ≤𝑑

𝑣𝛼𝑐𝛼,𝛽𝑥
𝛽 = 𝐴 + 𝐵. (66)

For A we have by equation (65) the estimate

𝐴 ≤ 𝑂
(
𝐸𝑘𝑚 ‖Φ‖𝑑Δ

)
· 𝑁

𝜇−𝜈
𝜇 , (67)

https://doi.org/10.1017/fmp.2021.20 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2021.20


Forum of Mathematics, Pi 19

and for B we have by equation (64) the estimate

𝐵 ≤ 𝑂 ���𝑁𝑑𝑚+1 ‖Φ‖𝑑Δ
∑
|𝛽 |>𝑘

2−𝛽��� = 𝑂
(
𝑁𝑑𝑚+1 ‖Φ‖𝑑Δ 2−𝑘

)
. (68)

Choosing 𝑘 = 𝑑
(
𝐸−1 log 𝑁

)1/(𝑚+1) proves the lemma. �

We will compare the upper bound of Lemma 26 with the following elementary lower bound at points
where Φ takes algebraic values of bounded height and degree:

Lemma 27 ([29, Lemma 14]). Let 𝑃 ∈ Z[𝑦1, . . . , 𝑦𝑚+1] be a polynomial of degree d and all coefficients
bounded in absolute value by N. Suppose that y ∈

(
Qalg)𝑚+1 and 𝑃(y) ≠ 0. Then

|𝑃(y) | ≥
(
𝑑𝑚+1𝑁𝐻 (y)𝑑 (𝑚+1)

)−[Q(y):Q]
. (69)

For a subset 𝐴 ⊂ C𝑛, we denote

𝐴(𝑔, ℎ;Φ) := {𝑝 ∈ 𝐴 : [Q(Φ(𝑝)) : Q] ≤ 𝑔 and ℎ(Φ(𝑝)) ≤ ℎ}. (70)

We now come to our interpolation result.

Proposition 28. The set
[
Δ2 ∩ 𝑋

]
(𝑔, ℎ;Φ) is contained in the zero locus of 𝑃 ◦ Φ, where 𝑃 ∈

Z[𝑦1, . . . , 𝑦𝑚+1] \ {0} and

deg 𝑃 ∼ 𝑔 · 𝐸 · (𝑔ℎ + log ‖Φ‖Δ )𝑚 , ℎ(𝑃) ∼ 𝐸 · (𝑔ℎ + log ‖Φ‖Δ )𝑚+1 . (71)

Proof. Set 𝑑, 𝑁 ∈ N and construct the polynomial P as in Lemma 26. At any point x ∈[
Δ2 ∩ 𝑋

]
(𝑔, ℎ;Φ), if 𝑃 ◦Φ(𝑥) ≠ 0, then[

poly(𝑑) · 𝑁 · 2(𝑚+1)ℎ𝑑
]−𝑔

≤ |𝑃 ◦Φ(x) | ≤ poly(𝑑)𝐸 ‖Φ‖𝑑Δ (𝑁 log 𝑁)2−𝑑(𝐸−1 log 𝑁 )
1

𝑚+1
, (72)

and hence

2−𝑂
(
𝑔 log 𝑁

𝑑 +𝑔ℎ+log‖Φ‖Δ+
log 𝐸
𝑑

)
≤ 2−(𝐸−1 log 𝑁 )

1
𝑚+1
. (73)

Now choose

𝑑 = 𝐶𝑚+1𝐸 (𝑔ℎ + log ‖Φ‖Δ )𝑚 · 𝑔, (74)

log 𝑁 = 𝐶𝑚+1𝐸 (𝑔ℎ + log ‖Φ‖Δ )𝑚+1 . (75)

Then formula (73) becomes

2−𝑂 (𝑔ℎ+log‖Φ‖Δ ) ≤ 2−𝐶 (𝑔ℎ+log‖Φ‖Δ ) , (76)

which is impossible for a sufficiently large constant 𝐶 = 𝐶 (𝑚), and we deduce that 𝑃 ◦ Φ vanishes on[
Δ2 ∩ 𝑋

]
(𝑔, ℎ;Φ), as claimed. �

6.2. Finishing the proof of Theorem 3

Theorem 3 follows immediately from the following inductive step, where we start with W = Cℓ and
proceed until dist(B,Σ(𝑉,W)) < 𝜀:
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Proposition 29. Let W ⊂ Cℓ be an irreducible Q-variety of positive dimension. Suppose that 𝜀 :=
dist(B, Σ(𝑉,𝑊)) is positive. Then there exists a collection of irreducible Q-subvarieties {W𝛼 ⊂ W} of
codimension 1 such that

W ∩ 𝐴(𝑔, ℎ) ⊂ ∪𝛼W𝛼 (77)

and

#{W𝛼},max
𝛼
𝛿W𝛼 = poly

(
𝛿𝝃 , 𝛿𝑉 , 𝛿W, 𝛿Φ, 𝑔, ℎ, log 𝜀−1

)
. (78)

Proof of Proposition 29. Define 𝑚 := dimW. Set 𝑉 ′ = 𝑉 ∩Φ−1(W). We claim that{
𝑝 : dim

(
𝑉 ′ ∩ L𝑝

)
≥ 𝑚

}
⊂ Σ(𝑉,W;Φ). (79)

Indeed, if 𝑝 ∉ Σ(𝑉,W;Φ), then Φ𝑉∩L𝑝 is finite. If 𝑉 ′ ∩ L𝑝 has a component C of dimension at least
m, then dimΦ(𝐶) ≥ 𝑚 and 𝐶 ⊂ W, so Φ(𝐶) is a component of W – contradicting the definition of
Σ(𝑉,W;Φ).

Using Proposition 22, we find a complete intersection W of codimension 𝑛 − 𝑚 + 1 containing 𝑉 ′

and satisfying Σ𝑊 ⊂ Σ(𝑉,W;Φ) with appropriate control over 𝛿𝑊 . Using Theorem 2, we cover B2 by
sets Δ2

𝛽 , where Δ𝛽 is a Weierstrass polydisc for B ∩𝑊 and #
{
Δ𝛽

}
and 𝑒

(
B ∩𝑊,Δ𝛽

)
are bounded as

in equation (78).
Choose a set of m coordinates 𝑆 ⊂ {1, . . . , ℓ} such that the projection of W to these coordinates

is dominant. Using Proposition 28 we construct a polynomial 𝑃𝛽 ∈ Z[𝑦1, . . . , 𝑦ℓ] \ {0} depending
only on the variables {𝑦𝑠}𝑠∈𝑆 such that 𝛿(𝑃𝑆) = poly(𝑔, ℎ, 𝛿Φ) and 𝑃𝛽 ◦ Φ vanishes identically on[
Δ2
𝛽 ∩𝑊

]
(𝑔, ℎ;Φ). Finally, taking {W𝛼} to be the union of the collection of irreducible components

of W ∩
{
𝑃𝛽 = 0

}
for every 𝛽 proves the claim. �

7. Diophantine applications

Theorem 3 gives, under suitable conditions, an effective polylogarithmic version of the counting theorem
of Pila and Wilkie [47]. The counting theorem has found numerous applications in various problems
of Diophantine geometry, and our principal motivation in pursuing Theorem 3 is the potential for
effectivising these applications. In this section we illustrate how this can be achieved for two of the
influential applications: Masser and Zannier’s finiteness result for simultaneous torsion points on elliptic
squares [38] and Pila’s proof of the André–Oort conjecture for modular curves [45]. Each of these
directions has led to significant progress and numerous additional results, many of which seem to be
amenable to the same ideas. We also prove a Galois-orbit lower bound for torsion points on elliptic
curves, following an idea of Schmidt. We focus on the most basic examples in each of these directions
to present the method in the simplest context; we will address some of the more involved applications
separately in the future.

7.1. Simultaneous torsion points

Let 𝑇 ⊂ C4 × (C \ {0, 1}) denote the fibred product of two copies of the Legendre family,

𝑇 =
{
(𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝜆) : 𝑦2

𝑗 = 𝑥 𝑗
(
𝑥 𝑗 − 1

) (
𝑥 𝑗 − 𝜆

)
, 𝑗 = 1, 2

}
. (80)

The fibre of T over 𝜆 is an elliptic square 𝐸𝜆 × 𝐸𝜆, and we use the additive notation for the group law
on this scheme. We will also write 𝑃 = (𝑥1, 𝑦1) and 𝑄 = (𝑥2, 𝑦2).

Theorem 6. Let 𝐶 ⊂ 𝑇 be an irreducible curve over a number field K with nonconstant 𝜆. Suppose
that no relation 𝑛𝑃 = 𝑚𝑄 holds identically on C, for any (𝑛, 𝑚) ∈ N2 \ {0}. Then at any point 𝑐 ∈ 𝐶
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where 𝑃(𝑐), 𝑄(𝑐) are both torsion, their corresponding orders of torsion are effectively bounded by
poly(𝛿𝐶 , [K : Q]).

The proof is given in Section 8. This theorem implies finiteness of the set of simultaneous torsion
points, which is the main statement of [38]. It also implies that the set of simultaneous torsion points is
effectively computable in polynomial time: for each possible torsion order k up to the bound provided in
the theorem, one can compute the algebraic equations

(
𝑃𝑘 , 𝑄𝑘 , 𝑐

)
= (∞,∞, 𝑐) using the group law on

T, intersect with the equation defining 𝐶 ⊂ 𝑇 and use elimination theory or Gröbner-basis algorithms
to compute the sets of solutions c.

We remark that numerous variations on the theme of Theorem 6 have been studied by Masser and
Zannier [41, 37, 39, 40], Barroero and Capuano [4, 2, 3] and Schmidt [49]. These include very interesting
applications to the solvability of Pell’s equation in polynomials and to integrability in elementary terms.
Effective bounds for these contexts, analogous to Theorem 6, should in principle provide the last step
toward effective solvability of these classical problems. While we do not address these generalisations
directly in this paper, they do appear to be similarly amenable to our methods. We have developed some
of the material (most specifically the growth estimates in Appendix A) with an eye to treating the more
general types of period maps arising in these applications.

