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Approximation and Similarity Classification
of Stably Finitely Strongly Irreducible
Decomposable Operators

He Hua, Dong Yunbai, Guo Xianzhou

Abstract. Let H be a complex separable Hilbert space and L(H) denote the collection of bounded

linear operators on H. In this paper, we show that for any operator A ∈ L(H), there exists a stably

finitely (SI) decomposable operator Aǫ, such that ‖A−Aǫ‖ < ǫ and A′(Aǫ)/ rad A′(Aǫ) is commuta-

tive, where rad A′(Aǫ) is the Jacobson radical of A′(Aǫ). Moreover, we give a similarity classification

of the stably finitely decomposable operators that generalizes the result on similarity classification of

Cowen–Douglas operators given by C. L. Jiang.

1 Introduction

Let H be a complex separable Hilbert space and L(H) denote the collection of bound

linear operators on H. An operator T in L(H) is said to be strongly irreducible if

A ′(T) (the commutant algebra of T) has no non-trivial idempotent. In what follows,

T ∈ (SI) means T is a strongly irreducible operator.

In matrix algebra, transforming a matrix into a Jordan standard form is really

situated at the centre in the theory of linear transformation. It is also a prototype

in the spectral theory of bounded linear operators on infinite dimensional space.

The famous Jordan standard form theorem states that every n × n matrix can be

written uniquely as the finite direct sum of Jordan blocks up to similarity. Zejian

Jiang conjectured that the finite direct sums of strongly irreducible operators should

be dense in L(H) [12]. This conjecture has been proved by Jiang [7] and Herrero

and Jiang [6]. So (SI) operators are a suitable analogue of Jordan blocks in L(H).

The similarity classification of operators is a basic problem in operator theory.

When H is a finite dimensional Hilbert space, we know from the Jordan standard

form theorem that the eigenvalues and the generalized eigenspaces of an operator

form a complete set of similarity invariants. When H is an infinite-dimensional

Hilbert space, in a real sense the problem has no general solution, but one can re-

strict attention to special classes of operators. For two star-cyclic normal operators

A and B, Conway showed that A and B are similar if and only if the scalar-valued

spectral measures induced by A and B are equivalent [3]. Shields characterized sim-

ilarity for injective weighted shift operators [14]. Herrero and Jiang proved that the
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operator class F = {T : T can be written as the direct sum of finite (SI) operators}
is dense in L(H) under the norm topology. Therefore, it is an interesting problem to

find the complete similarity invariants of F.

Cowen and Douglas introduced a class of operators related to complex geometry,

now referred to as Cowen–Douglas operators [5]. The Cowen–Douglas operators

play an important role in studying the structure of non-self-adjoint operators.

Definition 1.1 Let Ω be a bounded open set in C , and n a positive integer. The

set Bn(Ω) of Cowen–Douglas operators of index n is the set of operators B in L(H)

satisfying

(i) Ω ⊂ σ(B) = {z ∈ C | B − z is not invertible};

(ii) ran(B − z) = H, z ∈ Ω;

(iii)
∨

z∈Ω
ker(B − z) = H;

(iv) dim ker(B − z) = n, z ∈ Ω.

In this paper, we will need the case of n = ∞.

Jiang and Wang [10] proved that every Cowen–Douglas operator can be written

as the direct sum of finitely many strongly irreducible Cowen–Douglas operators.

It was shown that two operators S and T in Bn(Ω) are unitarily equivalent if and

only if the corresponding Hermitian bounds ES and ET are equivalent [5]. As a con-

sequence of this, it was shown that the curvature function of ET is a complete set

of unitary invariants for operators T in B1(Ω). However the curvature function of

ET is not a complete set of similarity invariants of Cowen–Douglas operators. Using

techniques of complex geometry and K-theory, Jiang proved that the scaled ordered

K0-group of the commutant algebra is a similarity invariant of a strongly irreducible

Cowen–Douglas operator [8].

Recently, Jiang, Guo, and Ji generalized the above result by removing the restric-

tion of strong irreducibility of operators, and proved that the ordered K0-group of

the commutant algebra is a complete similarity invariant of Cowen–Douglas opera-

tors [9].

In this paper, we focus on studying the operators with stably finite strongly irre-

ducible decomposable operators.

Definition 1.2 Let T ∈ L(H), P = {Pi}
n
i=1 and Q = {Qi}

m
i=1 be two units of

finite (SI) decompositions of T. Then P and Q are said to be equivalent if following

conditions are satisfied:

(i) m = n;

(ii) There is an invertible operator X ∈ A′(T) and a permutation Π ∈ Sn such that

XQΠ(i)X
−1

= Pi for 1 ≤ i ≤ n.

We say that T has unique finitely (SI) decomposition up to similarity if all units of

finite (SI) decompositions of T are equivalent. We say that T is a stably finite strongly

irreducible decomposable operator if T(n) has unique finitely (SI) decomposition up

to similarity for all n = 1, 2, 3, . . . .

