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Abstract

We use twisted Alexander polynomials to show that certain algebraically slice 2-bridge
knots are not topologically slice, even though all prime power Casson–Gordon signatures
vanish. We also provide some computations indicating the efficacy of Casson–Gordon sig-
natures in obstructing the smooth sliceness of 2-bridge knots.

1. Introduction

Although 2-bridge knots are generally well understood, their algebraic and topological
slice status is not. One of the only easily applicable statements in terms of p and q is that if
K p,q is algebraically slice then |H1(�2(K p,q))| = p must be a square. Note that we denote
by K p,q the 2-bridge knot with double branched cover the lens space L(p, q). In [CG86],
Casson and Gordon gave the first examples of algebraically slice knots which were not
ribbon, smoothly slice, or even topologically slice. For an algebraically slice knot K , every
prime-power branched cover �pn (K ) has first homology with order equal to some square
m2. For any k dividing m and any r with 0 � r � k − 1, there is a Casson–Gordon signature
σCG(K ; pn, k, r). If K is ribbon, then σCG(K ; pn, k, r) must vanish for all choices of pn, k,

and r as above; however, sliceness (smooth or topological) only implies that these signatures
must vanish for k a prime power. The signatures associated to the double branched cover of
a 2-bridge knot Km2,q are particularly computable; in fact, there is a combinatorial formula
in terms of counts of integer points in triangles. Casson and Gordon observed in [CG86] that
the only known rational knots for which all σCG(K ; 2, k, r) vanished belonged to a certain
family R of ribbon knots.

CONJECTURE 1·1 ([CG86, EL09]). Suppose Km2,q is a 2-bridge knot. Then Km2,q is rib-
bon if and only if all Casson–Gordon signature invariants associated to the double branched
cover vanish if and only if Km2,q is in R.

Lisca partially resolved this question by classifying the smooth sliceness of rational knots.
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THEOREM 1·2 ([Lis07]). K p,q is smoothly slice if and only if K p,q is ribbon if and only
if K p,q ∈ R.

Despite this classification, the question of exactly when the Casson–Gordon signature in-
variants vanish remains open.1 Answering this question would give additional information
about which 2-bridge knots are topologically slice. In particular, an affirmative answer would
show that for m is a prime power the topological sliceness, smooth sliceness and ribbonness
of Km2,q all coincide with the vanishing of the double branched cover Casson–Gordon sig-
nature invariants.

The first algebraically slice 2-bridge knot for which the Casson–Gordon signature in-
variants do not obstruct sliceness is K225,94, as observed in [CG86]. We compute a twis-
ted Alexander polynomial associated to the double branched cover and observe that the
properties of this polynomial demonstrate that K is not topologically slice. Note that, as
shown in [KL99], twisted Alexander polynomials can be viewed as discriminants of the
Casson–Gordon Witt class invariant of knots. So in some sense this result demonstrates that
even for 2-bridge knots the Casson–Gordon signatures do not capture the strength of the
full Casson–Gordon invariant. We also give some computations indicating the effectiveness
of the Casson–Gordon signature invariants (particularly when combined with the classical
Alexander polynomial) at obstructing the topological sliceness of Km2,q for small values
of m.

2. Twisted Alexander polynomials

In general, twisted homology and twisted Alexander polynomials can be defined for
spaces Y which are homotopy equivalent to finite CW complexes.2 Let Ỹ denote the univer-
sal cover of Y , so C∗(Ỹ ) is acted on by the left by π = π1(Y ). Given M a (F[t±1], Z[π])-
bimodule, the M-twisted chain complex of Y is C∗(Y, M) := M ⊗Z[π] C∗(Ỹ ). Note that
C∗(Y, M) and hence Hk(Y, M) = Hk(C∗(Y, M)) inherit a left F[t±1]-module structure from
M . The twisted Alexander polynomial �Y,M(t) associated to Y and M is defined to be the
order of H1(Y, M) as a F[t±1]-module.

