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Abstract Let Fq be the finite field of q elements. An analogue of the regular continued fraction expansion
for an element α in the field of formal Laurent series over Fq is given uniquely by

α = A0(α) +
1

A1(α) +
1

A2(α) +
. . .

,

where (An(α))∞n=0 is a sequence of polynomials with coefficients in Fq such that deg(An(α)) � 1 for all

n � 1. In this paper, we provide quantitative versions of metrical results regarding averages of partial
quotients. A sample result we prove is that, given any ε > 0, we have

|A1(α) · · ·AN (α)|1/N = qq/(q−1) + o(N−1/2(log N)3/2+ε)

for almost everywhere α with respect to Haar measure.
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1. Introduction

Let Fq denote the finite field of q elements, where q is a power of a prime p. If Z is
an indeterminate, we denote by Fq[Z] and Fq(Z) the ring of polynomials in Z with
coefficients in Fq and the quotient field of Fq[Z], respectively. For each P,Q ∈ Fq[Z] with
Q �= 0, define |P/Q| = qdeg(P )−deg(Q) and |0| = 0. The field Fq((Z−1)) of formal Laurent
series is the completion of Fq(Z) with respect to the valuation | · |. That is,

Fq((Z−1)) = {anZn + an−1Z
n−1 + · · · + a0 + a−1Z

−1 + · · · : n ∈ Z, ai ∈ Fq}
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and we have |anZn + an−1Z
n−1 + · · · | = qn (an �= 0) and |0| = 0, where q is defined on

the previous page. It is worth keeping in mind that | · | is a non-Archimedean norm, since
|α + β| � max(|α|, |β|). In fact, Fq((Z−1)) is a non-Archimedean local field of positive
characteristic p. As a result, up to a positive multiplicative constant, there exists a unique
countably additive Haar measure μ on the Borel subsets of Fq((Z−1)). In [10, pp. 65–70],
Sprindžuk gives a characterization of Haar measure on Fq((Z−1)) by its value on the
balls B(α; qn) = {β ∈ Fq((Z−1)) : |α − β| < qn}. Indeed, it is shown that the equation
μ(B(α; qn)) = qn completely characterizes Haar measure.

As in the classical context of real numbers, we have a continued fraction algorithm in
Fq((Z−1)). Note that, in the case of the field of formal Laurent series, the roles of Z,
Q and R in the classical theory of continued fractions are played by Fq[Z], Fq(Z) and
Fq((Z−1)), respectively. For each α ∈ Fq((Z−1)), we can write

α = A0 +
1

A1 +
1

A2 +
.. .

= [A0;A1, A2, . . . ],

where (An)∞n=0 is a sequence of polynomials in Fq[Z] with |An| > 1 for all n � 1. Here
the sequence (An)n≥0 is uniquely determined by α for α not in Fq(Z). Note that, in
the context of continued fractions, we shall often deal with the set Fq[Z]∗ = {A ∈ Fq[Z] :
|A| > 1}. As in the classical theory, we define recursively the two sequences of polynomials
(Pn)∞n=0 and (Qn)∞n=0 by

Pn = AnPn−1 + Pn−2 and Qn = AnQn−1 + Qn−2,

with the initial conditions P0 = A0, Q0 = 1, P1 = A1A0 + 1 and Q1 = A1. Then we have
QnPn−1 − PnQn−1 = (−1)n, and whence Pn and Qn are coprime. In addition, we have
Pn/Qn = [A0;A1, . . . , An]. For a general reference on this subject, the reader should
consult [6,9].

The Gauss map, or the continued fraction map, T on the unit ball B(0; 1) = {a−1Z
−1 +

a−2Z
−2 + · · · : ai ∈ Fq} is defined by

Tα =
{

1
α

}
and T0 = 0,

where {anZn + · · · + a0 + a−1Z
−1 + · · · } = a−1Z

−1 + a−2Z
−2 + · · · denotes its frac-

tional part. We note that if α = [0;A1(α), A2(α), . . . ], then we have,

Tnα = [0;An+1(α), An+2(α), . . . ] and Am(Tnα) = An+m(α)

for all m � 1 and n � 0. It was proved in [7] that the map T is measure-preserving and
exact with respect to Haar measure μ. This fact of exactness implies all order of mixing
properties and in particular ergodicity. It was shown by Niederreiter [8] that T in fact
has a natural extension that is Bernoulli. Of course this implies the exactness of T . See
[7,8] respectively for the statement of the exactness and Bernoulli properties.