By Theorem CFJ [2], we know that the K0-group of the commutant algebra of a
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stably finite strongly irreducible decomposable operator is isomorphic to the direct

sum of several integer groups. We let F1 denote the class of all stably finite strongly ir-

reducible decomposable operators. By [9], F1 contains all Cowen-Douglas operators.

In [2], the following theorem was proved.

Theorem CFJ Let T∈L(H), H(n) denote the direct sum of n copies of Hilbert space

H, and T(n) is the operator
⊕n

1 T on H(n). Then following are equivalent:

(i) T ∈ F1 is similar to (∼)
⊕k

i=1 A(ni )
i respect to the decomposition H =

⊕k
i=1 H

(ni )
i ,

where k, ni < ∞, A1, . . . , Ak are all strongly irreducible operators, and Ai 6∼A j for

1≤i 6= j≤k.

(ii) K0(A ′(T)) ∼= Z(k) and V (A ′(T)) ∼= N(k). Then h denotes the isomorphism from

V (A ′(T)) to N(k); h sends [I] to (n1, n2, . . . , nk), i.e., h([I]) = n1e1 + n2e2 + · · ·+
nkek, where N = (0, 1, 2, 3, . . . ), k, n1, . . . , nk are natural numbers, {ei}

k
i=1 are

generators of N(k).

By techniques of the theory of operator approximation and K-theory, we prove

that F1 is dense in L(H) in the norm topology. Moreover, we get the similarity clas-

sification of stably finite (SI) decomposable operators following the similarity classi-

fication of Cowen–Douglas operators by Jiang. We prove the following.

Theorem 3.9 Let A ∈ L(H) and ǫ > 0. Then there exists a stably finite strongly

irreducible decomposable operator Aǫ such that

(i) ‖A − Aǫ‖ < ǫ;

(ii) A ′(Aǫ)/ rad A ′(Aǫ) is commutative;

(iii) V (A ′(Aε)) ∼= Nkǫ , K0(A ′(Aε)) ∼= Zkǫ .

Corollary 3.12 Let A, B ∈ L(H), such that A, B both have unique stably finite (SI)

decomposition up to similarity. Assume A = A(n1)
1 ⊕A(n2)

2 ⊕· · ·⊕A(nk)
k , where 0 6= ni ∈

N, Ai ∈ (SI), i = 1, 2, . . . , k, and Ai 6∼ A j , when Ai 6∼ A j . Then A ∼ B if and only if

(i)
(

K0(A ′(A ⊕ B)),
∨

(A ′(A ⊕ B)), I
)
∼= (Z(k), N(k), 1).

(ii) The isomorphism h from
∨

(A ′(A ⊕ B)) to N(k) sends [I] to (2n1, 2n2, . . . , 2nk),

i.e., h([I]) = 2n1e1 + 2n2e2 + · · · + 2nkek, where I is the unit of A′(A ⊕ B) and

{ei}
k
i=1 are the generators of N(k).

This paper is organized as follows. In Section 2, we introduce some basic tools and

concepts. In Section 3, we prove the main result of this paper and give a similarity

classification of the stably finitely strongly irreducible decomposable operators.

2 Preliminary Results

To express our results more carefully we need to introduce the following definitions,

notations and theorems.

For a unital Banach algebra A, rad A denotes the Jacobson radical of A.

Lemma 2.1 ([1]) Let A is a unital Banach algebra. Then the following are equivalent:

(i) A/ rad(A) is commutative,
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(ii) σ(xy − yx) = {0} for every x, y ∈ A.

Lemma 2.2 ([1]) Let A, B ∈ L(H). Then the following are equivalent for τAB:

(i) τAB is surjective;

(ii) σr(A) ∩ σl(B) = ∅;

(iii) ran τAB contains the set of finite rank operators.

Lemma 2.3 ([10]) Let H1 and H2 be two Hilbert spaces, A ∈ L(H)1, B ∈ L(H)2,

and assume that σl(A) ∩ σr(B) = ∅. Then τAB is injective.

Lemma 2.4 ([10]) Let A, B ∈ L(H). Assume that

H =
∨
{ker(λ − B)k : λ ∈ Γ, k ≥ 1}

for a certain subset Γ of the point spectrum σp(B) of B, and σp(A) ∩ Γ = ∅. Then τAB

is injective.

Lemma 2.5 ([11]) Let A be a unital Banach algebra and let P be an idempotent in A

and R ∈ rad A. If P + R ∈ A is still an idempotent in A, then there exists an invertible

element X ∈ A such that X(P + R)X−1
= P.

Lemma 2.6 ([10]) Let Ω be a connected and bounded open subset of C, n a natural

number, and T ∈ L(H) satisfy

(a) Ω ⊂ σ(T);

(b) ran(λ − T) = H and nul(λ − T) = n for all λ ∈ Ω.

