ABELIAN GROUPS WITH SMALL COTORSION IMAGES

RÜDIGER GÖBEL

(Received 10 May 1989; revised 17 January 1990)

Communicated by R. Lidl

Abstract

Epimorphic images of compact (algebraically compact) abelian groups are called cotorsion groups after Harrison. In a recent paper, Ph. Schultz raised the question whether "cotorsion" is a property which can be recognized by its small cotorsion epimorphic images: If G is a torsion-free group such that every torsion-free reduced homomorphic image of cardinality 2^{\aleph_0} is cotorsion, is G necessarily cortorsion? In this note we will give some counterexamples to this problem. In fact, there is no cardinal κ which is large enough to test cotorsion.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 K 30.

1. Introduction

In a recent paper [8, Problem 3], Ph. Schultz raised the following problem in abelian group theory.

If G is a torsion-free group such that every torsion-free reduced homomorphic image of cardinality at most 2^{ω} is torsion, is G necessarily cortorsion?

In this note we will give some counterexamples to this problem. In fact, there is no cardinal κ which is large enough to test cotorsion in the above sense. In order to state the theorem, recall D. K. Harrison's notion that a group G is cotorsion if and only if G is an epimorphic images of algebraically compact abelian group. Moreover algebraically compact abelian groups are direct summands of those groups which permit a compact Hausdorff topology. Hence cotorsion groups are the epimorphic images of groups with a compact topology. These groups are "well-known" and may be characterized

^{© 1991} Australian Mathematical Society 0263-6115/91 \$A2.00 + 0.00

by cardinal invariants. A group G is cotorsion-free if G has no non-trivial cotorsion subgroup, see [5, 6] or [2]. For abelian groups this is equivalent to saying that G is torsion-free (that is, G does not contain cyclic groups of prime order), G does not contain copies of the rationals $\mathbb Q$ and of the p-adic integer J_p for any prime p (cf. [6] or [2]). Then we have

Theorem 1. Suppose λ , κ are infinite cardinals with $\kappa^{\omega} = \kappa$ and $\lambda^{\kappa} = \lambda$. Then there exists a cotorsion-free group G of cardinality λ such that all its torsion-free epimorphic image of cardinality at most κ are cotorsion.

The proof is similar to that in [1] but simpler. Amalgamating into the proof ideas from [1], we can also prescribe any cotorsion-free ring of cardinality at most λ as the endomorphism ring of this G; for example, we may also assume that End G = R is a fixed subring $R \subset \mathbb{Q}$. Hence the nucleus R(G) (= nuc G) of G is R; see [7, 8].

Fixing κ , there is a class, not a set of cardinals λ as in Theorem 1. If $\kappa = 2^{\aleph_0}$, we obtain our smallest counterexample of size $2^{2^{\aleph_0}}$ of Schultz' Problem 3. Observe that $|G| > 2^{\aleph_0}$ is also necessary.

2. Preliminaries

In this section we sketch some combinatorial tools taken from [1], but simplified. In order to see the similarity with [1], we will use the same names and letters for the present setting.

Let κ , λ be two infinite cardinals with $\kappa^{\omega} = \kappa$ and $\lambda^{\kappa} = \lambda$. Then $\mathrm{cf}(\lambda) > \kappa > \omega$ from König's Lemma. We take $T = \lambda \times \omega$ and call subsets $v = \{p\} \times \omega \subset T \ (p \in \lambda)$ branches of the tree T. Moreover v can be viewed as the canonical map $v: \omega \to T \ (n \to p \times n)$ and $\mathrm{Br}(T)$ denotes all such maps.

Let $\tau=1\tau$ be the free generator of an infinite cyclic group \mathbb{Z}_{τ} and suppose all $\tau\in T$ are independent. If I is a subset of T, then we denote $B_I=\bigoplus_{i\in I}i\mathbb{Z}$ and write $B=B_T$ for the free "basic" group B.

If \hat{B} denotes the \mathbb{Z} -adic completion of B, then every element $g \in \hat{B}$ can be expressed as a convergent sum

$$g = \sum_{\tau \in T} g_{\tau} \tau$$
 with $g_{\tau} \in \hat{\mathbb{Z}}$.

The support of g is defined to be $[g] = \{ \tau \in T : g_{\tau} \neq 0 \}$, which is at most

countable. Particular elements $v^k \in \hat{B}$ derive from branches $v \in Br(T)$. If

$$v^k = \sum_{n \geq k} \frac{n!}{k!} v(n),$$

then

$$v^k \in \hat{B}$$
, $k \cdot v^k - v^{k-1} = v(k-1) \in B$ for all integers $k \ge 1$ and $[v^k] \subseteq [v^0] = v$.