In this setting, Houndonougbo [4] and Berthé and Nakada [1] were able to establish,
by using Birkhoff’s ergodic theorem, some qualitative metrical results on the averages of
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partial quotients of continued fraction expansions. For instance, they proved the positive
characteristic analogue of Khinchin’s famous result that

lim
N→∞

|A1(α) · · ·AN (α)|1/N = qq/(q−1) (1.1)

for almost everywhere α ∈ B(0; 1) with respect to Haar measure.
In this paper, we investigate quantitative versions of metrical results regarding ergodic

averages. In particular we find the error term in (1.1) as a function of N. In other words,
we shall see how the geometric means of |An(α)| (n = 1, . . . , N) deviates from the positive
characteristic Khinchin’s constant qq/(q−1) for almost everywhere α. This is an extension
of work of de Vroedt [2] to the field of formal Laurent series.

To deal with the error terms, we need some notation to describe asymptoticity. Given
two real functions f1 and f2 and a positive function g defined on N, we write f1 =
f2 + O(g) if |f1 − f2| < cg for some positive constant c, and we write f1 = f2 + o(g) if
limN→∞(f1(N) − f2(N))/g(N) = 0.

We now summarize the contents of this paper. In § 2, we state several quantitative
metrical results on the behaviour of averages of partial quotients of continued fraction
expansions in positive characteristic. In § 3, we describe Gál and Koksma’s method for
determining the error term of ergodic averages, and we give some lemmas necessary for
proving the quantitative metrical theorems of continued fractions. In § 4, we give the
proofs of all the statements that appear in § 2.

2. Quantitative metrical theorems

The proofs of the following statements will be given in § 4. We start with the first two
general theorems for calculating the quantitative ergodic averages.

Theorem 1. Suppose that F : R�0 → R is a function such that

∫
B(0;1)

|F (|A1(x)|)|2 dμ(x) < ∞.

Then, given any ε > 0, we have

1
N

N∑
n=1

F (|A1(Tnα)|) =
∫

B(0;1)

F (|A1(x)|) dμ(x) + o(N−1/2(log N)3/2+ε)

for almost everywhere α ∈ B(0; 1) with respect to Haar measure.

Theorem 2. Suppose that H : Nm → R is a function such that

∫
B(0;1)

|H(|A1(x)|, |A2(x)|, . . . , |Am(x)|)|2 dμ(x) < ∞.
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Then, given any ε > 0, we have

1
N

N∑
n=1

H(|A1(Tnα)|, |A2(Tnα)|, . . . , |Am(Tnα)|)

=
∑

(i1,...,im)∈Nm

H(qi1 , . . . , qim)
(

(q − 1)m

qi1+···+im

)
+ o(N−1/2(log N)3/2+ε)

for almost everywhere α ∈ B(0; 1) with respect to Haar measure.

Theorems 1 and 2 are general results for calculating means. Specializing for instance to
the case F (x) = logq x, we establish the quantitative version of the positive characteristic
Khinchin’s constant

|A1(α) · · ·AN (α)|1/N = qq/(q−1) + o(N−1/2(log N)3/2+ε)

for almost everywhere α ∈ B(0; 1) with respect to Haar measure, [2,6]. Results for means
other than the geometric mean can be obtained by making different choices of F and H,
see [5, pp. 230–232] for more details.

The following three theorems can be viewed as corollaries of Theorem 1. We note that
they should be compared with Theorems 12–14 of [7] as they sharpen those results when
(aj)∞j=1 is considered as the sequence of natural numbers in the literature.