Then the following are equivalent

(i)
∨
{ker(λ − T) : λ ∈ Ω} = H;

(ii)
∨
{ker(λ0 − T)n : n ≥ 1} = H, ∀λ0 ∈ Ω;

(iii)
∨
{ker(λn − T) : n ≥ 1} = H for all sequences {λn}

∞

n=1 ⊂ Ω such that

limn→∞ λn = λ0 ∈ Ω;

(iv)
∨
{ker(λn − T) : n ≥ 1 k ≥ 1} = H for all sequences {λn}

∞

n=1 ⊂ Ω such that

limn→∞ λn = λ0 ∈ Ω;

Lemma 2.7 ([8]) Let A ∈ Bn(Ω) ∩ (SI), then A′(A)/ rad A ′(A) is commutative.

Lemma 2.8 ([9]) Let T ∈ Bn(Ω). Then we know that T ∼ A(n1)
1 ⊕ A(n2)

2 ⊕ · · · ⊕

A(nk)
k , where Ai is a strongly irreducible Cowen–Douglas operator and Ai is not similarly

equivalent to A j for i 6= j. Then

∨
(A ′)(T) ∼= N(k), K0((A ′)(T)) ∼= Z(k).

Lemma 2.9 ([13]) If λ ∈ ∂σ(A) and λ is not an isolated point of σ(A), then λ ∈
σlre(A).

Definition 2.10 Let T be a semi-Fredholm operator. Then the minimal index of T

is defined by min ind T = min{dim ker T, nul dim ker T∗}.
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Lemma 2.11 ([4]) Let λ be an isolated point of σ(A). Then the following are equiva-

lent:

(i) λ /∈ σlre(A);

(ii) Riesz idempotent E(λ, A) has finite rank;

(iii) A − λ is a Fredholm operator and ind(A − λ) = 0.

We let σ0(A) denote the set of all isolated points satisfying the above conditions.

Theorem 2.12 ([10]) Let T ∈ L(H), ε > 0 and let Φ be an analytic Cauchy domain

satisfying σlre(T) ⊂ Φ ⊂ [σlre(T)]ε. Then there exists a Tε ∈ L(H) such that

(i) σlre(Tε) = Φ̄;

(ii) ρr
s−F(Tε) = ρs−F(Tǫ)\σ0(Tε), ind(λ−Tε) = ind(λ−T) and min ind(λ−Tε)k ≤

min ind(λ − T)k for all λ ∈ ρs−F(Tε) and k = 1, 2, . . . ;

(iii) σ(Tε) consists of finitely many connected components; the number of connected

components is less than or equal to the number of connected components of σ(T);

(iv) ‖T − Tε‖ < ε.

Theorem 2.13 ([10]) Let A, T ∈ L(H) satisfy

(i) σ0(T) ⊂ σ0(A), dim H(λ, A) = dim H(λ, T) for all λ ∈ σ0(T);

(ii) each component of σlre(T) meets σe(A);

(iii) for all λ ∈ ρs−F(T) and k ≥ 1, ρs−F(T) ⊂ ρs−F(A), ind(λ − A) = ind(λ − T),

and min ind(λ − A)k ≤ min ind(λ − T)k;

(iv) σe(A) has no isolated points.

Then T ∈ S(A)−, where S(A) = {XAX−1 : X is invertible}, is the similarity orbit of A.

3 Approximation and Similarity Classification of Stably Finitely
Strongly Irreducible Decomposable Operators

Lemma 3.1 Given T ∈ L(H) with the representation

T =




T1 ∗ · · · ∗
0 T2 · · · ∗
...

...
. . .

...

0 0 · · · Tk




satisfying

(i) A ′(Ti)/ rad A ′(Ti) is commutative,

(ii) ker τTi T j
= {0}, (1 ≤ j < i ≤ k),

then A ′(T)/ rad A ′(T) is commutative.

Proof Let A, B ∈ A ′(T). Note that AT = TA and BT = TB, by (ii),

A =




A11 ∗ · · · ∗
0 A22 · · · ∗
...

...
. . .

...

0 0 . . . Akk


 , B =




B11 ∗ · · · ∗
0 B22 · · · ∗
...

...
. . .

...

0 0 . . . Bkk


 ,
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and Aii , Bii ∈ A ′(Ti) for all i : 1 ≤ i ≤ k. Then

AB − BA =




A11B11 − B11A11 ∗ · · · ∗
0 A22B22 − B22A22 · · · ∗
...

...
. . .

...

0 0 · · · AkkBkk − BkkAkk


 .

Note that A ′(Ti)/ rad A ′(Ti) is commutative. By Lemma 2.1, σ(AiiBii −BiiAii) =

{0}. Then

σ(AB − BA) =

k⋃
i=1

σ(AiiBii − BiiAii) = {0}.