Let K be a knot, X denote its exterior, Xm denote the canonical cyclic m-fold cover of X ,
and �m denote the corresponding branched cover of S3 over K . There is a canonical map
ε : π1(X) → Z. Let εm be the composition π1(Xm) ↪→ π1(X)

ε−→ Z restricted to its image.
Choose n a prime power dividing |H1(�m)|, a map χ : H1(Xm) → H1(�m) → Zn , and ξn a
primitive nth root of unity. Then M = Q(ξn)[t±1] has a (Q(ξn)[t±1], Z[π1(Xm)])-bimodule
structure given by polynomial multiplication on the left and Z[π1(Xm)] action defined by
p(t) · γ = ξχ(γ )

n t εm (γ ) p(t) for γ ∈ π1(Xm).3 It is often convenient to consider the reduced
twisted Alexander polynomial �̃X,M(t) := �X,M(t)(t −1)−s, where s = 0 if χ is trivial and
s = 1 else. These metabelian twisted Alexander polynomials �Xm ,M give an obstruction to
the topological sliceness of K , as follows.4

1 See [EL09] for more discussion of Conjecture 1·1 from a number-theoretic perspective.
2 We follow the much more thorough exposition of [KL99] and [HKL10].

3 Note that we often abuse notation by blurring the distinction between an element of a fundamental
group and its image in first homology.

4 This theorem was originally stated for both a and b odd primes; however, their proofs apply immedi-
ately to the case a = 2.
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THEOREM 2·1 ([KL99]). Let K be a topologically slice knot and a, b distinct primes
with b � 2. Let m = ar , n = bs. Then there exists an invariant metabolizer N � H1(�m)

such that if χ : H1(Xm) → H1(�m) → Zn vanishes on N then the corresponding reduced
twisted Alexander polynomial is a norm in Q(ξn)[t±1]. That is, there exists λ ∈ Q(ξn), k ∈ Z,
and f (t) ∈ Q(ξn)[t±1] such that �̃Xm ,Q(ξn)[t±1](t) = λt k f (t) f (t−1).

Note that when K = K p,q is 2-bridge and m = 2 the application of Theorem 2·1 is par-
ticularly straightforward, since �2(K p,q) = L p,q . Let k be a prime dividing p. As a Fk[Z2]
module, H1(�2, Zk) must be isomorphic to the direct sum of modules of the form Fk[t]/ f (t),
where f (t) divides both �K (t) and t2 − 1 in Fk[t]. So H1(�2, Zk) � (Fk[t]/〈t + 1〉)r .
However, since �2 is a lens space, the first homology H1(�2) � Zp is cyclic. So r = 1
and H1(�2, Zk) � Fk[t]/〈t + 1〉 is an irreducible Fk[Z2] module. Therefore, as observed
by [HKL10], any metabolizer N � H1(�2) must have trivial image N � H1(�2, Zk).
In order to obstruct the topological sliceness of K p,q , it therefore suffices to show that a
single reduced twisted Alexander polynomial coming from a character factoring through
H1(�2(K p,q), Zk) is not a norm.

Computation of the twisted Alexander polynomials of covers is significantly simplified
by Herald, Kirk, and Livingston’s reinterpretation in terms of certain twisted Alexander
polynomials corresponding to more complicated representations of the base space. In this
context, their work in [HKL10] gives the following. Let H = H1(�2, Zk) = Fk[t]/〈t + 1〉,
so Z�H has multiplication given by (xi , v)·(x j , w) = (xi+ j , t− j ·v+w) = (xi+ j , (−1)− jv+
w). Choose a meridian μ ∈ π1(X) with ε(μ) = 1. Then there is a correspondence between
equivariant5 homomorphisms ρ : π1(X2) → H and homomorphisms ρ̃ : π1(X) → Z � H
that extend ε|π1(X2) × ρ : π1(X2) → 2Z × H and with ρ̃(μ) = (x, 0).6 Given χ : H → Zk ,

define 
 : π1(X)
ρ̃−→ Z � H → GL2(Q(ξk)[t±1]) as the composition of ρ̃ with the map

(x j , v) 	−→
[

0 1
t 0

] j [
ξ

χ(v)

k 0
0 ξ

−χ(v)

k

]
.

Then we have the following.