Theorem 3. Given any ε > 0, we have

1
N

N∑
n=1

deg(An(α)) =
q

q − 1
+ o(N−1/2(log N)3/2+ε)

for almost everywhere α ∈ B(0; 1) with respect to Haar measure.

Theorem 4. Given any A ∈ Fq[Z]∗ and ε > 0, we have

1
N

· #{1 � n � N : An(α) = A} = |A|−2 + o(N−1/2(log N)3/2+ε)

for almost everywhere α ∈ B(0; 1) with respect to Haar measure.

Theorem 5. Let k < l be two natural numbers. Given any ε > 0, we have

1
N

· #{1 � n � N : deg(An(α)) = l} =
q − 1

ql
+ o(N−1/2(log N)3/2+ε),

1
N

· #{1 � n � N : deg(An(α)) � l} =
1

ql−1
+ o(N−1/2(log N)3/2+ε),

1
N

· #{1 � n � N : k � deg(An(α)) < l} =
1

qk−1

(
1 − 1

ql−k

)
+ o(N−1/2(log N)3/2+ε)

for almost everywhere α ∈ B(0; 1) with respect to Haar measure.
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3. Lemmas

In this section, we collect some results that are necessary for establishing the quantitative
metric theory of continued fractions in positive characteristic.

To begin with, we introduce Gál and Koksma’s method for determining the error term
of ergodic averages. The following lemma appears in [3] in slightly different language.

Lemma 6 ([3, Théorème 3]). Let S be a measurable set. For any non-negative
integers M and N, let ϕ(M,N ;x) � 0 be a function defined on S such that

(i) ϕ(M, 0;x) = 0 for all M � 0;

(ii) ϕ(M,N ;x) � ϕ(M,N ′;x) + ϕ(M + N ′, N − N ′;x) for all M,N � 0 and 0 �
N ′ � N.

Suppose that, for all M � 0,

∫
S

ϕ(M,N ;x)p dx = O(φ(N)),

where φ(N)/N is a non-decreasing function. Then, given any ε > 0, we have

ϕ(0, N ;x) = o(φ(N)1/p(log N)1+1/p+ε)

for almost everywhere x ∈ S.

Before proceeding, we give the following two remarks on Lemma 6. First, Gál and
Koksma stated their results in the setting where the set S is a measurable subset of a
Euclidean space. None of the proofs however in [3] depend on the Euclidean setting. In
fact, their result is true more generally. We are interested in the case where S = B(0; 1),
for which the result is also true. Second, the function ϕ can be viewed as a generalization
of the difference of two functions in a sequence:

ϕ(M,N ;x) = |ϕM+N (x) − ϕM (x)|,

where property (ii) is just a generalization of the triangle inequality

|ϕM+N (x) − ϕM (x)| � |ϕM+N ′(x) − ϕM (x)| + |ϕM+N (x) − ϕM+N ′(x)|.

Particularly, we focus on the case where ϕN (x) =
∑N

n=1 Fn(x) and where (Fn)∞n=1 is a
sequence of functions defined on S; that is,

ϕ(M,N ;x) =
M+N∑

n=M+1

Fn(x).

Next, we introduce the notion of a cylinder in positive characteristic and its fundamen-
tal properties. Recall that Fq[Z]∗ = {A ∈ Fq[Z] : |A| > 1}. Let n be a natural number, and
let A1, . . . , An ∈ Fq[Z]∗. The cylinder ΔA1,...,An

of length n is defined to be the set of all
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points in B(0; 1) whose continued fraction expansions are of the form [0;A1, . . . , An, . . . ].
That is,

ΔA1,...,An
= {[0;A1, . . . , An−1, An + β] : β ∈ B(0; 1)}.

We now show how a cylinder can be seen as a ball. This is crucial for calculating the
measure of each cylinder.

Lemma 7 ([7, Lemma 2]). For all n ∈ N and A1, . . . , An ∈ Fq[Z]∗, we have

ΔA1,...,An
= B([0;A1, . . . , An]; |A1 · · ·An|−2).

