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Abstract

A subgroup A of a group G has the strong cover-avoidance property in G, or A is a strong CAP-subgroup
of G, if A either covers or avoids every chief factor of every subgroup of G containing A. The main aim
of the present paper is to analyse the impact of the strong cover and avoidance property of the members
of some relevant families of subgroups on the structure of a group.
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1. Introduction

In this paper all groups are assumed to be finite. If a subgroup A of a group G has
the property that either H A = K A or A ∩ H = A ∩ K for every chief factor H/K
of G, then A is said to have the cover-avoidance property in G and is called a CAP-
subgroup of G. Over the past 35 years or so, the cover-avoidance property has attracted
the attention of many authors. Some were interested in discovering distinguished
families of CAP-subgroups, mainly in the soluble universe, while others discovered
some characterizations of soluble and supersoluble groups, or their corresponding
local versions, in terms of CAP-subgroups. For an overview, the reader may consult
[1, Ch. 4, 2, 7] and the works cited therein. The present article is a further contribution
to this subject.

One notable feature of a supersoluble group which is generally absent from a
nonsupersoluble one is that the cover-avoidance property is inherited in subgroups.
This means that if A is a CAP-subgroup of G and A is a subgroup of B, then A is not,
in general, a CAP-subgroup of B (see [2, Example 3]). Therefore it is quite natural to
inquire about the cover-avoidance property in subgroups. This motivates the following
definition.
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DEFINITION 1. Let A be a subgroup of a group G. We say that A is a strong CAP-
subgroup of G if A is a CAP-subgroup of any subgroup of G containing A.

Supersoluble groups can be thought of as those groups all of whose subgroups are
strong CAP-subgroups. It is natural to ask whether one can impose this property on
the subgroups of a more restricted family and not lose supersolubility. The answer to
that question is contained in the following general result.

THEOREM A. Let F be a saturated formation containing all supersoluble groups
and G a group with a normal subgroup E such that G/E ∈ F. Suppose that every
noncyclic Sylow subgroup P of the generalized Fitting subgroup F∗(E) of E has a
subgroup D such that 1< |D|< |P| and all subgroups H of P with order |H | = |D|
and with order 2|D| (if P is a nonabelian 2-group) are strong CAP-subgroups of G.
Then G ∈ F.

For the saturated formation of all supersoluble groups we have the following result.

COROLLARY 2. A group G is supersoluble if and only if every noncyclic Sylow
subgroup P of F∗(G) has a subgroup D such that 1< |D|< |P| and all subgroups H
of P with order |H | = |D| and with order 2|D| (if P is a nonabelian 2-group) are
strong CAP-subgroups of G.

2. Preliminary results

We begin with some elementary properties of the strong CAP-subgroups which will
be extremely useful in what follows.

LEMMA 3. Let G be a group and N a normal subgroup of G.

(1) If H is a CAP-subgroup (strong CAP-subgroup) of G, then so is H N.
(2) If A is subgroup of G, then AN/N is a CAP-subgroup (strong CAP-subgroup)

of G/N if and only if A is a CAP-subgroup (strong CAP-subgroup) of G.

PROOF. See [5, Lemma 1]. 2

Let H/K be a chief factor of a group G. The innerizer of H/K is defined
to be the subgroup C∗G(H/K )= HCG(H/K ). Note that if H/K is abelian, then
C∗G(H/K )= CG(H/K ) (see [1, Definition 1.2.2]) .

A group G is said to be quasinilpotent if G is the common innerizer of every
chief factor of G. The product of two normal quasinilpotent subgroups of a group
G is quasinilpotent and so each group G has a unique normal subgroup which is
maximal subject to being quasinilpotent. This subgroup is called the generalized
Fitting subgroup of G and denoted by F∗(G). It is clear that F∗(G) is a characteristic
subgroup of G which coincides with F(G) if it is soluble. The reader may consult
[9, Ch. X] for further properties of quasinilpotent groups and the generalized Fitting
subgroup.