7.2. André–Oort for modular curves

We refer the reader to [45] for the general terminology related to the André–Oort conjecture in the
context of C𝑛. We will prove the following:

Theorem 7. Let 𝑉 ⊂ C𝑛 be an algebraic variety over a number field K. Then the degrees of all
maximal special subvarieties, as well as the discriminants of all their special coordinates, are bounded
by poly𝑛 (𝛿𝑉 , [K : Q]). Here the implied constant is not effective. Moreover, there exists an algorithm
that computes the collection of all maximal special subvarieties of V in poly𝑛 (𝛿𝑉 , [K : Q]) steps.

The proof is given in Section 9. Note that this is the only point in this paper where the implied
asymptotic constant is not effectively computable in principle. The constants depend on Siegel’s asymp-
totic lower bound for class numbers, and obtaining an effective form of this bound is a well-known and
deep problem. The effectivity of this universal constant notwithstanding, Theorem 7 still establishes the
polynomial-time decidability of the André–Oort conjecture in C𝑛 for fixed n. We also note that the con-
stants do depend effectively on n, so the result also establishes the decidability of the conjecture for C𝑛
with n considered as a variable. We remark that the André–Oort conjecture for more general products
of modular curves can be proved by reduction to the C𝑛 case, and this certainly preserves effectivity,
but we do not pursue the details of this here.

7.3. A Galois-orbit lower bound for torsion points

We will prove the following:

Theorem 8. Let E be an elliptic curve defined over a number field K, and 𝑝 ∈ 𝐴 a torsion point of order
n. Then

𝑛 = poly𝑔 ([K : Q], ℎFal(𝐸), [K(𝑝) : K]). (81)

The proof is given in Section 10. This theorem is not new: it follows (with more precise dependence
on the parameters) from the work of David [22]. It has also been generalised to abelian varieties of
arbitrary genus under some mild conditions [21] (see also [41] for the general case). The proof presented
here is different, replacing the use of transcendence methods by point counting using an idea of Schmidt.

We restrict our formal presentation to the elliptic case, as the general case requires some additional
technical tools that we do not treat in this paper. However, we sketch in Section 10.4 how the proof
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extends to arbitrary genus (we restrict to principally polarised abelian varieties, and do not consider the
general case). We also mention further implications for Galois-orbit lower bounds in Shimura varieties
in Section 10.2.

8. Proof of Theorem 6

To simplify our presentation, we will assume everywhere that K = Q, but the proof is essentially the
same in the general case.

8.1. The foliation

We will construct a one-dimensional foliation encoding for each 𝑐 ∈ 𝐶 a pair of lattice generators ( 𝑓 , 𝑔)
for the curve 𝐸𝜆(𝑐) and a pair of elliptic logarithms 𝑧, 𝑤 for the points 𝑃(𝑐), 𝑄(𝑐) ∈ 𝐸𝜆(𝑐) . This can be
done with the help of the classical Picard–Fuchs differential operator as follows.

We will work in the space over C given by

M := 𝐶 × 𝐺, 𝐺 := (Mat2×2, +) � (GL2, ·), (82)

where we use the matrix 𝑀𝐿 (resp., 𝑀𝑃) to denote the coordinate on the second (resp., third) factor,
and more specifically write

𝑀𝐿 =

(
𝑧 𝑤
�𝑧 �𝑤

)
, 𝑀𝑃 =

(
𝑓 𝑔
�𝑓 �𝑔

)
. (83)

We consider G as a semidirect product with respect to the left action of GL2 on Mat2×2 given by
𝑀𝑃 · 𝑀𝐿 = 𝑀𝑃𝑀𝐿 – that is, with the product rule

(𝑀𝐿 , 𝑀𝑃)
(
𝑀 ′

𝐿 , 𝑀
′
𝑃

)
=
(
𝑀𝐿 + 𝑀𝑃𝑀

′
𝐿 , 𝑀𝑃𝑀

′
𝑃

)
. (84)

Let Σ ⊂ C𝜆 denote the set consisting of 0, 1, the critical values of 𝜆 |𝐶 and the points where 𝜆 = 𝑥1 (𝜆)
or 𝜆 = 𝑥2 (𝜆) (compare [38, p. 459], where a similar choice is made). We set 𝐴𝜆 = C \ Σ and replace C
by the part of C that lives over 𝐴𝜆.

We will take our foliation F to be generated by a vector field

𝜉 := 𝜕
𝜕𝜆 + 𝜕𝑥1

𝜕𝜆
𝜕
𝜕𝑥1

+ · · · + 𝜕 �𝑤
𝜕𝜆

𝜕
𝜕 �𝑤 , (85)

and will show how to express each of the 𝜕
𝜕𝜆 -derivatives of the coordinates as regular functions onM.

We start with the coordinates of C. Since we assume 𝜆 |𝐶 is submersive, there is a unique lift of 𝜕
𝜕𝜆 ,

thought of as a section of 𝑇 (𝐴𝜆), to a section 𝜉𝐶 of 𝑇 (𝐶). The coordinates of this section are regular
functions, and their height and degree can be readily estimated, for example, by writing out 𝑇 (𝐶)
explicitly as a Zariski tangent bundle. The 𝜕

𝜕𝑥 𝑗
- and 𝜕

𝜕𝑦 𝑗
-coordinates of 𝜉𝐶 give our 𝜕𝑥 𝑗

𝜕𝜆 and 𝜕𝑦 𝑗
𝜕𝜆 .

We now turn to the equations for ( 𝑓 , 𝑔). Recall that each elliptic period

𝐼 (𝜆) :=
∮
𝛿 (𝜆)

𝜔, 𝜔 =
d𝑥
𝑦
, (86)

where 𝛿(𝜆) ∈ 𝐻1(𝐸𝜆) is a continuous family, satisfies the Picard–Fuchs equation

𝐿𝐼 (𝜆) = 0, 𝐿 = 𝜆(1 − 𝜆) 𝜕2

𝜕𝜆2 + (1 − 2𝜆) 𝜕
𝜕𝜆 − 1

4
. (87)
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We encode the fact that f satisfies this second-order equation by requiring

𝜕
𝜕𝜆 𝑓 =

�𝑓 , 𝜕
𝜕𝜆

�𝑓 = (1/4) 𝑓 − (1 − 2𝜆) �𝑓
𝜆(1 − 𝜆) . (88)

Note that 𝜆(1 − 𝜆) is invertible on 𝐴𝜆. We impose the same equations on (𝑔, �𝑔).
Finally, to handle 𝑧, 𝑤, recall that each elliptic logarithm

𝐼 (𝜆) :=
∫ 𝑃 (𝜆)

∞
𝜔 (89)

satisfies an inhomogeneous Picard–Fuchs equation. More explicitly, applying the operator L to 𝐼 (𝜆), we
obtain by direct computation

𝐿𝐼 (𝜆) = 𝐵 +
∫ 𝑃 (𝜆)

∞
𝐿𝜔 = 𝐵 +

∫ 𝑃 (𝜆)

∞

1
2

d
(

𝑦

(𝑥 − 𝜆)2

)
= 𝐵 + 1

2
𝑦1 (𝜆)

(𝑥1 (𝜆) − 𝜆)2 , (90)

where B denotes the terms coming from the derivation of the boundary points – for example, 𝜔(𝑃(𝜆)′)
for the first derivative. To make this computation explicitly, write 𝑦 :=

√
𝑥(𝑥 − 1) (𝑥 − 𝜆) as a function

of 𝑥, 𝜆, express the integral as a path integral in the x-plane and use the usual derivation rules.
Denote the right-hand side of equation (90) by 𝑅𝑧 . Then 𝑅𝑧 is a regular function on M by our

definition of 𝐴𝜆, and the explicit derivation readily shows that 𝛿𝑅 = poly(𝛿𝐶 ). We may thus write the
equations for z as

𝜕
𝜕𝜆 𝑧 = �𝑧, 𝜕

𝜕𝜆 �𝑧 =
(1/4)𝑧 − (1 − 2𝜆) �𝑧 + 𝑅𝑧

𝜆(1 − 𝜆) . (91)

We impose a similar set of equations on (𝑤, �𝑤), with the right-hand side 𝑅𝑤 .
As a consequence of this construction, one leaf L0 of our foliation is given (locally) by the graph

over C of ( 𝑓 , 𝑔, 𝑧, 𝑤), where 𝑓 , 𝑔 are taken to be the two generators of the lattice 𝐸𝜆 and 𝑧, 𝑤 are taken
to be elliptic logarithms of 𝑃(𝜆), 𝑄(𝜆). As one analytically continues, this leaf L0 obtains other choices
for the generators 𝑓 , 𝑔 and the logarithms 𝑧, 𝑤.

We will also require a description of the remaining leaves. This is fairly simple to obtain: our
equations for 𝑓 , 𝑔 are equivalent to the Gauss–Manin linear equations 𝐿 𝑓 = 𝐿𝑔 = 0. For the standard
leaf L0, these are taken to be two linearly independent solutions, and any other solution is obtained
by replacing 𝑀𝑃 with 𝑀𝑃𝐺𝑃 for some 𝐺𝑃 ∈ GL2 (C). Similarly, the equations for 𝑧, 𝑤 are equivalent
to 𝐿𝑧 = 𝑅𝑧 , 𝐿𝑤 = 𝑅𝑤 , and since 𝑓 , 𝑔 form a basis of solutions of the homogeneous equations on
any leaf, any other leaf with the same 𝑓 , 𝑔 is obtained by replacing 𝑀𝐿 with 𝑀𝐿 + 𝑀𝑃𝐺𝐿 for some
𝐺𝐿 ∈ Mat2×2(C). In other words, F is a flat structure of the principal G-bundle M, where G acts on
itself by multiplication on the right.