From Lemma 7, it follows immediately that μ(ΔA1,...,An
) = |A1 · · ·An|−2. We note also

that two cylinders ΔA1,...,An
and ΔB1,...,Bn

are disjoint if and only if Aj �= Bj for some
1 � j � n.

The notion of a cylinder is an effective tool because of the following fact. Let A denote
the algebra of finite unions of cylinders. Then A generates the Borel σ-algebra of the
dynamical system (B(0; 1),B, μ, T ). This follows from the fact that the cylinders are
clearly Borel sets themselves and that they separate points, that is, if α �= β, then there
exist disjoint cylinders Δ1 and Δ2 such that α ∈ Δ1 and β ∈ Δ2.

Our final lemma will be useful when we would like to change variables in an integration.
This result follows immediately from the fact that the map T is measure-preserving, [7,
Lemma 3].

Lemma 8. For all n ∈ N, we have dμ(T−nx) = dμ(x).

4. Proofs

Proof of Theorem 1. Consider Lemma 6 with S = B(0; 1),

ϕ(M,N ;α) =
∣∣∣∣

M+N∑
n=M+1

(
F (|A1(Tnα)|) −

∫
B(0;1)

F (|A1(x)|) dμ(x)
)∣∣∣∣,

φ(N) = N and p = 2. First we check that this function ϕ satisfies the hypotheses (i) and
(ii) of Lemma 6. It is clear by the notation of summation that, for all M � 0, we have

ϕ(M, 0;α) =
∣∣∣∣

M∑
n=M+1

(
F (|A1(Tnα)|) −

∫
B(0;1)

F (|A1(x)|) dμ(x)
)∣∣∣∣ = 0.

Moreover, by the triangle inequality, we have

ϕ(M,N ;α) =
∣∣∣∣

M+N∑
n=M+1

(
F (|A1(Tnα)|) −

∫
B(0;1)

F (|A1(x)|) dμ(x)
)∣∣∣∣

�
∣∣∣∣

M+N ′∑
n=M+1

(
F (|A1(Tnα)|) −

∫
B(0;1)

F (|A1(x)|) dμ(x)
)∣∣∣∣
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+
∣∣∣∣

M+N∑
n=M+N ′+1

(
F (|A1(Tnα)|) −

∫
B(0;1)

F (|A1(x)|) dμ(x)
)∣∣∣∣

= ϕ(M,N ′;α) + ϕ(M + N ′, N − N ′;α)

for all M,N � 0 and 0 � N ′ � N.
Now the proof is reduced to showing that, for any pair of integers M � 0 and N � 1,

we have

I =
∫

B(0;1)

∣∣∣∣
M+N∑

n=M+1

(
F (|A1(Tnα)|) −

∫
B(0;1)

F (|A1(x)|) dμ(x)
)∣∣∣∣

2

dμ(α) � KN,

where K is a constant depending only on F (x).
Put

P1 =
∫

B(0;1)

F (|A1(x)|) dμ(x) and P2 =
∫

B(0;1)

F (|A1(x)|)2 dμ(x).

To calculate P1 and P2, we note that B(0; 1) can be partitioned into a disjoint union of
cylinders of length one. Indeed, we have

B(0; 1) =
∞⋃

n=1

⋃
A∈Fq[Z]∗

|A|=qn

ΔA. (4.1)

We also know that there are distinct (q − 1)qn cylinders ΔA with |A| = qn and whose
measures are μ(ΔA) = q−2n. It now follows that

P1 =
∞∑

n=1

∑
A∈Fq[Z]∗

|A|=qn

∫
ΔA

F (|A1(x)|) dμ(x) =
∞∑

n=1

q − 1
qn

F (qn) = (q − 1)
∞∑

n=1

F (qn)
qn

; (4.2)

and

P2 =
∞∑

n=1

∑
A∈Fq[Z]∗

|A|=qn

∫
ΔA

F (|A1(x)|)2 dμ(x) = (q − 1)
∞∑

n=1

F (qn)2

qn
. (4.3)