The class of all quasinilpotent groups is a solubly saturated formation (see
[4, p. 579]). Therefore we have the following result.
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LEMMA 4. Let p be a prime and P a normal p-subgroup of a group G. Then
F∗(G/8(P))= F∗(G)/8(P). If P is contained in Z(G), then F∗(G/P)=
F∗(G)/P.

For a group G and a subgroup D of G, the family of all subgroups H of G such
that |H | = |D| is denoted by 2D(G). If G is a 2-group, we shall assume that 2D(G)
also includes the subgroups X of G such that |X | = 2|D|.

We often require the next lemma in our proofs. It allows us to invoke Lemma 3 at
the appropriate point.

LEMMA 5. Let p be a prime and let P be a p-subgroup of a group G containing a
noncyclic minimal normal subgroup N of G. Assume that P has a nontrivial proper
subgroup D such that every subgroup in 2D(P) is a CAP-subgroup (strong CAP-
subgroup) of G. Then P/N has a subgroup with the same property in G/N.

PROOF. If |D|were less than |N |, then N would have a subgroup in2D(P)which nei-
ther covers nor avoids N . Hence |N | ≤ |D|. Assume that |N | = |D|. If |2D(P)|> 1,
then 2D(P) has subgroups avoiding N . Let F be one of them and let Z be a minimal
normal subgroup of F N contained in N . If L is a maximal subgroup of F , it follows
that Z L ∈2D(P). Then N is contained in Z L . This implies that Z = N and N
is cyclic, contrary to our assumption. Therefore we have 2D(P)= {N }. Since
|N |> p, P has to be cyclic by [8, Kapitel III, Satz 8.3]. This contradiction leads
to |N |< |D|. In this case P has a subgroup E in 2D(P) containing N and so the
nonempty family of subgroups 2E/N (P/N ) of P/N is composed of CAP-subgroups
(strong CAP-subgroups) of G/N . 2

We now obtain one of the main results of this section.

THEOREM 6. Let p be the smallest prime dividing the order of a soluble group G.
Assume that every Sylow p-subgroup P of G has a nontrivial proper subgroup D such
that every subgroup in2D(P) is a strong CAP-subgroup of G. Then G is p-nilpotent.

PROOF. Let P be a Sylow p-subgroup of G and let D be a nontrivial proper subgroup
of P such that every member of 2D(P) is a strong CAP-subgroup of G. We proceed
by induction on |G|.

Suppose that Op′(G) 6= 1 and let N be a minimal normal q-subgroup of G for some
prime q such that p 6= q . Then G/N fulfils the hypothesis and so G/N is p-nilpotent
by induction. Then G is p-nilpotent, as required. Thus we can assume Op′(G)= 1.

Suppose that |D|> p. Let N be a minimal normal subgroup of G. Then N is
contained in P . If N is not cyclic, the hypotheses of Lemma 5 hold for the group
G/N . By induction we have that G/N is p-nilpotent. Assume that N is cyclic.
Then |N | = p. Since |D|> p, then P has a subgroup E in 2D(P) containing N
and so the nonempty family of subgroups2E/N (P/N ) of P/N is composed of strong
CAP-subgroups of G/N . By induction, G/N is p-nilpotent. Consequently we may
assume that G/N is p-nilpotent for every minimal normal subgroup N of G. Since
the class of all p-nilpotent groups is a saturated formation, we can assume that G is a
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primitive group, that is, G has a self-centralizing minimal normal subgroup N which
is complemented in G by a core-free maximal subgroup of G. Since Op′(G)= 1,
it follows that N is a p-group. If N is cyclic, then N is central in P . Then
P ≤ CG(N )= N . But this is not possible. Therefore we may assume that |N |> p.
Suppose that every subgroup in2D(P) covers N . Then N is contained in8(P). This
contradicts the fact that N is complemented in G. Hence there exists a subgroup
H ∈2D(P) avoiding N . Consider a minimal normal subgroup X of N H and a
maximal subgroup J of H . Then X is of order p and so X J is an element of 2D(P)
which neither covers nor avoids N . This contradiction leads us to |D| = p.