THEOREM 2·2 ([HKL10]). Let X, X2, ε, χ, ρ, and 
 be as above, and suppose:

(i) Q(ξk)[t±1] has a (Q(ξk)[t±1], Z[π1(X2)])-bimodule structure with right action
defined by p(t) · γ = ξ

χ ·ρ(γ )

k t ε2(γ ) p(t);
(ii) (Q(ξk)[t±1])2 has a (Q(ξk)[t±1], Z[π1(X)])-bimodule structure with right action

defined by 
 : π1(X) → GL2(Q(ξk)[t±1]).
The corresponding twisted homology groups H1(X2, Q(ξk)[t±1]) and H1(X, (Q(ξk)[t±1])2)

are isomorphic as Q(ξk)[t±1]-modules, and so the corresponding twisted Alexander polyno-
mials are equal as well.

In practice, we define ρ implicitly by constructing a map ρ̃ : π1(X) → Z � H sending
a Wirtinger generator xi to (x, vi) such that our preferred meridian μ is sent to (x, 0). The
Wirtinger relation x j xi x

−1
j = xk implies that we must have (1 − t) · v j + t · vi = vk in

H = Fk[t]/〈t +1〉. However, since t +1 = 0 this relation reduces to vi +vk = 2v j . We also

5 Note that conjugation by μ gives an automorphism of π1(X2) � π1(X), and ρ is equivariant if
ρ(μγμ−1) = t · ρ(γ ) for any γ ∈ π1(X2) and μ our preferred meridian.

6 Given ρ, this correspondence associates ρ̃ defined by ρ̃(γ ) = (xε(γ ), ρ(μ−ε(γ )γ )).
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need a choice of χ : H → Zk ; since H is one-dimensional over Zk , all nontrivial choices
are essentially the same and so we take χ(1) = 1.

Finally, we need Wada’s computationally powerful group-theoretic description of twis-
ted Alexander polynomials, translated to the current context by Herald, Kirk, and Living-
ston [Wad94, HKL10]. Suppose that π = π1(X) = 〈x1, . . . , xs+1 : r1, . . . , rs〉, where
X = X (K ) is homotopy equivalent to a CW complex with a single 0-cell, (s + 1) 1-
cells, and s 2-cells. Let ∂ri/∂x j denote the Fox derivative of ri with respect to x j . Let
ρ : π → GLn(F) and ε : π → Z = 〈t〉 be nontrivial. Define F to be the compos-

ition F : Z[〈x1, . . . , xs+1〉] � Z[π] ε⊗ρ−−→ Mn(F[t±1]). Then the twisted chain complex
C∗ = C∗(X, F[t±1]n) has C2 = (F[t±1]n)s, C1 = (F[t±1]n)s+1, and ∂2 : C2 → C1 given by
the block matrix

[
F(∂ri/∂x j )

]
s,s+1

.

THEOREM 2·3 ([Wad94, KL99]). With the setup above, there is some k such that F(xk −
1) has nonzero determinant. Let pk : (F[t±1]n)s+1 → (F[t±1]n)s be the projection with
kernel the kth copy of F[t±1]n. Define Qk ∈ F[t±1] to be the greatest common divisor of the
ns × ns subdeterminants of the matrix for pk ◦ ∂2 : (F[t±1]n)s → (F[t±1]n)s . Then, when
H1(X, F[t±1]n) is torsion,

�(X, F[t±1]n) = Qk
�0(X)

det(F(xk − 1))
.

In our case, we will have a generator μ = xk in π1(X) with χ(xk) = 0 and ε(xk) = 1, so
�0(X) = 1. In addition, we will choose ρ̃ so that for some generator xk , we have det(F(xk −
1)) = 1 − t . Finally, we will work with a Wirtinger presentation, which has deficiency one
(i.e., s = s) and hence eliminates the need to take greatest common divisors. So we will have
�(X, F[t±1]n) = det F(Z)(1 − t)−1, where Z is obtained from

[
∂ri/∂x j

]
s,s+1

by deleting
the block column corresponding to xk .

