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Abstract

We propose a locally smoothing method for some mathematical programs with
complementarity constraints, which only incurs a local perturbation on these constraints.
For the approximate problem obtained from the smoothing method, we show that the
Mangasarian–Fromovitz constraints qualification holds under certain conditions. We
also analyse the convergence behaviour of the smoothing method, and present some
sufficient conditions such that an accumulation point of a sequence of stationary points
for the approximate problems is a C-stationary point, an M-stationary point or a strongly
stationary point. Numerical experiments are employed to test the performance of the
algorithm developed. The results obtained demonstrate that our algorithm is much more
promising than the similar ones in the literature.
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1. Introduction

In the field of economics and engineering sciences, it is well known that the Cournot
equilibrium problem and the generalized Nash equilibrium problem are typical two-
level mathematical programming problems [11]. With some mild assumptions such
as convexity or concavity in the lower-level problem, all two-level programming
problems can be formulated as a mathematical program with complementarity
constraints (MPCC) (see, for example, [11]). In the past two decades, efficient
numerical algorithms for the solution of MPCCs have been attracting the attention
of applied mathematicians and experts in engineering, because the existing theory
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and algorithms for the standard optimization problems cannot be directly applied to
MPCCs (see [6, 19, 20] and the references therein).

The MPCC model is written as follows:

minimize f (z)
subject to g(z) ≤ 0, h(z) = 0,

G(z) ≥ 0, H(z) ≥ 0,
G(z)T H(z) = 0,

(1.1)

where f : Rn → R, g : Rn → Rm, h : Rn → Rp and G, H : Rn → Rl are continuously
differentiable functions.

One of the major challenges in solving problem (1.1) is that some of the popular
constraint qualification conditions for a standard optimization problem are not satisfied
for the MPCC (1.1) in general. Thus, new optimality conditions as well as new efficient
numerical algorithms on the basis of these conditions should be investigated to identify
and find the optimal solution of problem (1.1). The results available in the literature
include the sequential quadratic programming methods [4], the interior methods [12],
the penalty function methods [14], the lifting method [17], the relaxation methods
[9, 18] and the smoothing methods [3, 20].

As one of the most fundamental methods, the smoothing methods in [3, 5, 13]
use different smooth constraints to approximate the nonsmooth complementarity
constraints in problem (1.1). Then, by analysing the behaviour of the solutions to
the approximate optimization problems, the corresponding algorithms for solving
problem (1.1) are developed. Note that in the existing smoothing results, the
complementarity constraints G(z) ≥ 0, H(z) ≥ 0, G(z)T H(z) = 0 in problem (1.1) are
overall replaced by a system of approximately smooth equations.

However, the complementarity constraints G(z) ≥ 0, H(z) ≥ 0, G(z)T H(z) = 0 in
problem (1.1) are not smooth at some feasible points only. Thus, it seems unnecessary
to make an overall substitution for these constraints. In this paper, we intend to present
a locally smoothing method for the complementarity constraints, which only incurs a
local perturbation on the original model (1.1). We prove that the convergence of the
solutions of the perturbed problems improves by finding a solution to the original
problem (1.1). Actually, for the new smoothing method, we present some conditions
such that the Mangasarian–Fromovitz constraints qualification (MFCQ) holds for the
perturbed problem. Under certain conditions, we prove that any accumulation point of
a sequence of stationary points for the perturbed problems is a C-stationary point, an
M-stationary point or a strongly stationary point. Numerical experiments are used to
show the efficiency of the algorithm developed.

The rest of the paper is organized as follows. In the next section we introduce
some concepts in nonlinear programs and MPCCs. A new locally smoothing method
is proposed, then the corresponding algorithm is developed in Section 3. In Section 4
we carry out an analysis of convergence with the perturbation parameter tending to
zero. Section 5 is devoted to testing the efficiency of the algorithm developed. Some
final remarks draw the paper to a close.
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For convenience, we use the following notation. The ith component of a vector G
is denoted by Gi, and z denotes the feasible set of problem (1.1). For a constraint
function g : Rn → Rm and a given point z ∈ z ⊆ Rn, we denote by Ig(z) = {i : gi(z) = 0}
the active index set of g at z. For a vector α ∈ Rn, supp(α) = {i : αi , 0} stands for the
support of α.

2. Preliminaries

In this section, some of the basic concepts which are relevant to the convergence
results are stated.

For the ordinary nonlinear programming problem (NLP) given by

minimize f (z)
subject to g(z) ≤ 0,

h(z) = 0,
(2.1)

stationary points play a fundamental role in finding a local minimizer. Denote by F
the feasible set of problem (2.1).

Definition 2.1. A point z̄ ∈ F is called a stationary point of the NLP, if there are
multiplier vectors λ ∈ Rm

+ and µ ∈ Rp such that (z̄, λ, µ) is a Karush–Kuhn–Tucker
(KKT) point of (2.1), that is, λ and µ satisfy λigi(z̄) = 0, and

∇ f (z̄) +

m∑
i=1

λi∇gi(z̄) +

p∑
i=1

µi∇hi(z̄) = 0

for all i = 1, 2, . . . ,m.

For MPCC (1.1), some different concepts of stationary points have also been
introduced in the literature. In this paper, the following types of stationary points
are relevant to the description of convergence results.