Assume that there exists a minimal non-p-nilpotent subgroup K of G. According
to [8, Kapitel IV, Satz 5.4], K has a normal Sylow p-subgroup A such that A has
exponent p if p is odd and exponent at most 4 if p = 2. Moreover, A/8(A) is a
chief factor of K . The assumptions on G imply that every subgroup of A either covers
or avoids A/8(A) and so A is cyclic. Applying [8, Kapitel IV, Satz 2.8], K is p-
nilpotent. This contradiction shows that the group G is p-nilpotent. The proof of the
theorem is complete. 2

We shall naturally be interested in the study of CAP-subgroups of some
characteristic subgroups associated with saturated formations. In this context, the
following results turn out to be useful.

COROLLARY 7. Let F be a saturated formation containing all supersoluble groups
and G a group with a soluble normal subgroup E such that G/E ∈ F. Suppose that
every noncyclic Sylow subgroup P of E has a nontrivial proper subgroup D such that
every subgroup in 2D(P) is a strong CAP-subgroup of G. Then G ∈ F.

PROOF. First we notice that if every Sylow subgroup of E is cyclic, then the result
holds. In that case, every chief factor H/K of G below E is a cyclic group of order q
for some prime q . It follows that G/CG(H/K ) is abelian of exponent dividing q − 1.
It implies that every chief factor of G below E is F-central in G and then G ∈ F
by [4, Ch. IV, Theorem 5.7].

Assume that the result is false and let G be a counterexample with |G| + |E |
minimal. Then E 6= 1. Let p be the smallest prime dividing |E |. Then E is p-nilpotent
by [8, Kapitel IV, Satz 2.8] and Theorem 6. Let A be a normal Hall p′-subgroup of
E . Then A is normal in G. Suppose A 6= 1. Since the pair (G/A, E/A) satisfies
the hypothesis of the corollary, it follows that G/A ∈ F, and so (G, A) fulfils the
conditions of the corollary. The minimality of (G, E) yields G ∈ F. This contradicts
our initial assertion. Therefore E is a p-group. By the previous remark, we can
assume that E is not cyclic and so it has a nontrivial proper subgroup D such that
every subgroup in 2D(E) is a strong CAP-subgroup of G.

Let N be a minimal normal subgroup of G contained in E . If N is not cyclic, we
apply Lemma 5 and the minimal choice of G to conclude that G/N ∈ F. Assume that
|N | = p. Suppose that |D| = p. Since G /∈ F, there exists a maximal subgroup M
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of G such that G = E M . It is clear that (M, E ∩ M) satisfies the hypotheses of the
corollary. Hence M ∈ F. Let L be the F-residual of G. Applying [3, Proposition 1],
L/8(L) is a chief factor of G and the exponent of L is p if p is odd and at most
4 if p = 2. The assumption on E implies that every subgroup of L covers or avoids
L/8(L). In particular, L/8(L) is cyclic and so it should be F-central. This is not
possible. Hence, |D|> p. Then the pair (G/N , E/N ) satisfies the hypothesis of the
corollary. By minimality of G, it follows that G/N ∈ F. Thus, G/N ∈ F for every
minimal normal subgroup N of G contained in E .

Let A be a minimal normal subgroup of G such that A is not contained in E . Then
(G/A, E A/A) satisfies the hypotheses of the corollary. The minimal choice of G
yields G/A ∈ F. Hence G ∈ F, contrary to supposition. Consequently every minimal
normal subgroup of G is contained in E . Since F is a saturated formation, it follows
that G has a unique minimal normal subgroup N , G/N ∈ F and N = Op(G). In
particular N = E and so every subgroup in 2D(N ) covers or avoids N . This final
contradiction proves the corollary. 2

LEMMA 8. A quasinilpotent group G is nilpotent if and only if every noncyclic Sylow
subgroup P of G has a nontrivial proper subgroup D such that all subgroups in
2D(P) are strong CAP-subgroups of G.