8.2. Degree and height bounds

We need two lemmas from [38] on the degree and height of points 𝑐 ∈ 𝐶 where either P or Q is torsion.

Lemma 30 ([38, Lemma 7.1]). Let 𝑐 ∈ 𝐶 be such that 𝑃(𝑐) or 𝑄(𝑐) is torsion of order n. Then

𝑛 ≤ poly(𝛿𝐶 , [Q(𝜆(𝑐)) : Q], ℎ(𝜆(𝑐))). (92)

Proof. This follows at once from the proof of [38, Lemma 7.1], where one just needs to track down the
constant c to find that it is 𝑐 = 𝛿𝐶 . We also give an independent proof in Section 10. �
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Lemma 31 ([38, Lemma 8.1]). Let 𝑐 ∈ 𝐶 be such that 𝑃(𝑐) or 𝑄(𝑐) is torsion. Then

ℎ(𝜆(𝑐)) ≤ poly(𝛿𝐶 ). (93)

Proof. Without the explicit dependence on 𝛿𝐶 , this is [38, Lemma 8.1]. The dependence on 𝛿𝐶 can be
seen from the proof of [55, Proposition 3.1]. Specifically, it comes down to Zimmer’s estimate for the
difference between the Néron–Tate height ℎ̂(𝑃) and Weil height ℎ(𝑃) in the function field case, where
the explicit form given in [56, p. 40, Theorem] shows that the asymptotic constants are poly(𝛿𝐶 ). �

Recall that we defined 𝐴𝜆 := C \ Σ for some finite set Σ. For 𝛿 > 0, we define Λ𝛿 ⊂ 𝐴𝜆 as

Λ𝛿 :=
{
𝜆 : |𝜆 | < 𝛿−1, ∀𝜎 ∈ Σ : |𝜆 − 𝜎 | > 𝛿

}
. (94)

We record a consequence of Lemma 31.

Lemma 32 ([38, Lemma 8.2]). Set 𝜆 ∈ 𝐴𝜆. Then for 𝛿 = 2− poly(𝛿𝐶 ,ℎ (𝜆)) , at least half of the Galois
conjugates of 𝜆 are in Λ𝛿 .

Proof. The proof is the same as [38, Lemma 8.2]. Briefly, we have an upper bound on the heights of 𝜆
and 𝜆 −𝜎 for 𝜎 ∈ Σ, and this means that averaging over the Galois orbit, none of these can be too small
(or too big) in absolute value. �

8.3. Setting up the domain for counting

Let 𝑐 ∈ 𝐶 be such that 𝑃(𝑐), 𝑄(𝑐) are both torsion, and let n denote the maximum among their orders
of torsion and 𝑁 (𝑐) := [Q(𝑐) : Q]. According to Lemma 31, we have ℎ(𝜆(𝑐)) = poly(𝛿𝐶 ). Then by
Lemma 32, at least half of the Galois orbit of 𝜆(𝑐) lies in a set Λ𝛿 with some 𝛿 = 2− poly(𝛿𝐶 ) . Moreover,

𝑛 = poly(𝛿𝐶 , 𝑁 (𝑐)) (95)

by Lemma 30.
We choose a collection of poly(𝛿𝐶 ) discs 𝐷𝑖 ⊂ 𝐴𝜆 such that

𝐷1/4
𝑖 ⊂ Λ𝛿/2, Λ𝛿 ⊂ ∪𝑖𝐷𝑖 . (96)

This is possible by elementary plane geometry using a logarithmic subdivision process. For example,
it is enough to show that for each 𝑟 > 0, one can make such a choice of discs 𝐷𝑖 with 𝐷1/4

𝑖 ⊂ Λ𝑟/2 to
cover Λ𝑟 \ Λ2𝑟 . This is equivalent, after rescaling by r, to proving the same fact for 𝑟 = 1, and here the
number of discs 𝐷𝑖 is easily seen to depend polynomially on the number of points in Σ.

In conclusion, we have proved the following:

Lemma 33. There exists one disc 𝐷 = 𝐷𝑖 and one branch of the curve C over 𝐷𝑖 such that the number
of Galois conjugates 𝑐𝜎 with 𝜆(𝑐𝜎) ∈ 𝐷𝑖 and (𝑃(𝑐𝜎), 𝑄(𝑐𝜎)) in the chosen branch of C is at least
𝑁 (𝑐)/poly(𝛿𝐶 ).

8.4. Growth estimates for the leaf

We will consider the ball B in L0 corresponding to 𝐷1/2 in the 𝜆-coordinate, with the 𝑃,𝑄 coordinates
corresponding to the branch of C chosen in Lemma 33. To apply Theorem 3 we must estimate the radius
of the ball B𝑅 containing this leaf. This can possibly be done by hand for the elliptic case treated in
this paper, but we give a more general approach using growth estimates for differential equations which
seems easier to carry out in more general settings.
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Remark 34. The main difficulty is in obtaining appropriate estimates for the elliptic logarithms 𝑧, 𝑤.
These are given by incomplete elliptic integrals. In the early examples considered by Masser and Zannier,
these endpoints were taken to have constant x-coordinates, say 𝑥 = 2, 3. In such cases the incomplete
integrals can be estimated in a straightforward manner.

When one considers an arbitrary curve C, the integration endpoints vary with 𝑐 ∈ 𝐶. It is then
necessary to carefully choose the integration path to avoid passing near singularities, and to track how
the integration path is deformed as one analytically continues over a domain in C. In general, throughout
such a deformation the length of the integration path may unavoidably grow as it picks up copies of
vanishing cycles by the Picard–Lefschetz formula. Effectively controlling this phenomenon in terms of
the degree and height of C already appears fairly difficult to do by hand.

We start with the coordinates 𝑃,𝑄. Since

log dist−1
(
𝐷1/2,Σ

)
= poly(𝛿𝐶 ), (97)

one can check that the coordinates 𝑃,𝑄 are bounded by 𝑒poly(𝛿𝐶 ) . For instance, one may use the
general effective bounds for semialgebraic sets proved in [5], though for this special case much more
elementary arguments would suffice. We proceed to consider the remaining coordinates, which are given
by (transcendental) elliptic integrals and require a more delicate approach.

Consider first the elliptic periods 𝑓 , 𝑔. Fix some 𝜆0 ∈ C \ {0, 1}, say 𝜆0 = 1/2. For some fixed choice
of the integration paths staying away from 0, 1, 𝜆0,∞, we can directly estimate

| 𝑓 |,
�� �𝑓 �� , |𝑔 |, | �𝑔 | , 1

Im( 𝑓 /𝑔) < 𝑀0 (98)

at 𝜆 = 𝜆0 with 𝑀0 an effective constant. Indeed, for such a path the integrals are nicely convergent, and
one can approximate them up to any given precision effectively and find such a constant. Our goal is to
deduce an effective estimate for these quantities after analytic continuation from 𝜆0 to 𝐷1/2.

Recall that 𝑓 , 𝑔 satisfy the Picard–Fuchs differential equation (87). Since this is a Fuchsian equation,
the theorem of Fuchs [31, Theorem 19.20] implies that 𝑓 , 𝑔 (and their derivatives) grow polynomially
as one approaches the singular locus of the operator (here 𝜆 = 0, 1,∞) along geodesic lines on P1. In
Appendix A we prove an effective version of this theorem. Specifically, using Theorem 9 we get for any
𝜆 ∈ 𝐷1/2 the estimate

| 𝑓 |,
�� �𝑓 �� , |𝑔 |, | �𝑔 | < 𝑒poly(𝛿𝐶 ) . (99)

Here we can and do assume, for instance, that we analytically continue the leaf from 𝜆0 to 𝐷1/2 along
some sequence of discs in P1 as explained in the comment following Theorem 9, staying at a distance
𝑒− poly(𝛿𝐶 ) from the singularities. We absorb 𝑀0 in the asymptotic notation.

The estimate for Im( 𝑓 /𝑔) requires a different argument. The ratio of periods 𝑓 /𝑔 defines a map
𝐷1/4
𝑖 → H, and by the Schwarz–Pick lemma we have

diam𝐻

(
( 𝑓 /𝑔)

(
𝐷1/2
𝑖

))
≤ diam

𝐷
1/4
𝑖
𝐷1/2
𝑖 = const . (100)

Thus as we continue from 𝜆0 to 𝐷1/2 along a finite sequence of discs 𝐷𝑖 the ratio 𝑓 /𝑔 varies by at most
poly(𝛿𝐶 ) in H. In particular, Im−1( 𝑓 /𝑔) < 𝑒poly(𝛿𝐶 ) in 𝐷1/2.

The proof for the elliptic logarithms 𝑧, 𝑤 is similar to that for 𝑓 , 𝑔. At the origin 𝜆1 of D, we choose
𝑧, 𝑤 to be given by an integral (89) with some standard choice of the path far from 0, 1, 𝜆1. Then as
before, we can estimate |𝑧 |, | �𝑧 | , |𝑤 |, | �𝑤 | at 𝜆1 by 𝑒poly(𝛿𝐶 ) . Our goal is to prove the same in 𝐷1/2. Recall
that 𝑧, 𝑤 satisfy a nonhomogeneous Picard–Fuchs equation (90). Here the right-hand side consists of
the regular functions 𝑅𝑧 , 𝑅𝑤 on 𝐴𝜆, which can be estimated from above by poly

(
dist−1(𝜆,Σ)

)
in the

https://doi.org/10.1017/fmp.2021.20 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2021.20


26 Gal Binyamini

same way as estimating the branches 𝑃,𝑄. Now using Theorem 9 again gives

|𝑧 |, | �𝑧 | , |𝑤 |, | �𝑤 | < 𝑒poly(𝛿𝐶 ) . (101)

To conclude, we have the following:

Lemma 35. For any 𝜆 ∈ 𝐷1/2, we have effective estimates

| 𝑓 |,
�� �𝑓 �� , |𝑔 |, | �𝑔 | , |𝑧 |, | �𝑧 | , |𝑤 |, | �𝑤 | , 1

Im( 𝑓 /𝑔) ≤ 𝑒poly(𝛿𝐶 ) . (102)

In other words, the ball B constructed earlier is contained inM𝑅 for log 𝑅 = poly(𝛿𝐶 ).