Definition 2.2. Let z̄ be a feasible point of problem (1.1). Then z̄ is said to be:

(a) weakly stationary, if there exist multiplier vectors λ̄ ∈ Rm, µ̄ ∈ Rp and ū, v̄ ∈ Rl

such that

∇ f (z̄) + ∇g(z̄)λ̄ + ∇h(z̄)µ̄ − ∇G(z̄)ū − ∇H(z̄)v̄ = 0,
λ̄ ≥ 0, z̄ ∈ z, λ̄T g(z̄) = 0,

ui = 0, i ∈ I+0(z̄),
vi = 0, i ∈ I0+(z̄);

(b) C-stationary, if it is weakly stationary and

ūiv̄i ≥ 0, i ∈ I00(z̄);

(c) M-stationary, if it is weakly stationary and

ūi > 0, v̄i > 0, or ūiv̄i = 0, i ∈ I00(z̄);
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(d) strongly stationary, if it is weakly stationary and

ūi ≥ 0, v̄i ≥ 0, i ∈ I00(z̄),

where

I+0(z̄) = {i : Gi(z̄) > 0,Hi(z̄) = 0},
I0+(z̄) = {i : Gi(z̄) = 0,Hi(z̄) > 0},
I00(z̄) = {i : Gi(z̄) = 0,Hi(z̄) = 0}.

Similar to that in the NLP, a suitable constraint qualification (CQ) is necessary for
a local minimizer z̄ of MPCC (1.1) to be a stationary point. However, as pointed out
by Luo et al. [11], the CQs in the standard NLP are often violated for MPCC (1.1).
Thus, one of the key theoretical issues in MPCCs is to study new CQs such that an
MPCC local minimizer satisfies conditions on the stationary points. In this paper, we
will mainly use the concept of mathematical programs with equilibrium constraints –
Mangasarian–Fromovitz constraints qualification (MPEC–MFCQs).

Definition 2.3. Let z̄ ∈ z. z̄ is said to satisfy an MPEC–MFCQ, if the gradients

{∇gi(z̄) | i ∈ Ig(z̄)} ∪ {{∇hi(z̄) | i = 1, 2, . . . , p} ∪ {∇Gi(z̄) | i ∈ I00(z̄) ∪ I0+(z̄)}
∪ {∇Hi(z̄) | i ∈ I00(z̄) ∪ I+0(z̄)}}

are positive linearly independent. In other words, z̄ is said to satisfy an MPEC–MFCQ,
if and only if there does not exist a vector (λIg(z̄), µ, αI00(z̄)∪I0+(z̄), βI00(z̄)∪I+0(z̄)) , 0 with
λi ≥ 0 for all i ∈ Ig(z̄) such that∑

i∈Ig(z̄)

λi∇gi(z̄) +

p∑
i=1

µi∇hi(z̄) −
∑

i∈I00(z̄)∪I0+(z̄)

αi∇Gi(z̄) −
∑

i∈I00(z̄)∪I+0(z̄)

βi∇Hi(z̄) = 0.

3. New locally smoothing method and algorithm

In this section, we propose a new locally smoothing method for MPCC (1.1) and
develop an algorithm. The complementarity conditions

a ≥ 0, b ≥ 0, ab = 0

can be written as
a ≥ 0, b ≥ 0, a + b ≤ |a − b|.

Thus, with any kind of smooth approximation to the absolute value function | · |, we
can construct a smooth approximation to the complementarity conditions.

Steffensen and Ulbrich [10] approximated ϕ(t) = |t| by

ψε(t) =
2t
π

arctan
( t
ε

)
for solving the complementarity problems. We attempt to construct a new locally
smoothing method for the complementarity constraints in MPCC (1.1) to obtain a
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perturbed problem for (1.1). Unlike the existing approaches in the literature, we
replace the complementarity constraints

G(z) ≥ 0, H(z) ≥ 0, G(z)T H(z) = 0 (3.1)

with
G(z) ≥ 0, H(z) ≥ 0, Φε(z) ≤ 0, (3.2)

where

Φε(z) =


φε,1(z)
...

φε,l(z)

 , φε,i(z) = 1
2 {Gi(z) + Hi(z) − ψε(Gi(z) − Hi(z))}. (3.3)

Thus, MPCC (1.1) is reformulated as a standard optimization problem as follows:

minimize f (z)
subject to g(z) ≤ 0, h(z) = 0,

G(z) ≥ 0, H(z) ≥ 0,
Φε(z) ≤ 0.

(3.4)

Let zε denote the feasible region of problem (3.4).

Remark 3.1. In the existing smoothing methods in articles such as [3, 5, 13], the
equilibrium constraints (3.1) are overall substituted by a system of smooth equations.
In our smoothing method (3.2)–(3.3), the inequality constraints G(z) ≥ 0 and H(z) ≥ 0
do not change, except for the equality G(z)T H(z) = 0 being approximated by the
inequality Φε(z) ≤ 0.

Remark 3.2. For the standard smooth optimization problem (3.4), we prove in
Section 4 that it satisfies the standard MFCQ at any feasible point (see Theorem 4.1).
Thus, there are many efficient algorithms that can be used to find its stationary point for
each smoothing parameter ε (see [2, 7, 8]). One of our main interests is in proving that
the sequence of stationary points generated by solving NLP(εk) with εk ↓ 0, converges
to the stationary point of problem (1.1).