PROOF. Only the sufficiency of the condition is in doubt. Suppose that this is false
and let G be a minimal counterexample. Hence G is not soluble. In particular, by
the Feit–Thompson odd order theorem, G is not 2-nilpotent and then G has no cyclic
Sylow 2-subgroups by [8, Kapitel IV, Satz 2.8]. Since G is quasinilpotent, G has a
normal subgroup R such that G/R is a nonabelian simple group.

Let {p1, p2, . . . , pt } be the set of all primes dividing |G| such that a Sylow
pi -subgroup Pi of G is not cyclic. We may assume that 2= p1. Then Pi has a
nontrivial proper subgroup Di such that all subgroups in 2Di (Pi ) are strong CAP-
subgroups of G. Suppose that for some i there exists H ∈2Di (Pi ) such that H * R.
Then H does not avoid the chief factor G/R. Hence G = H R and so G/R is a
pi -group. This is a contradiction. Therefore we have H ≤ R, for every subgroup
H ∈2Di (Pi ), 1≤ i ≤ t . In particular, 2 divides |R|. It follows that the hypothesis
is still true for the R. Since R is quasinilpotent, R is nilpotent by the choice
of G. Hence every chief factor of G below R is central in G, by [9, Ch. X,
Corollary 13.7 Part(c)]. Let Z be a minimal normal subgroup of G contained in
the Sylow 2-subgroup of R. Since G is not 2-nilpotent, G has a minimal non-
2-nilpotent subgroup K . According to [8, Kapitel IV, Satz 5.4], K has a normal
Sylow 2-subgroup A such that A has exponent at most 4. Moreover, A/8(A) is a
chief factor of K . If |D1| = 2, then every subgroup 2D1(P1) would cover or avoid
A/8(A). This would imply that A is cyclic and so K would be 2-nilpotent by
[8, Kapitel IV, Satz 2.8]. Hence |D1|> 2, so that the hypothesis holds for G/Z . Hence
G/Z is nilpotent by the choice of G. This means that G is nilpotent. This contradiction
completes the proof of the lemma. 2
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3. The proof of Theorem A

Assume, arguing by contradiction, that the theorem is not true and choose for G a
counterexample with |G| + |E | minimal. Then G has the following properties.

(1) F = F∗(E)= F(E) 6= E .
By Lemma 8, F∗(E) is nilpotent. Hence F∗(E)= F(E). If F∗(E)= E , we can

apply Corollary 7 to conclude that G ∈ F, which contradicts our choice of G. Hence
F∗(E) is a proper subgroup of E .

(2) Let p the smallest prime dividing the order of F and let P be a Sylow
p-subgroup of F. Write V/P = F∗(E/P). Then p > 2.

Suppose that p = 2. Let Q be a Sylow q-subgroup of E for a prime q 6= 2.
Then P Q is 2-nilpotent by Corollary 7 (note that the class of all 2-nilpotent groups
is a saturated formation containing all supersoluble groups). Since P is a normal
in G, it follows that P Q is nilpotent. This happens for every odd prime q and
therefore O2(E)≤ CG(P). Consider the normal subgroup W = O2(V )P of E . Then
W/P = O2(V/P) is a quasinilpotent group and every chief factor of W below P is
central in W . Hence W is quasinilpotent and then W ≤ F∗(E)= F . Thus, W is
nilpotent and V/F is a 2-group. Therefore V is soluble. This implies that V/P is
nilpotent. If R is a Sylow 2-subgroup of V , then R is normal in V . Let H be a
Hall 2′-subgroup of V . Since H stabilizes the series R ≥ P ≥ 1, then H ≤ CV (R), by
[4, Ch. A, Corollary 12.4]. Hence V is nilpotent and therefore V = F . The pair
(G/P, E/P) satisfies the hypotheses of the theorem. The minimal choice of (G, E)
implies that G/P ∈ F. Applying Corollary 7, G ∈ F, contrary to supposition. Hence
p is an odd prime.

(3) Let X be a normal subgroup of G contained in P. Suppose that 1= X0 ≤ X1
≤ · · · ≤ X t = X is part of a chief series of G below X. If X i/X i−1 is cyclic for all
i ∈ {1, . . . , t}, then E centralizes X i/X i−1 for all i .