8.5. Setting up the counting

We will be interested in counting representations of 𝑧, 𝑤 as rational combinations of 𝑓 , 𝑔. For this it will
be convenient to expand our ambient space and foliation. Define

M̂ := M × Mat2×2(C)𝑈 , (103)

where U denotes the coordinate on the second factor in matrix form. We define the foliation F̂ on M̂ as
the product of the foliation F onM with the full-dimensional foliation on the second factor (i.e., where
a single leaf is the entire space). We will work with a ball B̂ of radius �̂� contained in B̂�̂�, where �̂� will
be suitably chosen later.

Consider the subvariety 𝑉 ⊂ M̂ given by

𝑉 := {(𝑧, 𝑤) = ( 𝑓 , 𝑔)𝑈}. (104)

Note that we do not restrict the entries of U to R, as this would not be covered by Theorem 3. Let
L̂0 denote the lifting of the standard leaf to M̂. We will apply Theorem 3 with Φ := 𝑈. Let G act on
Mat2×2(C)𝑈 on the right by the formula

𝑈 · (𝐺𝐿 , 𝐺𝑃) = 𝐺−1
𝑃 (𝑈 + 𝐺𝐿). (105)

Then the diagonal action on M̂ restricts to an action of G on V, and the map Φ is of course G-equivariant.
We use this to deduce two functional transcendence statements for all leaves from the corresponding
statements for the standard leaf.

Lemma 36. The map Φ|L̂𝑝∩𝑉 is finite for any 𝑝 ∈ M̂.

Proof. If the map is not finite, then there is some𝑈0 whose fibre, that is, the set

{𝜆 ∈ 𝐴𝜆 : (𝑧(𝜆), 𝑤(𝜆)) = ( 𝑓 (𝜆), 𝑔(𝜆))𝑈0}, (106)

is locally of dimension 1. For the standard leaf L̂0 this contradicts the functional transcendence lemma
[38, Lemma 5.1], as it implies that 𝑧, 𝑤 are algebraic over 𝑓 , 𝑔. Since all other leaves are obtained by
the G-action, and Φ is equivariant, the same follows for all other leaves. �

Lemma 37. Let W ⊂ C4 be a positive-dimensional algebraic block such that Σ(𝑉,W) meets a ball
B ⊂ L̂0. Then W is contained in the affine linear space defined by

(𝑧(𝜆0), 𝑤(𝜆0)) = ( 𝑓 (𝜆0), 𝑔(𝜆0))𝑈 (107)

for some 𝜆0 ∈ 𝜆(B).
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Proof. This is again just a reformulation of the functional transcendence results from [38]. Suppose W
is not contained in such an affine linear space. Then Φ

(
L̂0 ∩𝑉

)
contains one of the analytic components

of (some germ of) W, and in particular 𝜆 is nonconstant on L̂0 ∩ 𝑉 (otherwise this germ would satisfy
equation (107) for the constant value 𝜆0). We may also assume without loss of generality that W is a
curve by replacing it with its generic section (𝜆 remains nonconstant for a generic section). Then equation
(107) implies that 𝑓 (𝜆), 𝑔(𝜆) have transcendence degree at most 1 over 𝑧(𝜆), 𝑤(𝜆), contradicting [38,
Lemma 5.1]. �

We remark that Lemma 37 implies, in particular, that any block coming from the standard leaf
can contain at most one real point: it is a product of two affine linear spaces with complex angle
( 𝑓 (𝜆0) : 𝑔(𝜆0)). By G-equivariance, the blocks coming from other leaves are obtained as G-translates.
For a sufficiently nearby leaf – that is, a G-translate sufficiently close to the origin – the angle is still
complex. All such nearby blocks therefore also contain at most one real point. This will be crucial later
in our application of Theorem 3.

8.6. Finishing the proof

We fix 𝜀 = 𝑒− poly( 𝛿𝐶 ) , to be suitably chosen later. Apply Theorem 3 to the ball B̂ with 𝑉,Φ constructed
in Section 8.5. Recall that by Lemma 35 the ball B is contained in a ball of radius 𝑒poly(𝛿𝐶 ) in M. The
same lemma also shows that Im( 𝑓 /𝑔) ≥ 𝑒− poly(𝛿𝐶 ) uniformly on B. We choose 𝜀 small enough so that,
by Lemma 37, any block coming from a leaf of distance 𝜀 to B is still a product of affine spaces with
complex angle (and in particular contains at most one real point). Setting 𝐴 := R2∩Φ

(
B̂2 ∩𝑉

)
, we have

#𝐴(1, ℎ) = poly
(
𝛿𝐶 , �̂�, ℎ

)
. (108)

On the other hand we have the following:

Lemma 38. For suitably chosen �̂� = 𝑒poly(𝛿𝐶 ) , each Galois conjugate 𝑐𝜎 in Lemma 33 corresponds to
a Q-rational point of log-height poly(𝛿𝐶 , log 𝑛) in A.

Proof. Recall that 𝑃(𝑐), 𝑄(𝑐) are both torsion of order at most n, and the same is therefore true for each
𝑐𝜎 . In the equation

(𝑧, 𝑤) = ( 𝑓 , 𝑔)𝑈 (109)

with real U, each 𝑐𝜎 corresponds to a single value of U, with all coordinates rational and denominators
not exceeding n. The claim follows once we prove that the entries of U are bounded from above by
𝑒poly(𝛿𝐶 ) . This follows from Lemma 35. Indeed, we have, for example,

𝑧 = 𝑓 𝑢11 + 𝑔𝑢12, (110)

which can be interpreted as a pair of R-linear equations on 𝑢11, 𝑢12 by taking real and imaginary parts.
The determinant of this system is at least 𝑒− poly(𝛿𝐶 ) , because Im( 𝑓 /𝑔) is at least 𝑒− poly(𝛿𝐶 ) , and the
bounds on U follow easily. �

In fact, the proof of Theorem 3 gives a bound poly(𝛿𝐶 , ℎ) not only for #𝐴(1, ℎ) but for the number of
different points 𝜆 ∈ 𝐷 corresponding to points in A. A reader having forgotten the proof of Theorem 3
may instead appeal to Corollary 2, which shows that the number of different values of 𝜆 corresponding
to a single point of A is at most poly(𝛿𝐶 , ℎ). Indeed, for any fixed value𝑈 = 𝑈0 in A, apply the corollary
to the set

B2 ∩𝑉 ∩ {𝑈 = 𝑈0}, (111)
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using Lemma 36 to see that Σ is empty in this case. It is in fact a simple exercise to remove the
dependence on h in this bound, but as we do not need this, we leave it for the reader.

We are now ready to finish the proof. Recall that in Lemma 33 the number of points 𝑐𝜎 is at least
𝑁 (𝑐)/poly(𝛿𝐶 ). Thus with ℎ = poly(𝛿𝐶 , log 𝑛), we have

𝑁 (𝑐)/poly(𝛿𝐶 ) ≤ #𝐴(1, ℎ) ≤ poly(𝛿𝐶 , log 𝑛) = poly(𝛿𝐶 , log 𝑁 (𝑐)), (112)

where the last estimate is by equation (95). This immediately implies 𝑁 (𝑐) = poly(𝛿𝐶 ), as
claimed.

9. Proof of Theorem 7

9.1. The foliation

We follow Pila’s proof [45], which uses the uniformisation of modular curves by the j-function 𝑗 : Ω →
C, where Ω ⊂ H denotes the standard fundamental domain for the SL2(Z)-action. To apply Theorem 3,
we encode this graph as a leaf of an algebraic foliation. This could be done by replacing 𝑗 : H→ Cwith
the 𝜆-function 𝜆 : H → C and expressing the inverse 𝜏 : C → H as the ratio of two elliptic integrals,
which satisfy a Picard–Fuchs differential equation as discussed in Section 8.1. For variation here we use
an alternative approach, expressing j directly as a solution of a Schwarzian-type differential equation
(which was used for a similar purpose in [8]).

Recall that the Schwarzian operator is defined by

𝑆( 𝑓 ) =
(
𝑓 ′′

𝑓 ′

) ′
− 1

2

(
𝑓 ′′

𝑓 ′

)2
. (113)

We introduce the differential operator

𝜒( 𝑓 ) = 𝑆( 𝑓 ) + 𝑅( 𝑓 ) ( 𝑓 ′)2, 𝑅( 𝑓 ) = 𝑓
2 − 1968 𝑓 + 2, 654, 208

2 𝑓 2( 𝑓 − 1728)2 , (114)

which is a third-order algebraic differential operator vanishing on Klein’s j-invariant j [33, p. 20]. As
observed in [24], it easy to check that the solutions of 𝜒( 𝑓 ) = 0 are exactly the functions of the form
𝑗𝑔 (𝜏) := 𝑗

(
𝑔−1 · 𝜏

)
where 𝑔 ∈ PGL2 (C) acts on C in the standard manner.