We now present some results that are used in developing our smoothing method.

Lemma 3.1. The function ψε : R→ R has the following properties.

(1) For arbitrary given positive constants a and b (b ≥ a), there exists a constant
scalar Tab > 0 such that

0 ≤ |t| − ψε(t) ≤ Tabε for all t ∈ [a, b] ∪ [−b,−a].

(2) Let ∂ϕ(t) be the generalized Clarke gradient [1] of ϕ(t). Then, for an arbitrary t,

lim
ε↓0

dist(ψ′ε(t), ∂ϕ(t)) = 0,

where dist(v, S ) is the distance of the point v from the set S .
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The proof of Lemma 3.1 follows directly from a result of Li and Li [10].

Lemma 3.2. Let m : R→ R be defined by

m(t) =
1
π

arctan t +
1
π

t
1 + t2

for all t ∈ R. Then, (1) m(t) is increasing; (2) −1/2 < m(t) < 1/2.

Proof. (1) Since m′(t) = 2/π(1 + t2)2 > 0, m(t) is increasing on R.
(2) Since arctan t→ π/2 as t→ +∞, and arctan t→−π/2 as t→−∞, t/(1 + t2)→ 0

as t→ ±∞. Thus, m(t)→ 1/2 as t→ +∞, and m(t)→ −1/2 as t→ −∞. From
the first result, we conclude that −1/2 < m(t) < 1/2 for all t ∈ R. �

Lemma 3.3. Let φε,i be defined as in (3.3). Then the following statements are true.

(1) For all i = 1, 2, . . . , l, φε,i is continuously differentiable.
(2) ∇φε,i(z) = ηΦε

i ∇Gi(z) + ζΦε

i ∇Hi(z), where

ηΦε

i =
1
2
−

1
π

arctan
Gi(z) − Hi(z)

ε
−

1
π

{Gi(z) − Hi(z)}/ε
1 + [{Gi(z) − Hi(z)}/ε]2

and

ζΦε

i =
1
2

+
1
π

arctan
Gi(z) − Hi(z)

ε
+

1
π

{Gi(z) − Hi(z)}/ε
1 + [{Gi(z) − Hi(z)}/ε]2 .

(3) ηΦε

i + ζΦε

i = 1. Furthermore, ηΦε

i ∈ (0, 1), ζΦε

i ∈ (0, 1).
(4) Let z̄ be a feasible point of problem (1.1). If i ∈ I+0(z̄), then ηΦε

i → 0, ζΦε

i → 1 as
z→ z̄ and ε ↓ 0. If i ∈ I0+(z̄), then ηΦε

i → 1, ζΦε

i → 0 as z→ z̄ and ε ↓ 0.

Proof. The first part follows from the definition of φε,i. By direct calculation, we
can obtain the second part. The third part directly follows from the second one and
Lemma 3.2, so it remains to prove only the last part.

Since i ∈ I+0(z̄),

ηΦε

i =
1
2
−

1
π

arctan
Gi(z) − Hi(z)

ε
−

1
π

{Gi(z) − Hi(z)}/ε
1 + [{Gi(z) − Hi(z)}/ε]2 ,

ζΦε

i =
1
2

+
1
π

arctan
Gi(z) − Hi(z)

ε
+

1
π

{Gi(z) − Hi(z)}/ε
1 + [{Gi(z) − Hi(z)}/ε]2 .

We know that {Gi(z) − Hi(z)}/ε→ +∞ as z→ z̄ and ε ↓ 0. Thus, it is clear that ηΦε

i → 0,
ζΦε

i → 1 as z→ z̄ and ε ↓ 0. Similarly, when i ∈ I0+(z̄), we get {Gi(z) − Hi(z)}/ε→ −∞
as z→ z̄ and ε ↓ 0. Therefore,

ηΦε

i → 1, ζΦε

i → 0 (z→ z̄, ε ↓ 0).

This completes the proof of the lemma. �
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In virtue of the perturbed smoothing problem (3.4), we now develop an efficient
algorithm to solve MPCC (1.1).

Algorithm 1: Algorithm to solve MPCC (1.1)

1 Given an initial point z1, ε1 > 0, εstop, β ∈ (0, 1), k = 1.
2 Let εk be the current parameter. Solve subproblem (3.4) with ε = εk by a smooth

NLP solver. The optimal solution is referred to as z̄k.
3 If maxvio(z̄k) < εstop, then zk = z̄k is the approximate solution of MPCC (1.1). The

algorithm stops. Otherwise, set εk+1 = βεk, zk+1 = z̄k, k = k + 1. Return to step 2.

Remark 3.3. In step 3 of Algorithm 1, to measure the violation degree at the final
iterate z̄k, we denote the maximal violation of all constraints by

maxvio(z̄k) = max{‖max{g(z̄k), 0}‖, ‖h(z̄k)‖, ‖min{G(z̄k),H(z̄k)}‖}.

If maxvio(z̄k) is small enough, then the solution of the original problem (1.1) is
obtained.

4. Convergence analysis

In this section, we will consider the limiting behaviour of a sequence of stationary
points of the subproblems. Write

IΦε
(z) = {i | φε,i(z) = 0}.

We first study the constraint qualification of problem (3.4). The following lemma
presents the conditions to guarantee MFCQ.