The support of a subset $X \subseteq \hat{B}$ will be $[X] = \bigcup_{x \in X} [x]$ which is of cardinality at most $|X| \cdot \aleph_0$. A subset $P \subseteq T$ is a canonical subset of T provided $P = P' \times \omega$ for some subset $P' \subseteq \lambda$ of cardinality at most κ , where the maximal element of P', max $P' \in P'$, exists. We call $\|P'\| = \max P'$, and $\|P'\| \times \omega$ is the maximal branch of P. The abelian group \hat{B}_P is a canonical summand of \hat{B} associated with the canonical subset P of T. If $X \subseteq \hat{B}$, then $\|X\|$ denotes the smallest $\|P\|$ such that X is contained in the canonical summand \hat{B}_P . If P does not exist, then $\|X\| = \infty$.

In order to work with partial homomorphisms and elements in \hat{B} with special support, we will also need an easy

DEFINITION 2.1. Let λ , κ and B be as above. A *trap* is a pair (P, φ) where P is a canonical subset of T and $\varphi: \hat{B}_P \to \hat{B}_P/\ker(\varphi)$ is an epimorphism.

The proof of Theorem 1 rests on an easy "Black Box", which we call *Small Black Box*. Its proof is a counting argument, which follows by substantial simplification of Shelah's Black Box proved in [1, pages 476-479].

THE SMALL BLACK BOX 2.2. For some ordinal λ^* ($< \lambda^+$) there exists a transfinite sequence of traps $(P_{\alpha}, \varphi_{\alpha})$ $(\alpha \in \lambda^*)$ such that, for $\alpha, \beta < \lambda^*$,

$$\beta < \alpha \Rightarrow \|P_{\beta}\| < \|P_{\alpha}\|.$$

For any subset $X\subseteq \hat{B}$ with $|X|\leq \kappa$ and any homomorphism φ from \hat{B} onto $\hat{B}/\ker \varphi$ there exists $\alpha<\lambda^*$ such that $X\subseteq \hat{B}_{P_\alpha}$, $\|X\|<\|P_\alpha\|$ and $\varphi\upharpoonright \hat{B}_{P_\alpha}=\varphi_\alpha$.

We will abbreviate $B_{P_{\alpha}} = B_{\alpha}$ and $v_{\alpha} = ||P_{\alpha}|| \times \omega \subseteq T$.

3. Cortorsion-free groups with only cotorsion small images

We want to apply the Small Black Box to prove Theorem 1.

PROOF OF THEOREM 1. Let λ , κ and $B = \bigoplus_{\tau \in T} \mathbb{Z}\tau$ be as in (2.1). We apply (2.2) to the following inductive construction G. The group G will be the union of an ascending, continuous chain of subgroups $G_{\alpha} \subset \hat{B}$ $(\alpha < \lambda^*)$

with $G_0 = B$. Suppose G_{β} has been constructed for all $\beta \le \alpha$ subject to the following condition on non-limit stages β (in place of α):

$$G_{\alpha+1} = \langle G_{\alpha}, g_{\alpha} \rangle_{*} \subseteq \hat{B}$$

for some particular $g_{\alpha} \in \hat{B}$.

Recall that $\langle - \rangle_*$ denotes the pure subgroup generated by -. Next we want to specify our choice of g_{α} . Consider g_{α} satisfying

$$(*) \hspace{1cm} g_{\alpha} = x_{\alpha} + v_{\alpha}^{0} \quad \text{where } \|x_{\alpha}\| < \|v_{\alpha}\| \text{ and } x_{\alpha} \in \hat{B}_{\alpha}.$$

If we can find g_{α} with (*) such that

$$(**) \hspace{3cm} g_{\alpha}\varphi_{\alpha} \in B_{\alpha}\varphi_{\alpha} \backslash (G_{\alpha} \cap \hat{B}_{\alpha})\varphi_{\alpha}$$

then we will choose this one. If g_{α} with (*) and (**) does not exist, let $g_{\alpha}=0$ hence $G_{\alpha+1}=G_{\alpha}$ by purity of G_{α} . The construction of $G=\bigcup_{\alpha<\lambda^*}G_{\alpha}$ is now complete.