By Lemma 2.1, A ′(T)/ rad A ′(T) is commutative.

Lemma 3.2 Let T ∈ L(H), T =
⊕k

i=1 Ti , where for each natural number n, T(n)
i ∈

H(n)
i has unique finite (SI) decomposition, and

A
′(T) =




A ′(T1) ∗ · · · ∗
0 A ′(T2) · · · ∗
...

...
. . .

...

0 0 . . . A ′(Tk)


 ,

i.e., ker τTi T j
= {0}, (1 ≤ j < i ≤ k). Then for each natural number n, T(n) has

unique finite (SI) decomposition and
∨

A ′(T) ∼=
⊕k

i=1

∨
A ′(Ti).

Proof By Theorem CFJ, we only need to prove that T(n) has unique finite (SI) de-

composition for each natural number n.

Without loss of generality, we will show Lemma 3.2 only for case of T(2),

T(2)
=




T1
(2) 0 · · · 0

0 T2
(2) · · · 0

...
...

. . .
...

0 0 . . . Tk
(2)




and

A
′(T(2)) =




A ′(T(2)
1 ) ∗ · · · ∗

0 A ′(T(2)
2 ) · · · ∗

...
...

. . .
...

0 0 . . . A ′(T(2)
k )


 .

Let {Pi}
m
i=1 and {Q j}

n
j=1 be two units of finite (SI) decompositions of T(2). Then

Pi =




Pi1 ∗ · · · ∗
0 Pi2 · · · ∗
...

...
. . .

...

0 0 · · · Pik


 .
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Let

P̃i =




Pi1 0 · · · 0

0 Pi2 · · · 0
...

...
. . .

...

0 0 · · · Pik


 .

It is easily shown that P̃i ∈ A ′(T(2)). Thus Pi − P̃i ∈ rad A ′(T(2)). By Lemma 2.5,

there exists an invertible operator Xi ∈ A ′(T(2)), such that XiPiX
−1
i = P̃i . Since Pi

is a minimal idempotent, P̃i is also a minimal idempotent. It is easy to see that there

exists a natural number ki satisfying 1 ≤ ki ≤ k and Pit = 0, when t 6= ki . Since∑k
i=1 Pi = I, we have

∑k
i=1 P̃i = I. Hence,

∑

ki=t

P̃i =




0 0

. . .

I
A ′(T(2)

t )

. . .

0 0




Ht ,

i.e., {P̃i |Ht
: ki = t} is a unit finite (SI) decomposition of T(2)

t . Let

X = X1|ran P1
+̇X2|ran P2

+̇ · · · +̇Xm|ran Pm
.

Then X ∈ A ′(T(2)), and {Pi}
m
i=1 is equivalent to {P̃i}

m
i=1 with respect to X.

Similarly, we can define {Q̃ j}
k
j=1 and k̃ j . A similar argument shows that

{Q̃ j |Ht
: k̃ j = t} is also a unit finite (SI) decomposition of T(2)

t . Note that T(2)
t has

unique finitely (SI) decomposition up to similarity. Then there exists a Yt ∈ A ′(T(2)
t ),

such that {P̃i |Ht
: ki = t} is equivalent to {Q̃ j |Ht

: k̃ j = t} with respect to Yt . Let

Y =
⊕k

t=1 Yt . Then it is easy to see that Y ∈ A ′(T(2)), and that {P̃i}
m
i=1 is equivalent

to {Q̃ j}
n
j=1 with respect to Y .

Note that {Pi}
m
i=1 is equivalent to {P̃i}

m
i=1, {Qi}

n
j=1 is equivalent to {Q̃ j}

n
j=1, and

{P̃i}
m
i=1 is equivalent to {Q̃ j}

n
j=1. Hence {Pi}

m
i=1 is equivalent to {Q j}

n
j=1, i.e., T(2)

has unique finite (SI) decomposition up to similarity.

Lemma 3.3 ([10]) Let Ω be a connected analytic Cauchy domain and let n be a nat-

ural number. Then there exists B ∈ Bn(Ω) ∩ (SI) such that σ(B) = Ω̄ and Ω =

ρF(B) ∩ σ(B).

Lemma 3.4 Let Ω be a connected analytic Cauchy domain. Then there exists B =

B1 ⊕ B2 satisfying

(i) σ(B) = σ(B1) = σ(B2) = Ω̄;

(ii) B1 ∈ B1(Ω), B∗

2 ∈ B1(Ω∗);

(iii) ρF(B) ∩ σ(B) = Ω, ind(λ − B) = 0, min ind(λ − B) = 1 for all λ ∈ Ω;

(iv) ker τB2B1
= {0} and A ′(B)/ rad A ′(B) is commutative;

https://doi.org/10.4153/CJM-2010-018-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-018-5


312 H. He, Y. Dong, X. Guo

(v)
∨

A ′(B) ∼= N(2).