Lemma 4.1. Let z̄ be a feasible point of problem (1.1). Suppose that the MPEC–MFCQ
is satisfied at z̄. Then there is a neighbourhood U(z̄) and an ε̄ > 0 such that the vectors

∇gi(z), i ∈ Ig(z̄),
∇hi(z), i = 1, 2, . . . , p,
∇Gi(z), i ∈ IG(z),
∇Hi(z), i ∈ IH(z),
ηΦε

i ∇Gi(z) + ζΦε

i ∇Hi(z), i ∈ IΦε
(z) ∩ I0+(z̄),

ηΦε

i ∇Gi(z) + ζΦε

i ∇Hi(z), i ∈ IΦε
(z) ∩ I+0(z̄),

∇Gi(z), i ∈ IΦε
(z) ∩ I00(z̄),

∇Hi(z), i ∈ IΦε
(z) ∩ I00(z̄),

are positive linearly independent for all z ∈ U(z̄) ∩ zε and ε ∈ (0, ε̄).

Proof. Since g, h,G,H are all continuous, there exist a neighbourhood U1(z̄) and a
positive constant ε̄1 such that for any ε ∈ (0, ε̄1) and any point z ∈ U1(z̄) ∩ zε{

Ig(z) ⊆ Ig(z̄), IG(z) ⊆ I00(z̄) ∪ I0+(z̄),
Ih(z) ⊆ Ih(z̄), IH(z) ⊆ I00(z̄) ∪ I+0(z̄),
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which yields

IΦε
(z) ∩ IG(z) = ∅, IΦε

(z) ∩ IH(z) = ∅. (4.1)

In fact, if i ∈ IG(z), then Gi(z) = 0 and

2φε,i(z) = Gi(z) + Hi(z) −
2{Gi(z) − Hi(z)}

π
arctan

(Gi(z) − Hi(z)
ε

)
= Hi(z) +

2Hi(z)
π

arctan
(
−Hi(z)
ε

)
> Hi(z) −

2Hi(z)
π

π

2
= 0.

Therefore, i < IΦε
(z), that is, IΦε

(z) ∩ IG(z) = ∅. Similarly, we obtain IΦε
(z) ∩ IH(z) = ∅.

Note that the MPEC–MFCQ holds, so the gradients

{∇gi(z̄) | i ∈ Ig(z̄)} ∪ {{∇hi(z̄) | i = 1, 2, . . . , p} ∪ {∇Gi(z̄) | i ∈ I00(z̄) ∪ I0+(z̄)}

∪ {∇Hi(z̄) | i ∈ I00(z̄) ∪ I+0(z̄)}}

are positive linearly independent by Definition 2.3.
We have {

IG(z) ∪ (IΦε
(z) ∩ I0+(z̄)) ∪ (IΦε

(z) ∩ I00(z̄)) ⊆ I00(z̄) ∪ I0+(z̄)
IH(z) ∪ (IΦε

(z) ∩ I+0(z̄)) ∪ (IΦε
(z) ∩ I00(z̄)) ⊆ I00(z̄) ∪ I+0(z̄).

On the other hand, Gi(z) > 0, Hi(z) is sufficiently close to zero for all i ∈ I+0(z̄), and
Gi(z) is sufficiently close to zero, Hi(z) > 0 for all i ∈ I0+(z̄) with z being close to z̄.
Thus, it is clear from Lemma 3.3(4) thatηΦε

i → 0, ζΦε

i → 1 for all i ∈ I+0(z̄),
ηΦε

i → 1, ζΦε

i → 0 for all i ∈ I0+(z̄).

Similar to the proof of Proposition 2.2 given by Qi and Wei [16], we know that there
exist a neighbourhood U2(z̄) and a sufficiently small ε̄2 > 0 such that the set of vectors

∇gi(z), i ∈ Ig(z̄),
∇hi(z), i = 1, 2, . . . , p,
∇Gi(z), i ∈ IG(z),
∇Hi(z), i ∈ IH(z),
ηΦε

i ∇Gi(z) + ζΦε

i ∇Hi(z), i ∈ IΦε
(z) ∩ I0+(z̄),

ηΦε

i ∇Gi(z) + ζΦε

i ∇Hi(z), i ∈ IΦε
(z) ∩ I+0(z̄),

∇Gi(z), i ∈ IΦε
(z) ∩ I00(z̄),

∇Hi(z), i ∈ IΦε
(z) ∩ I00(z̄),

is positive linearly independent for the given z ∈ U2(z̄) ∩ zε and ε ∈ (0, ε̄2).
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Denote U(z̄) = U1(z̄) ∩ U2(z̄) and ε̄ = min{ε̄1, ε̄2}. Then, for all z ∈ U(z̄) ∩ zε and
ε ∈ (0, ε̄), the vectors

∇gi(z), i ∈ Ig(z̄),
∇hi(z), i = 1, 2, . . . , p,
∇Gi(z), i ∈ IG(z),
∇Hi(z), i ∈ IH(z),
ηΦε

i ∇Gi(z) + ζΦε

i ∇Hi(z), i ∈ IΦε
(z) ∩ I0+(z̄),

ηΦε

i ∇Gi(z) + ζΦε

i ∇Hi(z), i ∈ IΦε
(z) ∩ I+0(z̄),

∇Gi(z), i ∈ IΦε
(z) ∩ I00(z̄),

∇Hi(z), i ∈ IΦε
(z) ∩ I00(z̄),

are positive linearly independent. This completes the proof of the lemma. �

Theorem 4.1. Let z̄ be a feasible point of problem (1.1) and suppose that the MPEC–
MFCQ is satisfied at this point. Then there exist a neighbourhood U(z̄) of z̄ and an
ε̄ > 0 small enough such that problem (3.4) satisfies the standard MFCQ at any point
z ∈ U(z̄) ∩ zε, where ε ∈ (0, ε̄).