We have to verify the conditions stated in Theorem 1. Since $|\lambda^*| = \lambda$ and $|T| = \lambda$ also $|G| = \lambda$ is immediate from the construction. If $u \in G$, then $|\{x \in G: [x] = [u]\}| = \aleph_0$ by our choice of generators g_{α} , τ ($\alpha < \lambda^*$, $\tau \in T$) and it follows that the group G is cotorsion-free (cf. [1, Lemma 6.2]).

Suppose $\varphi\colon G\to H$ is an epimorphism with H torsion-free not cotorsion and $|H|\leq\kappa$. If $H=H'\oplus D$ is a decomposition of H into a reduced part H' and a divisible summand D, then $\varphi'\colon G\to H\to H'$ which is φ followed by the canonical projection onto H' is an epimorphism and H' is torsion-free not cotorsion. Hence $\varphi'\colon G\to H'$ satisfies the same assumption as φ . Hence we may also assume that H is reduced. The \mathbb{Z} -adic topology on H is now a Hausdorff topology and H is a dense, pure and proper subgroup of its \mathbb{Z} -adic completion \hat{H} . From $|H|\leq\kappa$ and the size of canonical subsets we can find such a canonical subset I of I with I with I and clearly I by completeness and density. From the Small Black Box we find I such that

$$I\subset P_{\alpha}\,,\quad \varphi\upharpoonright B_{\alpha}=\varphi_{\alpha}\quad \text{and}\quad \|B_I\|<\|B_{\alpha}\|.$$

Clearly $(G \cap \hat{B}_{\alpha})\varphi_{\alpha} = H$ as $G\varphi = H$, and $(G \cap \hat{B})\varphi = H$. Moreover $\hat{B}_{I}\varphi_{\alpha} = \hat{H}$ and H is a proper subgroup of \hat{H} . There exists $x_{\alpha} \in \hat{B}_{I}$ such that $x_{\alpha}\varphi_{\alpha} \in \hat{H} \backslash H$. If $v_{\alpha} \in \operatorname{Br}(T)$ satisfies $v_{\alpha}^{0}\varphi_{\alpha} \in \hat{H} \backslash H$, then $G_{\alpha} \neq G_{\alpha+1}$ by (*) and (**). If $v_{\alpha}^{0}\varphi_{\alpha} \in H$, then $\|x_{\alpha}\| < \|v_{\alpha}\|$ from $\|B_{I}\| < \|B_{\alpha}\|$ and $x_{\alpha} + v_{\alpha}^{0}$ was a candidate for g_{α} in the construction. Hence $G_{\alpha} \neq G_{\alpha+1}$ in any case, and there exists $g_{\alpha} \in \hat{B}_{\alpha}$ such that $G_{\alpha+1} = \langle G_{\alpha}, g_{\alpha} \rangle_{*}$ and $g_{\alpha}\varphi_{\alpha} \notin (G_{\alpha} \cap \hat{B}_{\alpha})\varphi_{\alpha}$. Since $\varphi_{\alpha} = \varphi \upharpoonright \hat{B}_{\alpha}$, we derive

$$g_{\alpha}\varphi \not\in (G_{\alpha}\cap \hat{B}_{\alpha})\varphi = (G\cap \hat{B}_{\alpha})\varphi = H.$$

However $g_{\alpha} \in G$ contradicts $\varphi: G \to H$, and H must be cotorsion.

References

- [1] A. L. S. Corner and R. Göbel, 'Prescribing endomorphism algebras, a unified treatment', *Proc. London Math. Soc.* (3) **50** (1985), 447-479.
- [2] P. Eklof and A. Mekler, Almost free modules, set theoretic methods, (North-Holland, 1990).
- [3] L. Fuchs, Infinite abelian groups, Vols. I, II, (Academic Press, New York, 1970, 1973).
- [4] R. Göbel and S. Shelah, 'On semirigid classes of torsion-free abelian groups', J. Algebra 93 (1985), 136-150.
- [5] R. Göbel, 'On stout and slender groups', J. Algebra 35 (1975), 39-55.
- [6] R. Göbel and B. Wald, 'Wachstumstypen und schlanke Gruppen', Symposia Mathematica 23 (1979), 201-239.
- [7] J. Hausen, 'Automorphismengesättigte Klassen abzählbarer abelscher Gruppen', Studies on Abelian Groups, pp. 146-181, (Springer-Verlag, Berlin 1968).
- [8] Ph. Schultz, Self-splitting groups, (Report 23, August 1988, University of Western Australia), to appear.

Universität Essen GHS Universitätsstr. 3 D4300 Essen 1 Germany