Proof By Lemma 3.3, there exists B1 ∈ B1(Ω) and B∗

2 ∈ B1(Ω) such that σ(B1) = Ω̄,

ρF(B1) ∩ σ(B1) = Ω and σ(B2) = Ω̄, ρF(B2) ∩ σ(B2) = Ω. Note that

∨
{ker(λ − B) : λ ∈ Ω} = H

and σp(B2) = ∅. By Lemma 2.5, ker τB2B1 = {0}. Since A ′(Bi)/ rad A ′(Bi) is

commutative, i = 1, 2, Lemma 3.1 implies A ′(B)/ rad A ′(B) is commutative. By

Lemma 3.2,
∨

A ′(B) ∼= N(2).

Lemma 3.5 ([10]) Given B ∈ B1(Ω) and ǫ > 0, there exists a sequence {Bi}
∞

i=1 ⊂
B1(Ω) such that

(i) Bi = B + Ki , where Ki ∈ K(H), supi{‖Ki‖} < ǫ and limi→∞ ‖Ki‖ = 0;

(ii) ker τBiB j = {0} (i 6= j).

Lemma 3.6 Given B ∈ B1(Ω), let B∞

i=1 be given as in Lemma 3.5 and

T =




B1 C2 C3 · · ·
0 B2 0 · · ·
0 0 B3 · · ·
...

...
...

. . .


 ,

where C j ∈ K(H), C j /∈ ran τB1B j
. Then

(i) T ∈ B∞(Ω) ∩ (SI);

(ii) σ(T) = σ(B);

(iii) A ′(T)/ rad A ′(T) is commutative;

(iv)
∨

A ′(T) ∼= N.

Proof The proofs of (i) and (ii) are omitted; the reader is referred to [10]. Lemma 3.1

and Lemma 3.5 imply (iii). For (iv), by Theorem CFJ, we only need to prove for each

natural number n, that T(n) has unique finite (SI) decomposition up to similarity.

We consider T(n) with the representation

T(n)
=




B(n)
1 C(n)

2 C(n)
3 · · ·

0 B(n)
2 0 · · ·

0 0 B(n)
3 · · ·

...
...

...
. . .


 ,

Let P ∈ A ′(T) be the corresponding representation of T(n). Then we have

P =




P1 P12 P13 · · ·
P21 P2 P23 · · ·
P31 P32 P3 · · ·

...
...

...
. . .


 .
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Note that ker τBiB j = {0} (i 6= j). Then computation shows that Pi j = 0, i > 2

and Pi ∈ A ′(T(n)
i ). Hence

P =




P1 P12 P13 . . .
0 P2 0 . . .
0 0 P3 . . .
...

...
...

. . .


 .

Given an idempotent P ∈ A ′(T), Pi is also a idempotent in A ′(B(n)
i ). Note that

B(n)
i has unique finite (SI) decomposition up to similarity. We can assume Pi =

Pi
1+Pi

2+· · ·+Pi
ni

, where {Pi
r}

n
r=1 is a unit finite (SI) decomposition of B(n)

i . Hence there

exists {Xi
r}

n
r=1 such that Xi

rP
i
r(Xi

r)
−1

= Ei
r, where Xi

r ∈ L(ran Pi
r,Hi) and {Ei

r}
n
r=1

is the standard unit finite (SI) decomposition of B(n)
i . Let Z =

⊕
∞

i=1(
⊕n

r=1 Xi
r),

T(n)
z = Z−1T(n)Z, Pz = Z−1PZ. Then T(n)

z and Pz have the representations

T(n)
z =




n⊕
r=1

B1r

n⊕
r=1

C2r

n⊕
r=1

C3r · · ·

0
n⊕

r=1

B2r 0 · · ·

0 0
n⊕

r=1

B3r · · ·

...
...

...
. . .




,

Pz =




Pz1
Pz12

Pz13
· · ·

0 Pz2
0 · · ·

0 0 Pz3
· · ·

...
...

...
. . .


 ∈ A

′(T(n)
z ),

where

Pzi
=

( n⊕
r=1

Xi
r

)−1
Pi

( n⊕
r=1

Xi
r

)

=




I1 0 · · · 0

0 I2 · · · 0 0ni×(n−ni)

...
...

. . .
...

0 0 · · · Ini

0 0 · · · 0

0(n−ni)×ni
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0




ran Pzi

1

ran Pzi

2
...

ran Pi
ni

ran Pi
ni +1

ran Pi
ni +2

...

ran Pi
n

.
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Pz1i =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 · · · 0 Ri
1,ni +1 Ri

1,ni +2 · · · Ri
1n

0 0 · · · 0 Ri
2,ni +1 Ri

2,ni +2 · · · Ri
2n

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 Ri
n1,ni +1 Ri

n1,ni +2 · · · Ri
n1,n

Ri
n1+1,1 Ri

n1+1,2 · · · Ri
n1+1,ni

0 0 · · · 0

Ri
n1+2,1 Ri

n1+2,2 · · · Ri
n1+2,ni

0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

Ri
n,1 Ri

n,2 · · · Ri
n,ni

0 0 · · · 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

ran P1
1

ran P1
2

...

ran P1
n1

ran P1
n1+1

ran P1
n1+2

...

ran P1
n

.