Proof. From Lemma 4.1, it follows that there exist a neighbourhood U(z̄) and an ε̄ > 0
such that the vectors

∇gi(z), i ∈ Ig(z̄),
∇hi(z), i = 1, 2, . . . , p,
∇Gi(z), i ∈ IG(z),
∇Hi(z), i ∈ IH(z),
ηΦε

i ∇Gi(z) + ζΦε

i ∇Hi(z), i ∈ IΦε
(z) ∩ I0+(z̄),

ηΦε

i ∇Gi(z) + ζΦε

i ∇Hi(z), i ∈ IΦε
(z) ∩ I+0(z̄),

∇Gi(z), i ∈ IΦε
(z) ∩ I00(z̄),

∇Hi(z), i ∈ IΦε
(z) ∩ I00(z̄),

(4.2)

are positive linearly independent, if z ∈ U(z̄) ∩ zε and ε ∈ (0, ε̄).
We now claim that the standard MFCQ holds for problem (3.4), if z ∈ U(z̄) ∩ zε and

ε ∈ (0, ε̄). In view of Definition 2.3, we show that for any given z ∈ U(z̄) ∩ zε,

∑
i∈Ig(z)

λi∇gi(z) +

p∑
i=1

µi∇hi(z) −
∑

i∈IG(z)

αi∇Gi(z) −
∑

i∈IH (z)

βi∇Hi(z)

+

l∑
i=1

γi(η
Φε

i ∇Gi(z) + ζΦε

i ∇Hi(z)) = 0, (4.3)

if and only if all the multiplier vectors µ ∈ Rp, λ, α, β and γ are zero.
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We rewrite equation (4.3) as

0 =
∑

i∈Ig(z)

λi∇gi(z) +

p∑
i=1

µi∇hi(z) −
∑

i∈IG(z)

αi∇Gi(z) −
∑

i∈IH (z)

βi∇Hi(z)

+
∑

i∈IΦε (z)∩I+0(z̄)

γi[η
Φε

i ∇Gi(z) + ζΦε

i ∇Hi(z)]

+
∑

i∈IΦε (z)∩I0+(z̄)

γi[η
Φε

i ∇Gi(z) + ζΦε

i ∇Hi(z)]

+
∑

i∈IΦε (z)∩I00(z̄)

γiη
Φε

i ∇Gi(z) +
∑

i∈IΦε (z)∩I00(z̄)

γiζ
Φε

i ∇Hi(z). (4.4)

By positive linear independence, it follows from (4.2) and (4.4) that{
λi = 0 (i ∈ Ig(z)), µi = 0 (i = 1, 2, . . . , p), αi = 0 (i ∈ IG(z)), βi = 0 (i ∈ IH(z)),
γi = 0 (i ∈ IΦε

(z) ∩ (I+0(z̄) ∪ I0+(z̄))), γiη
Φε

i = γiζ
Φε

i = 0, i ∈ IΦε
(z) ∩ I00(z̄).

From Lemma 3.3(3), it follows that for all i ∈ I00( z ), ηΦε

i + ζΦε

i = 1. Thus, γi = 0
for all i ∈ IΦε

(z) ∩ I00(z̄). Since γi = 0 (i ∈ IΦε
(z) ∩ (I+0(z̄) ∪ I0+(z̄))) and γi = 0

(i ∈ IΦε
(z) ∩ I00(z̄)), we get γi = 0, i ∈ IΦε

(z). Therefore, the desired result follows
directly from Definition 2.3. This completes the proof. �

The following theorems establish the relations between the solutions of the original
problem and the smoothing subproblem under the MPEC–MFCQ.

Theorem 4.2. Let {εk} be a positive sequence which converges to zero. Suppose that
{zk} is a sequence of stationary points of the subproblems (3.4) with ε = εk. If z̄ is an
accumulation point of the sequence {zk} such that the MPEC–MFCQ holds at z̄, then z̄
is a C-stationary point of problem (1.1).

Proof. It follows from Theorem 4.1 that there exist Lagrangian multiplier vectors λk,
µk, αk, βk and γk such that

∇ f (zk) +

m∑
i=1

λk
i∇gi(zk) +

p∑
i=1

µk
i∇hi(zk) −

∑
i∈IG(zk)

αk
i∇Gi(zk)

−
∑

i∈IH (zk)

βk
i∇Hi(zk) +

l∑
i=1

γk
i∇φεk ,i(zk) = 0, (4.5)

λk ≥ 0, supp(λk) ⊆ Ig(zk),
αk ≥ 0, supp(αk) ⊆ IG(zk),
βk ≥ 0, supp( βk) ⊆ IH(zk),
γk ≥ 0, supp(γk) ⊆ IΦεk

(zk).