The differential equation may be written in the form 𝑓 ′′′ = 𝐴( 𝑓 , 𝑓 ′, 𝑓 ′′), where A is a rational
function. More explicitly, consider the ambient space 𝑀 := C × C3 \ Σ with coordinates (𝜏, 𝑦, �𝑦, �𝑦),
where Σ consists of the zero loci of 𝑦, 𝑦 − 1728 and �𝑦. In particular, we will write C𝑦 := C \ {0, 1728}.
On M, the vector field

𝜉 := 𝜕
𝜕𝜏 + �𝑦 𝜕

𝜕𝑦 + �𝑦 𝜕
𝜕 �𝑦 + 𝐴(𝑦, �𝑦, �𝑦) 𝜕

𝜕 �𝑦 (115)

encodes the differential equation, in the sense that any trajectory is given by the graph of a function
𝑗𝑔 (𝜏) and its first two derivatives.

We define our n-dimensional foliation F on the ambient spaceM := 𝑀𝑛 by taking an n-fold cartesian
product of M with its one-dimensional foliation determined by the vector field 𝜉. We let L denote the
standard leaf given by the product of the graphs of the j function, and note that any other leaf is obtained
as a product of graphs of

( 𝑗 (𝑔1𝜏1), . . . , 𝑗 (𝑔𝑛𝜏𝑛)), (𝑔1, . . . , 𝑔𝑛) ∈ GL2(C)𝑛. (116)

In fact, one may easily check that F is invariant under an appropriate algebraic action of GL2 (C)𝑛,
where the action is trivial on y and is computed by the chain rule on �𝑦, �𝑦.

https://doi.org/10.1017/fmp.2021.20 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2021.20


Forum of Mathematics, Pi 29

9.2. Reduction to maximal special points

Denote by𝑉ws the weakly special locus of V – that is, the union of all weakly special subvarieties of V. In
[8, Theorem 4] it is shown that one can effectively compute 𝑉ws, and in particular 𝛿(𝑉ws) = poly𝑛 (𝛿𝑉 ).
It is also shown that as a consequence of this, one can reduce the problem of computing all maximal
special subvarieties to the problem of computing all special points 𝑝 ∈ 𝑉𝛼 \ 𝑉ws

𝛼 , for some auxiliary
collection of varieties 𝑉𝛼 ⊂ C𝑛𝛼 with 𝑛𝛼 ≤ 𝑛 and

∑
𝛼 𝛿(𝑉𝛼) = poly𝑛 (𝛿𝑉 ).

We remark that even though in [8] only the bounds on the number and degrees of these auxiliary
subvarieties are explicitly stated, the construction in fact yields an effective algorithm, as can be observed
directly from the proof. We also note that the proof itself relies on differential algebraic constructions,
though of a very different nature than in the present paper. In conclusion, it will suffice to prove Theorem
7 only for special points outside 𝑉ws.

9.3. A bound for maximal special points

We will use Theorem 3 to count maximal special points in V as a function of the discriminant. Toward this
end, we define �̂� := 𝜋−1

𝑦 (𝑉) ⊂ M, where 𝜋𝑦 : M→ C𝑛𝑦 is the projection to the coordinates (𝑦1, . . . , 𝑦𝑛).
We let Φ = (𝜏1, . . . , 𝜏𝑛). Note that Φ restricts to the germ of a finite map locally at every L𝑝 .

The following proposition will allow us to control the blocks coming from nearby leaves. We denote
by 𝐽 : H𝑛 → C𝑛 the n-fold product of the j-function.

Proposition 39. Let B be a 𝜉-ball in the standard leaf and W a positive- dimensional algebraic block
coming from a nearby leaf at distance 𝜀. Then

𝐽 (W ∩ 𝜋𝜏 (B)) ⊂ 𝑁𝛿 (𝑉ws), 𝛿 = 𝑂B(𝜀), (117)

where 𝑁𝛿 (𝑉ws) denotes the 𝛿-neighbourhood of 𝑉ws with respect to the Euclidean metric on C𝑛.

Proof. If W comes from the standard leaf, then the modular Ax–Lindemann theorem established in
[45] shows that W is contained in a pre–weakly special subvariety W′ with W′ ∩ H𝑛 ⊂ 𝐽−1 (𝑉). More
accurately, some branch of a germ of W is contained in W′, but since W is irreducible, in fact W ⊂ W′.
Thus 𝐽 (W ∩ H𝑛) ⊂ 𝑉ws by definition.

Recall that by formula (116), all other leaves are obtained by a 𝑔 ∈ GL2(C)𝑛-translate of the standard
leaf. A tubular neighbourhood of B of radius 𝜀 is thus generated by translates with ‖id−𝑔‖ = 𝑂B(𝜀). If
W comes from a leaf in this neighbourhood, then we have by the foregoing argument

𝐽
(
𝑔−1(W ∩ H𝑛)

)
⊂ 𝑉ws. (118)

To finish, we should show that

𝐽 (W ∩ 𝜋𝜏 (B)) ⊂ 𝑁𝑂B (𝜀)

(
𝐽
(
𝑔−1(W ∩ H𝑛)

))
. (119)

This follows at once because B is precompact. First, W ∩ 𝜋𝜏 (B) is contained in a neighbourhood of
𝑔−1 (W∩H𝑛), since the derivative of the G-action is bounded in 𝜋𝜏 (B) ⊂ H𝑛. And then 𝐽 (W∩ 𝜋𝜏 (B))
is contained in a neighbourhood of 𝐽

(
𝑔−1(W ∩ H𝑛)

)
, since the derivative of J is bounded in 𝜋𝜏 (B). �

Let 𝑝 ∈ 𝑉 \𝑉ws be a special point. We associate to p the complexity measure

Δ (𝑝) :=
𝑛∑
𝑖=1

|disc(𝑝𝑖) |, (120)
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where disc 𝑝𝑖 is the discriminant of the endomorphism ring of the elliptic curve corresponding to 𝑝𝑖 .
The Chowla–Selberg formula combined with standard estimates on L-functions imply

ℎ(𝑝) = 𝑂 𝜀 (Δ (𝑝) 𝜀), for any 𝜀 > 0 (121)

(see, e.g., [28, Lemma 4.1] and the estimate for the logarithmic derivative of the L-function in [50,
Corollary 3.3]).

Lemma 40. For any 𝜀 > 0 and special point 𝑝 ∈ 𝑉 \𝑉ws,

log dist−1 (𝑝𝜎 , 𝑉ws) = poly𝑛 (𝛿𝑉 )𝑂 𝜀 (Δ (𝑝) 𝜀) (122)

holds for at least two-thirds of the Galois conjugates 𝑝𝜎 of p.

Proof. This follows from 𝛿(𝑉ws) = poly𝑛 (𝛿𝑊 ) and equation (121). For instance, choose a polynomial
P with ℎ(𝑃) = poly𝑛 (𝛿𝑉 ) vanishing on 𝑉ws but not on p. Then ℎ(𝑃(𝑝)) = poly𝑛 (𝛿𝑉 , ℎ(𝑝)), and in
particular for two-thirds of the conjugates 𝑝𝜎 we have

− log|𝑝𝜎 | = 𝑂 𝜀 (Δ (𝑝) 𝜀), − log |𝑃(𝑝𝜎) | = poly𝑛 (𝛿𝑉 , 𝑂 𝜀 (Δ (𝑝) 𝜀)). (123)

On the other hand, for these conjugates if 𝑑𝜎 := dist(𝑝𝜎 , 𝑉ws), then by the mean value theorem
(assuming, e.g., 𝑑𝜎 < 1),

|𝑃(𝑝𝜎) | ≤ d𝜎 · max
𝐵𝑝𝜎 (𝑑𝜎 )

‖ d𝑃‖ = 𝑒poly𝑛 (𝛿𝑉 ,Δ (𝑝) 𝜀 ) · 𝑑𝜎 . (124)

Taking logs and comparing the last two estimates implies equation (122) on 𝑑𝜎 . �

Let 𝐾 ⊂ Ω𝑛 ⊂ H𝑛 be a compact subset of the fundamental domain Ω𝑛 with

vol(𝐾) ≥ 2
3

vol(Ω𝑛). (125)

According to Duke’s equidistribution theorem [23], for |disc(𝑝) | � 1 at least two-thirds of the conjugates
𝑝𝜎 correspond to points in K. Thus at least one-third of the conjugates 𝑝𝜎 both lie in K and satisfy
Lemma 40. Call such conjugates good conjugates.

Remark 41. Rather than appealing to equidistribution, it is also possible to use the height estimate
(121) to deduce that a large portion of the orbit lies at log-distance at least Δ 𝜀 from the cusp. One can
then use a logarithmic subdivision process to cover all such points by Δ 𝜀-many 𝝃-balls, similar to the
approach we use in Section 8.3. We use such an approach in [15] (with Schmidt and Yafaev) in the
context of general Shimura varieties, where the analogous equidistribution statements are not known.

According to Brauer-Siegel [18], the number of good conjugates is at least

1
3
[Q(𝑝) : Q] ≥ Δ (𝑝)𝑐 for some 𝑐 > 0. (126)

We also recall from [45] that for each 𝑝𝜎 , the corresponding preimage 𝜏𝜎 ∈ Ω𝑛 satisfies

[Q(𝜏𝜎) : Q] ≤ 2𝑛, 𝐻 (𝜏𝜎) = poly𝑛 (Δ (𝑝)). (127)

We are now ready to finish the proof. Cover the part of L corresponding to K by finitely many unit balls
B ⊂ L and apply Theorem 3 with 𝜀0 to each of them. We choose

log 𝜀−1
0 = poly𝑛 (𝛿𝑉 )𝑂 𝜀 (Δ (𝑝) 𝜀) (128)
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corresponding to the bound in Lemma 40, so that for any good conjugate 𝑝𝜎 the 𝜀0-neighbourhood of
𝑝𝜎 does not meet 𝑉ws. Then according to Corollary 39, none of the positive-dimensional blocks W𝛼

coming from nearby leaves at a distance 𝜀0 can contain the corresponding 𝜏𝜎 . Counting with 𝑔 = 2𝑛
and 𝑒ℎ = poly𝑛 (Δ (𝑝)), we see that each good conjugate must come from a zero-dimensional W𝛼,
and the number of good conjugates is therefore poly𝑛 (𝛿𝑉 , 𝑂 𝜀 (Δ (𝑝) 𝜀)). Choosing 𝜀 sufficiently small
compared to c and comparing this to formula (126), we conclude that Δ (𝑝) < poly𝑛 (𝛿𝑉 ).