Claim 1: Cir 6∈ ran τB1r ,Bir
. If Cir ∈ ran τB1r ,Bir

, there exists G ∈ L(ran Pi
r, ran P1

r )

such that B1rG − GBir = Cir. Then

X1
r B1r(X1

r )−1X1
r G(Xi

r)
−1 − X1

r G(Xi
r)
−1Xi

rBir(Xi
r)
−1

= X1
r Cir(Xi

r)
−1,

i.e., B1G − GBi = Ci . Since ker τBiB j = {0}, this is a contradiction. Thus Cir 6∈
ran τB1r ,Bir

.

Claim 2: ni = n1, for all natural numbers i. Assume n1 > ni . Since PzT(n)
z = T(n)

z Pz,

we have ( n⊕
r=1

B1r

)
Pz1i

+
( n⊕

r=1

Cir

)
Pzi

= Pz1

( n⊕
r=1

Cir

)
+ Pz1i

( n⊕
r=1

Bir

)
.

Hence B1,n1
Ri

n1,n1
= Ci,n1

+ Ri
n1,n1

Bi,n1
. By Claim 1, this is a contradiction. Thus

Claim 2 holds.

Claim 3: Let P be a minimal idempotent in A ′(T(n)), then Pi is a minimal idem-

potent in A ′(B(n)
i ). Since P is a minimal idempotent in A ′(T(n)), Pz is a minimal

idempotent in A ′(T(n)
z ). If Pi is not a minimal idempotent in A ′(B(n)

i ), we assume

Pi = Pi
1 + Pi

2. Construct the following idempotent Pv in A ′(T(n)
z ):

Pz =




Pz1
Pz12

Pz13
· · ·

0 Pz2
0 · · ·

0 0 Pz3
· · ·

...
...

...
. . .


 ∈ A

′(T(n)
z ),

Pzi
=




I1 0 0 · · · 0

0 I2 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




ran Pi
1

ran Pi
2

ran Pi
3

...

ran Pi
n

,

Pz1i
=




0 0 Ri
13 Ri

14 · · · Ri
1n

0 0 Ri
23 Ri

24 · · · Ri
2n

Ri
31 Ri

32 0 0 · · · 0

Ri
41 Ri

42 0 0 · · · 0
...

...
...

...
. . .

...

Ri
n1 Ri

n2 0 0 · · · 0




ran Pz1

1

ran Pz1

2

ran Pz1

3

ran Pz1

4
...

ran Pz1
n

,
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Pv =




Pv1
Pv12

Pv13
· · · Pv1k

· · ·
0 Pv2

0 · · · 0 · · ·
0 0 Pv3

· · · 0 · · ·
...

...
...

. . .
...

0 0 0 · · · Pvk
· · ·

...
...

...
...

. . .




∈ A
′(T(n)

z ),

Pvi
=




I1 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




ran Pi
1

ran Pi
2

ran Pi
3

...

ran Pi
n

,

Pv1i
=




0 0 Ri
13 Ri

14 · · · Ri
1n

0 0 0 0 · · · 0

Ri
31 0 0 0 · · · 0

Ri
41 0 0 0 · · · 0
...

...
...

...
. . .

...

Ri
n1 0 0 0 · · · 0




ran P1
1

ran P1
2

ran P1
3

ran P1
4

...

ran Pz1
n

.

Since PzT(n)
z = T(n)

z Pz, it is proved that PvT(n)
z = T(n)

z Pv. Computation shows that

PzPv = PvPz = Pv 6= 0. Hence Pz is not a minimal idempotent in A ′(T(n)
z ). Note that

T(n)
z = Z−1T(n)Z, Pz = Z−1PZ. Then P is not a minimal idempotent in A ′(T(n)).

This is a contradiction. Thus Claim 3 holds.

For

Pz =




Pz1
Pz12

Pz13
· · ·

0 Pz2
0 · · ·

0 0 Pz3
· · ·

...
...

...
. . .


 ∈ A

′(T(n)
z ),

we define

P̃z =




Pz1
0 0 · · ·

0 Pz2
0 · · ·

0 0 Pz3
· · ·

...
...

...
. . .


 .

It is easy to prove that P̃z ∈ A ′(T(n)
z ).
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Claim 4: Pz − P̃z ∈ rad A′(T(n)
z ). Since S ∈ A ′(T(n)

z ),

S =




S1 S12 S13 · · · S1k · · ·
0 S2 0 · · · 0 · · ·
0 0 S3 · · · 0 · · ·
...