(4.6)
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From equation (4.5), we have

∇ f (zk) +
∑

i∈supp(λk)

λk
i∇gi(zk) +

∑
i∈supp(µk)

µk
i∇hi(zk) −

∑
i∈supp(αk)

αk
i∇Gi(zk)

−
∑

i∈supp( βk)

βk
i∇Hi(zk) +

∑
i∈supp(γk)

γk
i η

Φεk
i ∇Gi(zk)

+
∑

i∈supp(γk)

γk
i ζ

Φεk
i ∇Hi(zk) = 0,

and equation (4.1) yields

supp(αk) ∩ supp(γk) = ∅, supp( βk) ∩ supp(γk) = ∅. (4.7)

Denote

υk
i =


αk

i , i ∈ supp(αk),
−γk

i η
Φεk
i , i ∈ supp(γk)\I+0(z̄),

0, otherwise,

and

νk
i =


βk

i , i ∈ supp( βk),
−γk

i ζ
Φεk
i , i ∈ supp(γk)\I0+(z̄),

0, otherwise.

Then equation (4.5) reduces to

∇ f (zk) +

m∑
i=1

λk
i∇gi(zk) +

p∑
i=1

µk
i∇hi(zk) −

l∑
i=1

ῡk
i∇Gi(zk) −

l∑
i=1

ν̄k
i∇Hi(zk)

+
∑

i∈I+0(z̄)

γk
i η

Φεk
i ∇Gi(zk) +

∑
i∈I0+(z̄)

γk
i ζ

Φεk
i ∇Hi(zk) = 0. (4.8)

We now prove that the sequence {(λk, µk, ῡk, ν̄k, γk
I+0(z̄)∪I0+(z̄))} is bounded. If it is

unbounded, then there exists a subset K such that for k ∈ K, the normed sequence
converges:

(λk, µk, ῡk, νk, γk
I+0(z̄)∪I0+(z̄))

‖(λk, µk, ῡk, ν̄k, γk
I+0(z̄)∪I0+(z̄))‖

→ (λ, µ, υ, ν̄, γI+0(z̄)∪I0+(z̄)) , 0.

Combined with (4.8), part (4) of Lemma 3.3 yields
m∑

i=1

λi∇gi(z̄) +

p∑
i=1

µi∇hi(z̄) −
l∑

i=1

ῡi∇Gi(z̄) −
l∑

i=1

ν̄i∇Hi(z̄) = 0,

where λ ≥ 0 and for all sufficiently large k,

supp(λ) ⊆ Ig(zk) ⊆ Ig(z̄),
supp(ῡ) ⊆ IG(zk) ∪ IΦεk

(zk)\I+0(z̄) ⊆ I00(z̄) ∪ I0+(z̄),
supp(ν̄) ⊆ IH(zk) ∪ IΦεk

(zk)\I0+(z̄) ⊆ I00(z̄) ∪ I+0(z̄).
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We show that (λ, µ, ῡ, ν̄) , 0. Actually, if (λ, µ, ῡ, ν̄) = 0, then, at least for one
i ∈ I+0(z̄) ∪ I0+(z̄), we have γi , 0. Without loss of generality, assume that γi , 0 for
an i ∈ I+0(z̄). Then, for all k sufficiently large, γk

i , 0. Consequently, ν̄k
i = −γk

i ζ
Φεk
i , 0.

Since i ∈ I+0(z̄), it follows from Lemma 3.3(4) that

ν̄i = lim
k∈K
−γk

i ζ
Φεk
i , 0,

which contradicts the assumption that ν̄ = 0.
By Definition 2.3, (λ, µ, ῡ, ν) , 0 contradicts the fact that the MPEC–MFCQ holds

at z̄. Thus, we have proved that the sequence {(λk, µk, ῡk, ν̄k, γk
I+0(z̄)∪I0+(z̄))} is bounded.

Without loss of generality, we suppose that this sequence converges to a point
(λ∗, µ∗, ῡ∗, ν̄∗, γ∗I+0(z̄)∪I0+(z̄)). It follows that λ∗ ≥ 0 and supp(λ∗) ⊆ Ig(z̄) and definitions
of ῡ and ν̄ yield

supp(ῡ∗) ⊆ I00(z̄) ∪ I0+(z̄), supp(ν̄∗) ⊆ I00(z̄) ∪ I+0(z̄).

Since f , g, h, G and H are continuously differentiable, we have

∇ f (z̄) +

m∑
i=1

λ∗i∇gi(z̄) +

p∑
i=1

µ∗i∇hi(z̄) −
l∑

i=1

ῡ∗i∇Gi(z̄) −
l∑

i=1

ν̄∗i∇Hi(z̄) = 0.

From the definitions of ῡk
i and ν̄k

i , we get ῡ∗i = 0, i ∈ I+0(z̄), ν̄∗i = 0, i ∈ I0+(z̄). In other
words, z̄ is weakly stationary.

In order to prove that z̄ is C-stationary, we give the proof in the following three
cases:

(1) For i ∈ I00(z̄), if i ∈ supp(αk) then from (4.6) we get ῡk
i ≥ 0 and ν̄k

i ≥ 0, since
supp(αk) ∩ supp(γk) = ∅. Thus, ῡ∗i ν̄

∗
i ≥ 0.