3. Results

We have the following set-up. Let K = K p,q be a 2-bridge knot with Wirtinger present-
ation π1(X) = 〈x1, . . . , xs+1| r1, . . . , rs〉. Suppose p = m2 and let k be a prime dividing
m. Let ρ̃ : 〈x1, . . . , xs+1| r1, . . . , rs〉 → Z � Fk be any map such that ρ̃(xi) = (x, vi) for
i = 1, . . . , s , ρ̃(xs+1) = (x, 0), and such that whenever x j xi x

−1
j x−1

l is a relation then we
have that 2v j = vi + vl .7 Let 
 : π1(X) → GL2(Q(ξk)[t±1]) be defined by

xi 	−→ (x, vi) 	−→
[

0 1
t 0

] [
ξ

vi
k 0
0 ξ

−vi
k

]
=

[
0 ξ

−vi
k

tξvi
k 0

]
and let F
 be the natural extension Z[π1(X)] → M2(Q(ξk)[t±1]). If K is topologically slice,
then

�̃

K (t) = (t − 1)−2 det F


([
∂ri

∂x j

]
s,s

)
∈ Q(ξk)[t±1]

must factor as a norm in Q(ξk)[t±1].
Note that the computation of �̃


K (t) as described above is easy to implement on a com-
puter. To obstruct the topological sliceness of K p,q we can assume, switching (p, q) with
(p, p − q) if necessary, that q is even and so p/q has an even continued fraction expansion.

7 That is, ρ̃ is a homomorphism of the desired form.
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There is a straightforward formula for the Wirtinger presentation of π1(X (K p,q)) in terms
of this even continued fraction expansion, and we obtain ρ̃ by solving a simple system of
linear equations over Fk . The twisted Alexander polynomial is then obtained via a simple
computation; the only non-algorithmic part comes in showing that a particular �̃


K (t) does
not factor as a norm in Q(ξk)[t±1].

Example 1. When K = K225,94 we have continued fraction expansion [2, 2, 2, −6, −2, 2]
and Alexander polynomial �K (t) = (3t3 −6t2 +5t −1)(t3 −5t2 +6t −3). Since the irredu-
cible factors of �K (t) are not symmetric, Levine’s description of the algebraic concordance
group implies that K is algebraically slice[Lev69]. It is also straightforward to check that
all prime-power Casson–Gordon signature invariants of K associated to �2(K ) vanish, as
noted in [CG86]. However, there are Casson–Gordon signatures that obstruct K from being
ribbon, and Lisca’s results show that K is not even smoothly slice. We can show that K is
not topologically slice via the computation of a single twisted Alexander polynomial, cor-
responding to k = 5. (It is perhaps interesting to note that the twisted Alexander polynomial
corresponding to k = 3 factors as a norm even in Q[t±1].)

The reduced twisted Alexander polynomial corresponding to k = 5 is given by �̃

K (t) =

(2 + ξ 2
5 + ξ 3

5 )(t4 + 1) − (18 + 11(ξ 2
5 + ξ 3

5 ))(t3 + t) + (34 + 21(ξ 2
5 + ξ 3

5 ))t2. Note that since
ξ 2

5 + ξ 3
5 = (−1 − √

5)/2, we have that, up to multiplication by units,

�̃

K (t) = (3 − √

5)(t4 + 1) − (25 − 11
√

5)(t3 + 1) + (47 − 21
√

5)t2.

To show that K225,94 is not slice, we must obstruct this polynomial from factoring as a norm
in Q(ξ5)[t±1]. Consider the Galois conjugate g(t) = (3+√

5)(t4+1)−(25+11
√

5)(t3+1)+
(47 + 21

√
5)t2. Note that any factorisation of �̃


K (t) in Q(ξ5)[t±1] induces a corresponding
factorisation of g(t), so it suffices to show that g(t) is not a norm over Q(ξ5). In fact, g(t)
has four distinct real roots and so it is enough to obstruct g(t) from factoring as a norm
over Q(ξ5) � R = Q(

√
5). So suppose that there are λ, a, b, c ∈ Q(

√
5) such that g(t) =

λ(at2 + bt + c)(ct2 + bt + a); that is, such that λac = 3 + √
5, λ(a + c)b = −25 − 11

√
5,

and λ(a2 + b2 + c2) = 47 + 21
√

5. This reduces to solving

(a + c)b

ac
= −5 − 2

√
5 and

a2 + b2 + c2

ac
= 9 + 4

√
5 for a, b, c ∈ Q(

√
5).