...
...

. . .
...

0 0 0 · · · Sk · · ·
...

...
...

...
. . .




.

Hence (Pz − P̃z)S and S(Pz − P̃z) are both triangular operators whose diagonal entries

are all 0 operators. Hence σ((Pz − P̃z)S) = σ(S(Pz − P̃z)) = {0}. Thus Claim 4 holds.

Let Pz be a minimal idempotent in A ′(T(n)
z ). By Lemma 2.5, there exists an invert-

ible operator X ∈ A ′(T(n)
z ) such that X−1PzX = P̃z. Hence

T(n)
z P̃z =




B11 ⊕ 0(n−1) C21 ⊕ 0(n−1) C31 ⊕ 0(n−1) · · · Ci1 ⊕ 0(n−1) · · ·
0 B21 ⊕ 0(n−1) 0 · · · 0 · · ·
0 0 B31 ⊕ 0(n−1) · · · 0 · · ·
...

...
...

. . .
...

0 0 0 · · · Bi1 ⊕ 0(n−1) · · ·
...

...
...

...
. . .




= Z−1




B1 ⊕ 0(n−1) C2 ⊕ 0(n−1) C3 ⊕ 0(n−1) · · · Ci ⊕ 0(n−1) · · ·
0 B2 ⊕ 0(n−1) 0 · · · 0 · · ·
0 0 B3 ⊕ 0(n−1) · · · 0 · · ·
...

...
...

. . .
...

0 0 0 · · · Bi ⊕ 0(n−1) · · ·
...

...
...

...
. . .




Z.

Then T(n)|ran P ∼ T(n)|ran Pz
∼ T(n)|ran ePz

∼ T, i.e., T(n) has unique finite (SI) decom-

position up to similarity.

Corollary 3.7 Let Ω be a connected analytic Cauchy domain. Then there exists a

B ∈ B∞(Ω) ∩ (SI) satisfying

(i) σ(B) = Ω̄;

(ii) A ′(B)/ rad A ′(B) is commutative;

(iii)
∨

A ′(B) ∼= N.

Proof By Lemma 3.3, Lemma 3.5 and Lemma 3.6, Corollary 3.7 holds.

Lemma 3.8 Let T ∈ L(H) satisfying that σlre(T) is the closure of an analytic Cauchy

domain Φ, and that σ(T) has finitely many connected components. Then there exists an

A ∈ L(H) satisfying the conditions of Theorem 2.13 such that

(i) A ′(A)/ rad A ′(A) is commutative;
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(ii) A has unique stably finite (SI) decomposition up to similarity.

Proof By Lemma 2.11 we can assume

(Ω1, k1), (Ω2, k2), . . . , (Ωm, km), {λ1}, {λ2}, . . . , {λn}

to be the finitely many components of σ(T)\Φ̄, where ki = ind(λ − T), λ ∈ Ωi .

Note that λ j ∈ σ0(T). Hence Ωi are pairwise disjoint, and Ωi is a connected analytic

Cauchy domain.

If 0 < ki < ∞, by Lemma 3.3 there exists an Ai ∈ Bki
(Ωi) ∩ (SI) such that

σ(Ai) = Ωi . Hence ind(Ai − λ) = ki , and min ind(Ai − λ) = 0, λ ∈ Ωi .

If −∞ < ki < 0, by Lemma 3.3 there exists an A∗

i ∈ B−ki
(Ω∗

i ) ∩ (SI) such that

σ(Ai) = Ωi . Hence ind(Ai − λ) = ki and min ind(Ai − λ) = 0, λ ∈ Ωi .

If ki = 0, by Lemma 3.4 there exists an Ai = Ai1⊕Ai2, Ai1 ∈ B1(Ωi), Ai2 ∈ B1(Ω∗

i ),

such that σ(Ai) = σ(Ai1) = σAi2 = Ωi , ker τAi2Ai1
= {0}. Hence ind(Ai − λ) = 0

and min ind(Ai − λ) = 1, λ ∈ Ωi . Moreover, A ′(Ai)/ rad A ′(Ai) is commutative

and
∨

A ′(Ai) ∼= N(2).

If ki = +∞, by Corollary 3.7 there exists an Ai ∈ B∞(Ωi)∩ (SI) such that σ(Ai) =

Ωi . Hence ind(Ai − λ) = +∞ and min ind(Ai − λ) = 0, λ ∈ Ωi . Moreover,

A ′(Ai)/ rad A ′(Ai) is commutative and
∨

A ′(Ai) ∼= N.

If ki = −∞, by Corollary 3.7 there exists an A∗

i ∈ B∞(Ω∗

i ) ∩ (SI) and σ(Ai) =

Ωi . Hence ind(Ai − λ) = −∞ and min ind(Ai − λ) = 0, λ ∈ Ωi . Moreover,

A ′(Ai)/ rad A ′(Ai) is commutative and
∨

A ′(Ai) ∼= N.