Working out I =
∫

B(0;1)
(
∑M+N

n=M+1(F (|A1(Tnα)|) − P1))2 dμ(α), we get

I =
M+N∑

n=M+1

∫
B(0;1)

(F (|A1(Tnα)|) − P1)2 dμ(α)

+ 2
M+N−1∑
n=M+1

M+N∑
m=M+2

m>n

∫
B(0;1)

(F (|A1(Tnα)|) − P1)(F (|A1(Tmα)|) − P1) dμ(α). (4.4)
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By Lemma 8, we can use the change of variables formula to obtain

M+N∑
n=M+1

∫
B(0;1)

(F (|A1(Tnα)|) − P1)2 dμ(α)

=
M+N∑

n=M+1

(∫
B(0;1)

F (|A1(Tnα)|)2 dμ(α) − 2P1

∫
B(0;1)

F (|A1(Tnα)|) dμ(α) + P 2
1

)

=
M+N∑

n=M+1

(∫
B(0;1)

F (|A1(α)|)2 dμ(T−nα)

− 2P1

∫
B(0;1)

F (|A1(α)|) dμ(T−nα) + P 2
1

)

=
M+N∑

n=M+1

(∫
B(0;1)

F (|A1(α)|)2 dμ(α) − 2P1

∫
B(0;1)

F (|A1(α)|) dμ(α) + P 2
1

)

=
M+N∑

n=M+1

(P2 − 2P 2
1 + P 2

1 ) = N(P2 − P 2
1 ) (4.5)

and

M+N−1∑
n=M+1

M+N∑
m=M+2

m>n

∫
B(0;1)

(F (|A1(Tnα)|) − P1)(F (|A1(Tmα)|) − P1) dμ(α)

=
M+N−1∑
n=M+1

M+N∑
m=M+2

m>n

(∫
B(0;1)

F (|A1(Tnα)|)F (|A1(Tmα)|) dμ(α)

− P1

∫
B(0;1)

F (|A1(Tnα)|) dμ(α)

− P1

∫
B(0;1)

F (|A1(Tmα)|) dμ(α) + P 2
1

)

=
M+N−1∑
n=M+1

M+N∑
m=M+2

m>n

(∫
B(0;1)

F (|A1(α)|)F (|A1(Tm−nα)|) dμ(α) − P 2
1

)

=
N−1∑
n=1

(N − n)
( ∫

B(0;1)

F (|A1(α)|)F (|A1(Tnα)|) dμ(α) − P 2
1

)
. (4.6)

Combining (4.4)–(4.6), we now have

I = N(P2 − P 2
1 ) + 2

N−1∑
n=1

(N − n)
( ∫

B(0;1)

F (|A1(α)|)F (|A1(Tnα)|) dμ(α) − P 2
1

)
. (4.7)
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We can calculate
∫

B(0;1)
F (|A1(α)|)F (|A1(Tnα)|) dμ(α) explicitly as follows

∫
B(0;1)

F (|A1(α)|)F (|A1(Tnα)|) dμ(α)

=
∑

A2,...,An∈Fq[Z]∗
|A2 · · ·An|−2

( ∞∑
i=1

(
q − 1

qi

)
F (qi)

)( ∞∑
j=1

(
q − 1
qj

)
F (qj)

)

= (q − 1)2
( ∞∑

i=1

F (qi)
qi

)( ∞∑
j=1

F (qj)
qj

)
. (4.8)

By (4.2) and (4.8), we see that
∫

B(0;1)
F (|A1(α)|)F (|A1(Tnα)|) dμ(α) = P 2

1 . Therefore,
by (4.7), we arrive at the hypothesis of Lemma 6 that I = O(N), and this completes the
proof of Theorem 1. �

Proof of Theorem 2. The proof is similar to that of Theorem 1, so we shall give
only an outline. First of all, we apply Lemma 6 with S = B(0; 1),

ϕ(M,N ;α) =
∣∣∣∣

M+N∑
n=M+1

(
H(|A1(Tnα)|, . . . , |Am(Tnα)|)

−
∑

(i1,...,im)∈Nm

H(qi1 , . . . , qim)
(

(q − 1)m

qi1+···+im

))∣∣∣∣,

φ(N) = N and p = 2. Next, by using the same idea of partition as in (4.1), we can
calculate

∫
B(0;1)

H(|A1(α)|, . . . , |Am(α)|) dμ(α) =
∑

(i1,...,im)∈Nm

H(qi1 , . . . , qim)
(

(q − 1)m

qi1+···+im

)
.