(2) For i ∈ I00(z̄), if i ∈ supp(γk)\I+0(z̄) then ῡk
i < 0 and ν̄k

i ≤ 0, since supp( βk) ∩
supp(γk) = ∅. Thus, ῡ∗i ν̄

∗
i ≥ 0.

(3) For i ∈ I00(z̄), if i < supp(αk) and i < supp(γk)\I+0(z̄) then ῡk
i = 0. Therefore,

ῡ∗i ν̄
∗
i ≥ 0.

Based on the above discussion, we conclude that ῡ∗i ν̄
∗
i ≥ 0 for all i ∈ I00(z̄). From

Definition 2.2, it now follows that z̄ is a C-stationary point of the original MPCC (1.1).
This completes the proof. �

By using the definitions of υk
i and νk

i and the boundedness of the sequence {(υk, νk)},
we get the following result which is necessary for the subsequent analysis on M-
stationary points of problem (1.1).

Corollary 4.1. The sequence {(γk
supp(γk)∩I00(z̄))} is bounded under the conditions of

Theorem 4.2.

Next, we study the conditions for M-stationarity.
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Theorem 4.3. Let {εk} be a positive sequence which converges to zero. Let zk be
a stationary point of problem (3.4) with ε = εk. If z̄ is an accumulation point of
the sequence {zk} as k → ∞ such that the MPEC–MFCQ holds at z̄, and for all
i ∈ supp(γk) ∩ I00(z̄),

lim
k→+∞

η
Φεk
i ζ

Φεk
i = 0,

then z̄ is an M-stationary point of problem (1.1).

Proof. By Theorem 4.2, we only need to show that for all i ∈ I00(z̄),

ῡ∗i > 0, ν̄∗i > 0, or ῡ∗i ν̄
∗
i = 0. (4.9)

Assume that conditions (4.9) do not hold. Then from (4.7) and the definitions of υk
i

and νk
i we have ῡ∗i < 0, ν̄∗i < 0 for all i ∈ I00(z̄), andῡ

∗
i = − lim

k→+∞
γk

i η
Φεk
i ,

ν̄∗i = − lim
k→+∞

γk
i ζ

Φεk
i .

Thus,
ῡ∗i ν̄

∗
i = lim

k→+∞
γk

i η
Φεk
i γk

i ζ
Φεk
i > 0. (4.10)

However, Corollary 4.1 and the conditions of Theorem 4.3 yield

lim
k→+∞

γk
i η

Φεk
i γk

i ζ
Φεk
i = 0,

which contradicts (4.10). Therefore, z̄ is an M-stationary point of problem (1.1), and
this completes the proof. �

By using part (3) of Lemma 3.3, it is easy to see that the following result holds.

Theorem 4.4. Let {εk} be a sequence of positive numbers which converges to zero, and
zk be a stationary point of problem (3.4) with ε = εk. If z̄ is an accumulation point of
the sequence {zk} as k→∞ such that the MPEC–MFCQ holds at z̄ and limk→+∞ γ

k
i = 0

for all i ∈ supp(γk) ∩ I00(z̄), then z̄ is a strongly stationary point of problem (1.1).

Remark 4.1. Since strong stationarity implies B-stationarity, the sufficient condition
for the strongly stationary point of the MPCC given in Theorem 4.4 also ensures that z̄
is a B-stationary point of problem (1.1). It is different from the results available in the
literature [9, 21, 22], where the second-order necessary condition as well as the other
additional conditions for strongly stationary convergence often need to be satisfied.

5. Numerical experiments

In this section, we test the numerical performance of Algorithm 1 by solving some
test problems available in the literature.

By way of comparison, we implement both Algorithm 1 and the algorithm
developed by Facchinei et al. [3] to solve the same test problems. In the numerical
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Table 1. A comparison between Algorithm 1 and the algorithm in [3].