For λ j ∈ σ0(T), let B j be the Jordan block on E(λ, T) whose eigenvalue is λ.

Hence B j is an (SI) operator on a finite dimensional Hilbert space. Thus σ(B j) = λ j ,

ind(B j − λ j) = 0, and min ind(B j − λ j) = 1.

Let Φ1,Φ2, . . . ,Φl be all the components of Φ. By Lemma 3.3 there exists a Ck ∈
B1(Φk) such that σ(Ck) = Φk.

Let A =
(⊕l

k=1 Ck

)
⊕

(⊕m
i=1 Ai

)
⊕

(⊕n
j=1 B j

)
and

Ãt =





Ct 1 ≤ t ≤ l,

At−l l + 1 ≤ t ≤ m + l,

Bt+m−l m + l + 1 ≤ t ≤ m + l + n.

Hence A =
⊕m+l+n

t=1 Ãt . By Lemma 2.7 and Lemma 2.8, A ′(Ãt )/ rad A ′(Ãt ) is com-

mutative, and
∨

(A ′(Ãt )) = N or N(2).

Claim 1: A and T satisfy the conditions of Theorem 2.13. Note that by the construc-

tion of A, the conditions (i) and (iii) are satisfied. Since ∂σlre(T) ⊃ ∂σe(T) ⊃ ∂σ(T),

each component of σlre(T) = Φ meets σe(A) ⊃
⋃m

i=1 ∂Ωi , and σe(A) has no isolated

points.

Claim 2: ker τfAt1
fAt2

= {0}, 1 ≤ t2 < t1 ≤ m + l + n. Note that {Ωi}
m
i=1 are

pairwise disjoint, {Φk}
l
k=1 are pairwise disjoint, and none of them meets σ0(A). By

Lemma 2.3, we can get almost all the cases of Claim 2 except the case of ker τAiCk
. Let
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∆k ⊂ Φk be an open set such that ∆k ∩ ∂Φk = ∅. Hence ∆k ∩ Ωi = ∅. By Lemma

2.6, H =
∨
{ker(λ − B)s : λ ∈ ∆k, s ≥ 1}. By Lemma 2.5, ker τAiCk

= {0}.

Claim 3: A ′(A)/ rad A ′(A) is commutative and A has unique stably finite (SI) de-

composition up to similarity. Note that A′(Ãt )/ rad A ′(Ãt ) is commutative and ei-

ther
∨

(A ′(Ãt )) = N or N(2). By Claim 2, Lemma 3.1, Lemma 3.2 and Theorem CFJ,

Claim 3 holds.

Theorem 3.9 Let A ∈ L(H) and ǫ > 0. Then there exists a stably finite strongly

irreducible decomposable operator Aǫ such that

(i) ‖A − Aǫ‖ < ǫ;

(ii) A ′(Aǫ)/ rad A ′(Aǫ) is commutative;

(iii) V (A ′(Aε)) ∼= Nkǫ , K0(A ′(Aε)) ∼= Zkǫ .

Proof By Theorem 2.12, Theorem 2.13, Lemma 3.8, and Theorem CFJ, Theorem 3.9

holds.

By Theorem 3.9 and Theorem CFJ, we get two corollaries.

Corollary 3.10 {T ∈ L(H) : K0(A ′(Aǫ)) ∼= Zk, k ∈ N}− = L(H).

Corollary 3.11 {T ∈ L(H) : T is a stably finitely (SI) decomposable operator}− =

L(H).

Corollary 3.11 shows that the set of all stably finitely decomposable operators is

dense in L(H), i.e., the set of all the operators satisfying Theorem CFJ is dense in

L(H).

Using techniques of complex geometry and K-theory, Jiang and others obtained

the similarity classification of Cowen–Douglas operators. Following this result, we

get the similarity classification of stably finite (SI) decomposable operators.

Corollary 3.12 Let A, B ∈ L(H), such that A, B both have unique stably finite (SI)

decomposition up to similarity. Assume A = A(n1)
1 ⊕A(n2)

2 ⊕· · ·⊕A(nk)
k , where 0 6= ni ∈

N, Ai ∈ (SI), i = 1, 2, . . . , k, and Ai 6∼ A j , when Ai 6∼ A j . Then A ∼ B if and only if

(i)
(

K0(A ′(A ⊕ B)),
∨

(A ′(A ⊕ B)), I
)
∼= (Z(k), N(k), 1);

(ii) The isomorphism h from
∨

(A ′(A ⊕ B)) to N(k) sends [I] to (2n1, 2n2, . . . , 2nk),

i.e., h([I]) = 2n1e1 + 2n2e2 + · · · + 2nkek, where I is the unit of A′(A ⊕ B) and

{ei}
k
i=1 are the generators of N(k).
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