9.4. Computation of the maximal special points

To compute the finite list of maximal special points 𝑝 ∈ 𝑉 \𝑉ws, we start by enumerating all CM-points
𝑝 ∈ C𝑛 up to a given Δ = 𝛿𝑉 (in polynomial time). For example, they are all obtained as images under
𝜋 of points 𝜏 in H𝑛, whose coordinates are each imaginary quadratic with height poly𝑛 (Δ). It is simple
to enumerate all such points; call them

{
𝜏𝑗
}
.

For each 𝜏𝑗 and each equation 𝑃𝑘 = 0 defining V, we should check whether 𝑃𝑘
(
𝜋
(
𝜏𝑗
) )

vanishes.
Since 𝛿𝜋(𝜏 𝑗) = poly𝑛 (Δ), we have

𝛿
(
𝑃𝑘
(
𝜋
(
𝜏𝑗
) ) )

= poly𝑛 (Δ , 𝛿𝑉 ) = poly𝑛 (𝛿𝑉 ), (129)

and by Liouville’s inequality, either 𝑃𝑘
(
𝜋
(
𝜏𝑗
) )

= 0 or

− log
��𝑃𝑘 (𝜋 (𝜏𝑗 ) ) �� = poly𝑛 (𝛿𝑉 ), (130)

so it is enough to compute poly𝑛 (𝛿𝑉 ) bits of 𝑃𝑘
(
𝜋
(
𝜏𝑗
) )

to check whether it vanishes. This can be
accomplished, for instance, by computing with the q-expansion of 𝑗 (·), and we leave the details for the
reader.

10. Proof of degree bounds for torsion points

10.1. Schmidt’s strategy

Our proof of Theorem 8 is based on an idea by Schmidt [48], who noticed that a polylogarithmic point-
counting result such as the one obtained in Theorem 3 would allow one to deduce degree bounds for
special points from suitable height bounds (in various contexts). The idea (in the context of an abelian
variety A) is to count points on the graph of the universal cover 𝜋 : C𝑔 → 𝐴. If P is an n-torsion point on
A, then one has a collection 𝑃, 𝑃2, . . . , 𝑃𝑛 of torsion points. On the graph of 𝜋 these correspond to pairs(
𝑧 𝑗 , 𝑃

𝑗
)

where ℎ
(
𝑃 𝑗
)

is bounded (as these are torsion points), ℎ
(
𝑧 𝑗
)
= 𝑂 (log 𝑛) (where we represent

𝑧 𝑗 as combinations of the periods) and 𝑃 𝑗 all lie in the field K(𝑃). By point counting, we therefore find

𝑛 = poly𝐴(log 𝑛, [K(𝑃) : K]), (131)

from which the Galois-orbit lower bound follows.
Most applications of the Pila–Wilkie counting theorem use point counting to deduce an upper bound

on the size of Galois orbits of special points, contrasting them with lower bounds obtained by other
methods (usually transcendence techniques). Schmidt’s idea shows that polylogarithmic point-counting
results already carry enough transcendence information to directly imply Galois-orbit lower bounds,
giving ‘purely point-counting’ proofs of unlikely intersection statements (modulo the corresponding
height bounds, which are of course specific to the problem at hand). It is also to our knowledge one of the
first applications of point counting that requires polylogarithmic, rather than the classical subpolynomial,
estimates.

Remark 42. In fact, for this method to work, subpolynomial dependence on the height 𝐻 := 𝑒ℎ is
sufficient. The crucial asymptotic is to obtain polynomial dependence on the degree g. However, in the
interpolation methods used to prove the Pila–Wilkie theorem and related theorems, the dependence on
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g and h are of the same order. Imitating the proof of the classical Pila–Wilkie theorem would give only
a subexponential 𝑒𝜀𝑔 bound, which is not sufficient.

10.2. Further implications

Though we consider here the simplest context of elliptic curves and abelian varieties, Schmidt’s idea
can be made to work also in the context of special points on Shimura varieties. In [15], together with
Schmidt and Yafaev we prove that height bounds of the form

ℎ(𝑝) � disc(𝑝) 𝜀 for any 𝜀 > 0, (132)

where p is a special point in a Shimura variety and disc(𝑝) is the discriminant of the corresponding
endomorphism ring, imply Galois-orbit lower bounds

[Q(𝑝) : Q] ≥ disc(𝑝)𝑐 for some 𝑐 > 0. (133)

In the case of the Siegel modular variety A𝑔, the bound (132) follows from the averaged Colmez formula
[1, 54], and Tsimerman [50] has used these height bounds to establish corresponding Galois-orbit
lower bounds. For this implication he uses the Masser–Wüstholz isogeny estimates [35], another deep
ingredient based on transcendence methods. We obtain an alternative proof of Tsimerman’s theorem,
avoiding the use of isogeny estimates and replacing them with point counting based on Theorem 3. In
particular, our proof applies also in the context of general Shimura varieties, where it establishes the
André–Oort conjecture conditional on the height bound (132). This seems to be of interest because to
our knowledge, the corresponding isogeny estimates are not known for general Shimura varieties, and
it is therefore unclear whether Tsimerman’s approach could be used in this generality.

Remark 43. A few months after [15] was posted on arXiv, Pila, Shankar and Tsimerman posted [46]
in which they establish the height conjecture (132) for arbitrary Shimura varieties. Combined with the
Galois-orbit lower bound established in [15], this finishes the proof of the André–Oort conjecture for
general Shimura varieties.

10.3. Proof of Theorem 8

Write 𝐸 = 𝐸𝜆 in Legendre form and define

ℎ := max(ℎ(𝜆), [K : Q]). (134)

It is known that ℎFal(𝐸) = poly(ℎ), so we prove the bound with h instead of the Faltings height. Let 𝜉𝐸
denote the translation-invariant vector field on E given by

𝜉𝐸 :=
[ 1

2𝑥(𝑥 − 1) (𝑥 − 𝜆)
] ′
𝜕𝑦 + 𝑦𝜕𝑥 . (135)

Note that this is dual to the standard holomorphic form d𝑥/𝑦 on E. We will work in the ambient space
M := 𝐸𝑥,𝑦 × C𝑧 , where the subscripts denote the coordinates used on each factor. We will consider the
foliation generated by the vector field

𝜉 := 𝜉𝐸 + 𝜕𝑧 . (136)

Any leaf of F is the graph of a covering map C→ 𝐸 , and as usual this forms a principal G-bundle with
𝐺 = (C, +) acting on C𝑧 by translation.

The main technical issue is to cover a large piece of a leaf by poly(ℎ)-many 𝜉-balls with suitable
control on the growth. For this it is convenient to renormalise the time parametrisation of 𝜉. Recall that
𝑥 : 𝐸 → P1 is ramified over the points Σ := {0, 1, 𝜆,∞}. Fix some 𝛿 = 𝑒− poly(ℎ) to be chosen later,
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and denote by Λ𝛿 the complement of the 𝛿-neighbourhood of Σ. As in Section 8.3, we can choose a
collection of poly(ℎ) discs 𝐷𝑖 such that

𝐷1/2
𝑖 ⊂ Λ𝛿/2, Λ𝛿 ⊂ ∪𝑖𝐷𝑖 . (137)

We consider the reparametrised vector field 𝜉 ′ := 𝜉/𝑦. The 𝜉 ′-ball B𝑖 around the centre of 𝐷𝑖 with the
same radius corresponds to 𝐷𝑖 in the x-variable and to one of the two y-branches in the y-variable. The
z-coordinate is obtained by integrating d𝑥/𝑦 over 𝐷𝑖 , and since the integrand is bounded by 𝑒poly(ℎ) ,
we conclude the following:

Lemma 44. The 𝜉 ′-ball B𝑖 is contained in B𝑅 for suitable 𝑅 = 𝑒poly(ℎ) .

Now let 𝑝 ∈ 𝐸 be an n-torsion point and denote

𝑁 (𝑝) := [K(𝑝) : K] . (138)

Then the Néron–Tate height of p vanishes, and by Zimmer [56] it follows that the usual Weil height
satisfies ℎ(𝑝) = poly(ℎ). By the same arguments used to prove Lemma 32, at least half of the Galois
conjugates of p over K, which are also n-torsion, have an x-coordinate in Λ𝛿 with some suitable choice
𝛿 = 𝑒− poly(ℎ) .

We can apply the same argument to the points 𝑝2, 𝑝3, . . . , 𝑝𝑛, which are also torsion of order at most
n, and which crucially satisfy 𝑁

(
𝑝 𝑗
)
≤ 𝑁 (𝑝), since the product law is defined over K. Concluding this

discussion, we have the following:

Lemma 45. There exist at least 𝑛/2 points 𝑝𝑖 ∈ 𝐸 that are torsion of order at most n, have height
poly(ℎ), satisfy 𝑥(𝑝𝑖) ∈ Λ𝛿 and have 𝑁 (𝑝𝑖) ≤ 𝑁 (𝑝).

At least 𝑛/poly(ℎ) of these points have x-coordinate belonging to a single disc 𝐷𝑖 and y-coordinate
in a fixed branch over 𝐷𝑖 .