It is straightforward to check using a computer algebra system that this has no solutions.

Example 2. We say Km2,q is CG- fake slice if all prime-power Casson–Gordon signature
invariants vanish but K is not ribbon (or, equivalently by [Lis07], not smoothly slice). The
following table gives a count, for each m, of how many Km2,q are CG-fake slice (counting
K and −K as a single entry). We omit m which are prime powers, since our computations
agree with the conjecture that in this case CG signatures exactly detect smooth sliceness.
These computations were done in Sage.

Example 3. The next knot we are led to consider is K = K1225,466. K has even continued
fraction expansion [2, 2, −2, −2, −4, 4, 2, −2] and Alexander polynomial (t4−6t3+13t2−
11t + 4)(4t4 − 11t3 + 13t2 − 6t + 1). Again, K is algebraically slice since the irreducible
factors of its Alexander polynomial are nonsymmetric, has all prime-power CG signature
invariants trivial, but is not smoothly slice by [Lis07]. The twisted Alexander polynomial
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Table 1. Failure of Casson–Gordon signatures and Alexander polynomials to obstruct
smooth sliceness

m Number of CG-fake slice Km2,q Number with �K (t) a norm

3 · 5 2 1
3 · 7 3 0
3 · 11 3 0
5 · 7 10 2
3 · 13 5 0
32 · 5 3 0
3 · 17 5 0
5 · 11 16 2
3 · 19 3 0

corresponding to k = 7 is

�̃

K (t) =(8 + 4(ξ 3 + ξ 4))(t6 + 1) − (81 + 48(ξ 3 + ξ 4) − 16(ξ 2 + ξ 5))(t5 + t)

+ (287 + 189(ξ 3 + ξ 4) − 45(ξ 2 + ξ 5) + 27(ξ + ξ 6))(t4 + t2)

− (300 + 160(ξ 3 + ξ 4) − 188(ξ 2 + ξ 5) − 75(ξ + ξ 6))t3.

To show that this polynomial does not factor as a norm in Q[ξ7], we use the following
extension of Gauss’ Lemma from Herald, Kirk and Livingston.

LEMMA 3·1 ([HKL10]). Let k and r be primes such that r = nk + 1 for some n ∈ N.
Let b ∈ Zr be a nontrivial k th root of 1, and let φ : Z[ξk] → Zr be the ring homomorphism
sending 1 to 1 and ξk to b. Let p(t) ∈ Z[ξk](t) be a degree 2m polynomial, such that φ(p(t))
also has degree 2m.

If p(t) is a norm in Q[ξk](t), then φ(p(t)) factors as the product of two degree m polyno-
mials in Zr [t].

In this case, we take k = 7, r = 29 = 4 ·7+1, and b = 16 ∈ Z29. Let φ : Z[ξ7] → Z29 be

defined as above with 1 	→ 1 and ξ7 	→ 16. Then φ
(
�̃


K (t)
)

= 20(1 + 6t + t2)(1 + 16t +
6t2 + 16t3 + t4) is still degree 6 and has a Z29-irreducible degree 4 factor. So, by Lemma
3·1, �̃


K (t) is not a norm over Q[ξ7] and hence K is not topologically slice.

Note that the above arguments obstructing �̃

K (t) from factoring as a norm in the appro-

priate field are quite ad hoc, and there is no reason to believe that either would necessarily
be effective for a larger class of 2-bridge knots. In fact, each argument fails to work for the
other example. This is emphasised even more by our computations for K1225,496. The reduced
twisted Alexander polynomial for K corresponding to a nontrivial character to Z5 factors as
a norm. While the polynomial corresponding to a nontrivial character to Z7 is not obviously
a norm, both of the strategies used in Examples 1 and 3 fail to obstruct such a factorisation.
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