Prob (n,m, l) fF/ fL kF/kL timeF/timeL maxvioF/maxvioL

1(a) (1,6,4) 3.2077/3.2077 2/2 0.230290/0.073070 7.9945e−11/3.1834e−09

1(b) (1,6,4) 3.2077/3.2077 2/2 0.159354/0.072017 7.8795e−11/5.3853e−09

2(a) (1,6,4) 3.4494/3.4494 1/2 0.070082/0.093289 2.0535e−08/3.3330e−09

2(b) (1,6,4) 3.4494/3.4494 1/2 0.048598/0.089176 1.3054e−08/5.6526e−09

3(a) (1,6,4) 4.6043/4.6043 2/2 0.055994/0.132143 3.5256e−08/3.1831e−09

3(b) (1,6,4) 4.6043/4.6043 1/2 0.057581/0.099780 3.5255e−08/3.8902e−09

4(a) (1,6,4) 6.5927/6.5927 1/2 0.057295/0.071829 5.2768e−08/3.9828e−09

4(b) (1,6,4) 6.5927/6.5927 1/2 0.057103/0.098933 5.2678e−08/3.1831e−09

5 (2,2,2) −1.0000/−1.0000 2/1 0.100644/0.039830 5.8330e−11/5.8010e−15

6 (1,1,1) −3266.7/−3266.7 1/2 0.922831/0.034087 3.7507e−10/2.1221e−09

7 (2,2,6) 4.9994/4.9994 1/2 0.169103/0.053031 3.0470e−09/4.4533e−09

8(a) (1,4,8) −343.3453/−343.3453 1/2 0.135239/0.175955 4.6388e−10/6.4219e−08

8(b) (1,4,8) −203.1551/−203.1551 1/2 0.129527/0.109320 5.1910e−10/4.7815e−09

8(c) (1,4,8) −68.1357/−68.1357 1/2 0.144460/0.118080 6.6346e−10/4.7736e−09

8(d) (1,4,8) −19.1541/−19.1541 1/2 0.072285/0.118738 8.6641e−10/4.7576e−09

8(e) (1,4,8) −3.1612/−3.1612 1/2 0.075084/0.304395 1.3583e−09/7.5678e−09

8(f) (1,4,8) −346.8932/−346.8932 1/2 0.273171/0.155402 4.4987e−08/9.0198e−09

8(g) (1,4,8) −224.0372/−224.0372 1/2 0.155166/0.112821 3.6486e−08/4.7686e−09

8(h) (1,4,8) −80.7860/−80.7860 1/2 0.120192/0.154580 1.8518e−08/4.7504e−09

8(i) (1,4,8) −22.8371/−22.8371 1/2 0.181496/0.104794 5.4911e−08/4.9471e−09

8(j) (1,4,8) −5.3491/−5.3159 1/3 0.167435/0.150845 1.7340e−08/4.7456e−12

9(a) (2,2,2) 4.4816e−15/5.1049e−15 1/2 0.042437/0.038047 1.4140e−08/3.1831e−09

9(b) (2,2,2) 5.3783e−15/2.4358e−11 1/2 0.039184/0.061679 1.4141e−08/3.5027e−09

9(c) (2,2,2) 1.2633e−15/5.2939e−15 1/2 0.035922/0.066582 1.4142e−08/3.1831e−09

9(d) (2,2,2) 1.5365e−07/2.5363e−09 1/2 0.098686/0.054299 1.4141e−08/3.0011e−09

9(e) (2,2,2) 3.4774e−15/9.4146e−12 1/2 0.033581/0.050065 1.4140e−08/3.1831e−09

10 (4,4,12) −6600.0/−6600.0 1/2 0.180838/0.227755 2.5000e−10/3.1830e−09

11 (2,6,4) −12.6787/−12.6787 1/2 0.113889/0.073480 1.4832e−08/6.4309e−09
The underlined results show the numerical efficiency of Algorithm 1.

implementation, we use the built-in function fmincon in MATLAB 2012b to solve
subproblem (3.4). The solution tolerance is set to 10−6 and the initial solutions for all
the test problems are specified by the same values as those set by Facchinei et al. [3].

In the numerical experiments, we find that the change of the initial value of ε
affects the obtained optimal value of the objective function (see Tables 1 and 2). To
get the same values of the objective function [3], we choose the initial perturbation
parameter ε1 = 0.001 for the test problem Prob 7. For all other test problems, we take
ε1 = 0.0001.
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Table 2. Results for some selected test problems from [15] with dimension over 100.

Prob dimension fL kL timeL maxvioL

liswet1-050 152 0.01400 3 18.395330 5.8409e−09
liswet1-100 302 0.01376 5 20.849152 2.3579e−09
liswet1-200 602 0.01705 6 151.736173 7.6763e−09

The results in Table 2 show the efficiency of Algorithm 1 for some test problems from [15] with
dimension over 100.

For each algorithm, the corresponding computer procedures are written in
MATLAB, and run in the following environment: 1.50 GHz CPU, 1.47 GB memory
based on Windows 7 operation system. The obtained numerical results are listed in
Table 1.

In Table 1, ‘Prob’ denotes the test problem solved and (n,m, l) stand for the
dimensions of the three types of the decision variables in the test problems. Also, fF ,
kF , timeF and maxvioF denote the optimal objective function, the number of iterations,
the computation time (in seconds), and the maxvio(z̄), respectively, obtained by the
algorithm of Facchinei et al. [3]. The symbols fL, kL, timeL and maxvioL stand for the
corresponding items obtained by Algorithm 1.

From Table 1, observe that we have obtained the same optimal value of the objective
function by using Algorithm 1 as obtained by algorithm of Facchinei et al. [3]. For
the 14 test problems, Algorithm 1 takes less machine time to find the optimal solution
than their algorithm [3] (see the underlined results in Table 1), though the number
of iterations of Algorithm 1 is slightly greater than their algorithm in some cases.
However, as for the accuracy of the solution (measured by the value of maxvio(z̄)),
there are 18 out of the 28 test problems whose optimal solutions have less violation
degree than that by their algorithm. This indicates that our proposed smoothing method
can generate a better approximation to the original MPCC.

Note that the dimensions of all the solved test problems of Facchinei et al. [3] are
not more than 20. We attempt to implement our developed Algorithm 1 to solve some
test problems with dimension over 100, selected from Leyffer’s collection [15] (see
Table 2).

6. Final remarks

In this paper, we have proposed a locally smoothing method for MPCC by which an
efficient numerical algorithm has been developed. Theoretically, we have proved that
the MFCQ holds for the approximate problem obtained from the smoothing method
under certain conditions. These conditions have been presented to ensure that any
accumulation point of a sequence of stationary points for the perturbed subproblems is
a C-stationary point, an M-stationary point or a strongly stationary point. Preliminary
numerical experiments show that the proposed method is more promising than the
existing ones in the literature.
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