We will derive a contradiction to the assumption that 𝑁 (𝑝) is small by counting the points corre-
sponding to 𝑝𝑖 on the leaf of our foliation. Let �̄�1, �̄�2 ∈ C be the two periods of d𝑥/𝑦 on E, with
𝜏 = �̄�2/�̄�1 in the standard fundamental domain of SL2(Z). It is known that

|�̄�1 |±1 , |�̄�2 |±1 = 𝑒poly(ℎ) , |𝜏 | = poly(ℎ), (139)

though even |𝜏 | = 𝑒poly(ℎ) would suffice for our purposes.
We consider the ambient space M̂ := M × C2

𝑢 × C2
𝜔 with the foliation F̂ given by the product of F

with the generator 𝜉 ′ onM, the full-dimensional foliation on C2
𝑢 and the zero-dimensional foliation on

C2
𝜔 . Consider the variety 𝑉 ⊂ M̂ given by

𝑉 := {(𝑥, 𝑦, 𝑧, 𝑢1, 𝑢2) : 𝑧 = 𝑢1𝜔1 + 𝑢2𝜔2} (140)

and the map Φ := (𝑥, 𝑦, 𝑢1, 𝑢2). A leaf of F̂ is given by fixing a leaf of F and a point (𝜔1, 𝜔2) ∈ C2
𝜔 .

Similar to Lemma 37, we have the following:

Lemma 46. Let W be a positive-dimensional algebraic block such that Σ(𝑉,W) meets some leaf L̂.
Then 𝑢1𝜔1 + 𝑢2𝜔2 is constant on W, where 𝜔1, 𝜔2 are the 𝜔-values taken on L̂.

Proof. Suppose not. Then W would imply an algebraic relation between (𝑥, 𝑦) and 𝑧 = 𝑢1𝜔1 + 𝑢2𝜔2,
which would hold in a neighbourhood of some point (𝑥, 𝑦, 𝑧) on a leaf L of F. But (𝑥, 𝑦) are two elliptic
functions of z (on any leaf), and are certainly not algebraic over z. �

Recall that 𝑅 = 𝑒poly(ℎ) is a constant to be chosen later. Let B = B𝑖 be the ball corresponding to the
disc 𝐷1/2

𝑖 of Lemma 45. We consider the polydisc B̂ given by the product ofB in the (𝑥, 𝑦, 𝑧) coordinates,
a polydisc of radius R in the 𝑢1, 𝑢2 coordinates and the fixed 𝜔1,2 = �̄�1,2 in the 𝜔-coordinates. From
Im (𝜏) ≥ 1/

√
2 and equation (139), it follows that choosing suitable 𝜀 with 𝜀−1 = 𝑒poly(ℎ) , we can ensure
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that the line 𝑧 = 𝑢1𝜔1 + 𝑢2𝜔2, on any leaf at a distance 𝜀 from B̂, has a strictly complex angle and in
particular contains at most one real point (𝑢1, 𝑢2). From Lemma 46, it follows that any block coming
from a leaf of distance 𝜀 to B̂ contains at most one real point (𝑢1, 𝑢2). Apply Theorem 3. Then setting
𝐴 := R2 ∩Φ

(
B̂2 ∩𝑉

)
, we have

#𝐴(𝑔, 𝑡) = poly(ℎ, 𝑔, 𝑡). (141)

On the other hand, we have the following:

Lemma 47. Each of the points 𝑝𝑖 of Lemma 45 corresponds to a point of log-height 𝑡 = poly(ℎ, log 𝑛)
and degree at most 𝑔 = [K : Q] · 𝑁 (𝑝) in A.

Proof. For the 𝑥, 𝑦-coordinates this is the content of Lemma 45. For the 𝑢1, 𝑢2-coordinates, they are
rational with denominators at most n, since 𝑝𝑖 is torsion, z is a lifting of 𝑝𝑖 to C and �̄�1, �̄�2 generate the
lattice of E in the z-coordinate. The numerators are also bounded by 𝑒poly(ℎ) : for z this bound is given in
Lemma 44, and the same bound for 𝑢1, 𝑢2 ∈ R follows since 𝑧 = 𝑢1�̄�1 + 𝑢2�̄�2 and Im (�̄�1, �̄�2) ≥ 1/

√
2

and equation (139) holds. Thus choosing a suitable 𝑅 = 𝑒poly(ℎ) , we see that 𝑢1, 𝑢2 are indeed rational
of log-height poly(log 𝑛, ℎ) and in the polydisc of radius R. �

Finally, we have

𝑛/poly(ℎ) ≤ #𝐴(𝑁 (𝑝) · [K : Q], poly(ℎ, log 𝑛)) = poly(ℎ, 𝑁 (𝑝), log 𝑛), (142)

and it follows that 𝑛 = poly(ℎ, 𝑁 (𝑝)), as claimed.

10.4. Abelian varieties of arbitrary genus

There is no difficulty in extending the foregoing proof to show that if A is an abelian variety of genus g
over K and 𝑝 ∈ 𝐴 is torsion of order n, then 𝑛 ≤ poly𝐴([K(𝑝) : K]). The more technically challenging
part is to establish the precise dependence on A, namely

𝑛 = poly𝑔 ([K : Q], [K(𝑝) : K], ℎFal (𝐴)). (143)

We briefly sketch how the argument presented in the elliptic case can be extended to arbitrary genus,
assuming that A is principally polarised.

An explicit embedding of A in projective space can be computed in terms of the theta function
Θ : 𝐴 → P𝑁 . The theta height of A is defined by ℎ := ℎΘ(𝐴) = ℎ(Θ(0)). By [43, Corollary 1.3], the
Faltings height is roughly the same as the theta height, and we can use this as a replacement of the ℎ(𝜆)
used in the elliptic case. By, for example, [36, Lemma 3.1], the image Θ(𝐴) is defined by a collection
of quadratic equations whose coefficients are functions of Θ(0); so as in the elliptic case, we have

ℎ(Φ(𝐴)) = poly𝑔 (ℎ). (144)

The translation-invariant vector fields 𝝃 := (𝜉1, . . . , 𝜉𝑔) used to construct the foliation can also be
explicitly expressed in terms of ℎ(Θ(0)) [36, Lemma 3.7], and in particular 𝛿𝝃 = poly𝑔 (ℎ).

The main technical issue is the covering of A by poly𝑔 (ℎ)-many 𝝃-balls. (Here if one is content with
a general bound depending on A rather than polynomial in h, compactness can be used.) In the elliptic
case, we achieved this by explicitly constructing a covering by balls in the x-coordinate. In arbitrary
dimension one obviously needs a more systematic approach. For instance, the results of [13] show
that Θ(𝐴) can be covered by const(𝑔) charts whose domains are complex cells. When Θ(𝐴) is further
assumed to be of height h, one can in fact replace these general cells by poly𝑔 (ℎ) polydiscs (this is a
work in progress with Novikov and Zack). Having obtained such a collection of polydiscs replacing our
discs 𝐷𝑖 in the elliptic case, one can proceed with the proof without major changes.
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A. Growth estimates for inhomogeneous Fuchsian equations

A.1. Gronwall for higher-order linear ODEs

Let 𝐷 ⊂ C be a disc and consider a linear differential operator

𝐿 = 𝑎0 (𝑡)𝜕𝑛𝑡 + 𝑎1 (𝑡)𝜕𝑛−1
𝑡 + · · · + 𝑎𝑛 (𝑡) (145)

where 𝑎0, . . . , 𝑎𝑛 are holomorphic in �̄�. Let 𝑏(𝑡) also be holomorphic in �̄�. We will consider the growth
of solutions for the inhomogeneous equation

𝐿 𝑓 = 𝑏(𝑡). (146)

We denote

𝑗𝑛𝑡 𝑓 :=
(
𝑓 , 𝜕𝑡 𝑓 , . . . , 𝜕

𝑛
𝑡 𝑓
)𝑇
, 𝑣𝑏 := (0, . . . , 0, 𝑏(𝑡))𝑇 . (147)

The following is a form of the Gronwall inequality for monic linear operators:

Lemma 48. Suppose that 𝑎0 ≡ 1 and denote

𝐴 = max
𝑗=1,...,𝑛

max
𝑡 ∈�̄�

��𝑎 𝑗 (𝑡)�� , 𝐵 = max
𝑡 ∈�̄�

|𝑏(𝑡) |. (148)

Then for every 𝑡 ∈ 𝐷, �� 𝑗𝑛𝑡 𝑓 (𝑡)�� ≤ 𝑒𝑂𝑛 (𝐴) (𝑂𝑛 (𝐵) +
�� 𝑗𝑛𝑡 𝑓 (0)��) . (149)

Proof. Rewrite 𝐿 𝑓 = 𝑏 as a linear system for the vector 𝑗 𝑡𝑛 𝑓 as follows:

𝜕𝑡 𝑗
𝑛
𝑡 𝑓 (𝑡) =

������
0 1 0 · · · 0
0 0 1 · · · 0

...
−𝑎𝑛 (𝑡) −𝑎𝑛−1 (𝑡) · · · −𝑎2 (𝑡) −𝑎1 (𝑡)

������
𝑗𝑛𝑡 𝑓 (𝑡) + 𝑣𝑏 (𝑡) = Ω(𝑡) 𝑗𝑛𝑡 𝑓 (𝑡) + 𝑣𝑏 (𝑡). (150)

Then for 𝑡 ∈ 𝐷, the solution 𝑗𝑛𝑡 𝑓 satisfies

𝜕𝑡
�� 𝑗𝑛𝑡 𝑓 (𝑡)�� ≤ ‖Ω‖ ·

�� 𝑗𝑛𝑡 𝑓 (𝑡)�� +𝑂𝑛 (𝐵) = 𝑂𝑛 (𝐴) ‖ 𝑗𝑛 𝑓𝑡 (𝑡)‖ +𝑂𝑛 (𝐵), (151)

and the conclusion follows by the classical Gronwall inequality. �

Lemma 48 allows one to prove growth estimates for general equations 𝐿 𝑓 = 𝑏 nonsingular in a disc
D by first dividing by the leading term. However, due to the exponential dependence on A, the resulting
bound will grow exponentially as a function of the minimum of the leading term. For arbitrary singular
linear ordinary differential equations, this is the best one can expect.