Finally, if we put P =
∫

B(0;1)
H(|A1(α)|, . . . , |Am(α)|) dμ(α), then

∫
B(0;1)

H(|A1(α)|, . . . , |Am(α)|)H(|A1(Tnα)|, . . . , |Am(Tnα)|) dμ(α) = P 2.

These observations lead to Theorem 2. �

To prove Theorems 3–5, we recall the following two elementary identities∑∞
n=1 nxn = x

(1−x)2 and
∑∞

n=1 n2xn = x(1+x)
(1−x)3 for |x| < 1. We focus on the case when

x = q−1.
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Proof of Theorem 3. In view of Theorem 1, consider F (x) = logq x. By (4.2) and
(4.3), we have

∫
B(0;1)

logq(|A1(α)|) dμ(α) = (q − 1)
∞∑

n=1

n

qn
=

q

q − 1
;

∫
B(0;1)

(logq(|A1(α)|))2 dμ(α) = (q − 1)
∞∑

n=1

n2

qn
=

q(q + 1)
(q − 1)2

.

This completes the proof of Theorem 3. �

Proof of Theorem 4. Apply Theorem 1 with F (x) = 1
(q−1)|A|χ{|A|}(x), where χE(x)

is the characteristic function of a set E. The reason that we use this function is to observe
that F (|A1(α)|) = χ{A}(A1(α)) for almost everywhere α ∈ B(0; 1) with respect to Haar
measure. In other words, we have

1
N

N∑
n=1

χ{A}(A1(Tn−1α)) =
1
N

N∑
n=1

1
(q − 1)|A|χ{|A|}(|A1(Tn−1α)|)

for almost everywhere α ∈ B(0; 1) with respect to Haar measure.
By (4.2) and (4.3), we have

∫
B(0;1)

1
(q − 1)|A|χ{|A|}(|A1(α)|) dμ(α) =

(
q − 1
|A|

)(
1

(q − 1)|A|
)

= |A|−2;

∫
B(0;1)

(
1

(q − 1)|A|χ{|A|}(|A1(α)|)
)2

dμ(α) =
(

q − 1
|A|

)(
1

(q − 1)|A|
)2

=
|A|−3

(q − 1)
.

This completes the proof of Theorem 4. �

Proof of Theorem 5. In view of Theorem 1, we consider F1(x) = χ{ql}(x), F2(x) =
χ[ql,∞)(x) and F3(x) = χ[qk,ql)(x), respectively. By (4.2) and (4.3), we have

∫
B(0;1)

χ{ql}(|A1(α)|) dμ(α) =
q − 1

ql
;

∫
B(0;1)

(χ{ql}(|A1(α)|))2 dμ(α) =
q − 1

ql
;

∫
B(0;1)

χ[ql,∞)(|A1(α)|) dμ(α) = (q − 1)
∞∑

n=l

1
qn

=
1

ql−1
;

∫
B(0;1)

(χ[ql,∞)(|A1(α)|))2 dμ(α) = (q − 1)
∞∑

n=l

1
qn

=
1

ql−1
;
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∫
B(0;1)

χ[qk,ql)(|A1(α)|) dμ(α) = (q − 1)
l−1∑
n=k

1
qn

=
1

qk−1

(
1 − 1

ql−k

)
;

∫
B(0;1)

(χ[qk,ql)(|A1(α)|))2 dμ(α) = (q − 1)
l−1∑
n=k

1
qn

=
1

qk−1

(
1 − 1

ql−k

)
.

This completes the proof of Theorem 5. �
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