For Fuchsian operators, which are the operators that come up in the study of periods and logarithms,
one can obtain much sharper estimates with polynomial growth near the singularities. We do this in the
following section.

A.2. Inhomogeneous Fuchsian equations

In this section we assume that the coefficients of L are in C[𝑡]. Recall that L is called Fuchsian if each
singular point 𝑡0 ∈ P1 of L is Fuchsian. This means that in a local coordinate z where 𝑡0 is the origin, L
can be written in the form

𝐿 = �̃�0 (𝑧) (𝑧𝜕𝑧)𝑛 + �̃�1 (𝑧) (𝑧𝜕𝑧)𝑛−1 + · · · + �̃�𝑛 (𝑧), (152)
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where the coefficients �̃� 𝑗 are holomorphic at the origin and �̃�0 (0) ≠ 0. We denote by Σ ⊂ P1 the set of
singular points of L.

We recall the notion of slope for a differential operator over C(𝑡) introduced in [14]. For a polynomial
p, we define ‖𝑝‖ to be the ℓ1-norm on the coefficients. We extend this to rational functions by setting
‖𝑝/𝑞‖ = ‖𝑝‖ /‖𝑞‖, where the fraction 𝑝/𝑞 is reduced.

Definition 49 (slope of a differential operator.). The slope ∠𝐿 of L is defined by

∠𝐿 := max
𝑖=1,...,𝑛

��𝑎 𝑗 (𝑡)��
‖𝑎0 (𝑡)‖

. (153)

The invariant slope �𝐿 is defined by

�𝐿 := sup
𝜙∈Aut(P1)

∠(𝜙∗𝐿), (154)

where 𝜙∗𝐿 denotes the pullback of L by 𝜙.

We remark that in [14] the slope was defined by first normalising the coefficients 𝑎 𝑗 to be polynomials,
but this minor technical difference does not affect what follows. It is a general fact that the invariant
slope is finite for Fuchsian operators [14, Proposition 32]. The following gives effective estimates when
L is defined over a number field K. In this case we denote 𝛿𝐿 :=

∑
𝑗 𝛿𝑎 𝑗 .

Proposition 50. Suppose L is defined over a number field. Then �𝐿 = 𝑒poly𝑛 (𝛿𝐿 ) .

Proof. Since �𝐿 is defined by a semialgebraic formula over a number field and is known to be finite,
an effective bound follows from general effective semialgebraic geometry [5]; see the derivation in [14,
Section 3.6.2]. �

The slope �𝐿 is useful for studying the oscillation of solutions of homogeneous Fuchsian equations
𝐿 𝑓 = 0, and for the study of growth. In the inhomogeneous case we also require the following corollary
concerning the leading coefficient. We denote by 𝑎 𝑗 (𝐿) the jth coefficient of L.

Proposition 51. Suppose L is defined over a number field. Then

inf
𝜙∈Aut(P1)

‖𝑎0 (𝜙∗𝐿)‖ = 𝑒− poly𝑛 (𝛿𝐿 ) . (155)

Proof. We first prove that the infimum is positive. Assume the contrary. Then we may choose 𝜙 such that
‖𝑎0 (𝜙∗𝐿)‖ is arbitrarily small. By the boundedness of �𝐿, this means that

��𝑎 𝑗 (𝜙∗𝐿)�� is also arbitrarily
small. Now the operator 𝐿 ′ := 𝐿 + 1 is also Fuchsian, and ‖𝑎0 (𝜙∗𝐿 ′)‖ = ‖𝑎0 (𝜙∗𝐿)‖ is arbitrarily small,
while ‖𝑎𝑛 (𝜙∗𝐿 ′)‖ = ‖1 + 𝑎𝑛 (𝜙∗𝐿)‖ is arbitrarily close to 1. This contradicts the boundedness of �𝐿 ′.
The effective bound is then obtained in the same way as in Proposition 50. �

We will also need the following simple lemma:

Lemma 52. Let r be a rational function and D denote the unit disc. If r has no poles in 𝐷1/2, then

max
𝑧∈𝐷

|𝑟 (𝑧) | ≤ 𝑒𝑂 (deg 𝑟 ) ‖𝑟 ‖ , (156)

and if r has no zeros in 𝐷1/2, then

min
𝑧∈𝐷

|𝑟 (𝑧) | ≥ 𝑒−𝑂 (deg 𝑟 ) ‖𝑟 ‖ . (157)
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Proof. Without loss of generality, ‖𝑟 ‖ = 1. Write 𝑟 = 𝑝/𝑞 with 𝑝, 𝑞 polynomials and ‖𝑝‖ = ‖𝑞‖ = 1.
Suppose q has no zeros in 𝐷1/2. Then

|𝑞(𝑧) | ≥ 𝑒−𝑂 (deg 𝑞) for every 𝑧 ∈ 𝐷, (158)

by, for example, [16, Lemma 7]. Since |𝑝(𝑧) | is bounded by 1 for 𝑧 ∈ 𝐷, the upper bound on 𝑟 (𝑧)
follows. The lower bound follows by repeating for 1/𝑟 . �

We now come to our main theorem. If 𝐷 = 𝐷𝑟 (𝑡0) is a disc, we call 𝑧 = (𝑡− 𝑡0)/𝑟 a natural coordinate
on D.

Theorem 9. Let L be a Fuchsian operator as before, defined over a number field. Let 𝐷 = 𝐷𝑟 (𝑡0) be
a disc with 𝐷1/2 ⊂ C \ Σ and z a natural coordinate on D. Consider the equation 𝐿 𝑓 = 𝑏, where b is
defined in 𝐷1/2 and bounded by B there. Then for 𝑡1 ∈ 𝐷,�� 𝑗𝑛𝑧 𝑓 (𝑡1)�� ≤ 𝑒𝑐𝐿 (𝐵 +

�� 𝑗𝑛𝑧 𝑓 (𝑡0)��) , 𝑐𝐿 := 𝑒poly𝑛 ( 𝛿𝐿 ) . (159)

In particular, �� 𝑗𝑛𝑡 𝑓 (𝑡1)�� ≤ max(𝑟, 1/𝑟)𝑛𝑒𝑐𝐿
(
𝐵 +

�� 𝑗𝑛𝑡 𝑓 (𝑡0)��) . (160)

Proof. Note that 𝑗𝑛𝑧 𝑓 is obtained from 𝑗𝑛𝑡 𝑓 by multiplying the jth coordinate by 𝑟 𝑗 , so the second
estimate follows from the first.

Let �̂� denote the pullback of L to the z-coordinate and set �̂� 𝑗 = 𝑎 𝑗
(
�̂�
)
. By Propositions 50 and 51,

we have

∠�̂�, ‖�̂�0‖−1 = 𝑒poly(𝛿𝐿 ) . (161)

Dividing by the leading term, we have an equation(
𝜕𝑛𝑧 + �̂�1

�̂�0
𝜕𝑛−1
𝑧 + · · · + �̂�𝑛

�̂�0

)
𝑓 = 𝑏/�̂�0. (162)

The claim will now follow from Lemma 48, once we establish suitable bounds for the coefficients and for
the right-hand side. These bounds follow from equation (161) and Lemma 52 applied to obtain a lower
bound for �̂�0 (which has no zeros in 𝐷1/2) and an upper bound for �̂� 𝑗 (which has no poles in 𝐷1/2). �

Theorem 9 allows one to obtain a polynomial bound on the growth of solutions for equations 𝐿 𝑓 = 𝑏,
assuming b has polynomial growth. To see this, consider a fixed 𝑡0 ∈ C and an arbitrary 𝑡1 ∈ C, say of
distance 𝛿 to Σ. Connect 𝑡0 to 𝑡1 by a sequence of 𝑂 (log 𝛿) discs 𝐷𝑖 with 𝐷1/2

𝑖 ⊂ C \ Σ, such that the
sequence of radii 𝑟𝑖 satisfies, for example, 1/2 < 𝑟𝑖/𝑟𝑖+1 < 2. It is a simple exercise in plane geometry
to check that this can always be achieved. Then applying Theorem 9 consecutively for the discs 𝐷𝑖 and
assuming b is bounded by poly(1/𝛿) throughout gives an estimate on the branch of f at 𝑡1 obtained by
analytic continuation along the 𝐷𝑖 , namely

𝑓 (𝑡1) = poly𝐿 (1/𝛿)
�� 𝑗𝑛𝑡 𝑓 (𝑡0)�� . (163)

Here one should use the statement in the natural coordinate z, noting that by our assumption on the radii
the distortion in jets when switching from coordinate 𝑧𝑖 to 𝑧𝑖+1 is bounded by 2𝑛 at each step. If one
uses the statement with the t-coordinate, then one gets the slightly larger 𝛿𝑂 (log 𝛿) term (which is still
suitable for our purposes in this paper).

Remark 53. The geometric requirements on the chains of discs 𝐷𝑖 are not arbitrary; they represent an
actual obstruction. For instance, consider the function

𝑓 (𝑥) =
√
𝜀2 + 𝑥2 + 𝑥. (164)
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As an algebraic function, this satisfies a Fuchsian equation 𝐿𝜀 𝑓 = 0 with singularities at {𝜀,−𝜀,∞}.
For 𝜀 � 1, one branch of this function becomes uniformly small while the other tends uniformly to 2𝑥.
On the other hand, the slope of the operators 𝐿𝜀 is uniformly bounded as a function of 𝜀, for instance
by the results of [14] (or by direct computation for this simple case). However, to analytically continue
from one of these branches to the other, one must at some point pass between −𝜀 and 𝜀. To do this, some
of the discs 𝐷𝑖 would have to be of size 𝑂 (𝜀), and this explains why one cannot obtain an estimate for
one branch in terms of the other branch which is uniform in 𝜀.
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