Let Ci = CG(X i/X i−1), 1≤ i ≤ t . Since G/Ci is cyclic, it follows that G/Ci ∈ F,
1≤ i ≤ t . Let C = C1 ∩ C2 ∩ · · · ∩ Ct . Since F is a residually closed, it follows that
G/C ∈ F. Hence G/E ∩ C ∈ F. Note that F is contained in E ∩ C . Therefore the
pair (G, E ∩ C) satisfies the hypotheses of the theorem. The minimal choice of the
pair (G, E) implies that E = E ∩ C .

(4) P is not cyclic.
Suppose that P is cyclic. Then every chief factor of G below P is cyclic and

so P fulfils the condition of step (3). Therefore E stabilizes a chain of subgroups
of P . By [4, Ch. A, Corollary 12.4], E/CE (P) is a p-group or, equivalently,
O p(E)≤ CE (P). Now we can argue as in step (2), replacing the prime 2 by p,
and we deduce that V/P is nilpotent. Since every chief factor of V below P is
central in V , we deduce that V is nilpotent. Therefore V/P = F/P . Now the pair
(G/P, E/P) satisfies the hypotheses of the theorem. By minimality of (G, E), we
have that G/P ∈ F. Applying Corollary 7, G ∈ F, which contradicts our choice of G.
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(5) Let D be a nontrivial proper subgroup P such that all subgroups in 2D(P) are
strong CAP-subgroups of G. Then |D|> p.

Suppose that |D| = p. Since p is odd, �1(P) possesses a characteristic
subgroup W of class at most 2 and of exponent p such that every nontrivial
p′-automorphism of �1(P) induces a nontrivial automorphism of W (see [6, Ch. 5,
Theorem 3.13]). It is clear that the assumptions on G imply that every chief factor
of G below W is cyclic. Applying step (3), E stabilizes a chain of subgroups of P .
By [4, Ch. A, Corollary 12.4], E/CE (W ) is a p-group.

Consider an element x ∈ E such that xCE (P) is a nontrivial p′-element of
E/CE (P). Let αx denote the automorphism of P induced by the conjugacy by x .
Suppose that αx acts nontrivially on �1(P). Then αx acts nontrivially on W . This
is to say that xCE (W ) is a nontrivial p′-element of E/CE (W ). Since E/CE (W ) is
a p-group, this is not possible. Hence, αx acts trivially on �1(P). By [6, Ch. 5,
Theorem 3.10], this implies that αx = 1, that is, x ∈ CE (P). This is to say that there is
no nontrivial p′-element of E/CE (P) or, in other words, that E/CE (P) is a p-group.

Then we can argue as in step (2) or step (4) to conclude that G ∈ F. This
contradiction shows that |D|> p.

(6) 8(P)= 1.

Assume that 8(P) 6= 1 and let L be a minimal normal subgroup of G contained in
8(P). By Lemma 4, F∗(E/L)= F∗(E)/L . For primes q 6= p, the noncyclic Sylow
q-subgroups of F∗(E)/L satisfy the hypotheses of the theorem by Lemma 3. If P/L
were cyclic, then P/8(P)would be cyclic and so would be P , against step (4). Hence,
P/L is noncyclic. If DL/L is trivial, then D = L . By step (5) and [8, Kapitel III,
Satz 8.2], there exists some D0 ∈2D(P) with D0 6= D. Hence, in any case, the Sylow
p-subgroups of F∗(E)/L satisfy the hypotheses of the theorem, by Lemma 3. Hence
G/L ∈ F by minimality of G. Since 8(P) is contained in 8(G) and F is saturated, it
follows that G ∈ F, contrary to our supposition.

(7) Conclusion.

Let N be a minimal normal subgroup of G contained in P . Clearly N is a proper
subgroup of P . Since 8(P)= 1, P is a completely reducible G-module over GF (p),
the finite field of p-elements. Hence P = N × M for some normal subgroup M 6= 1
of G. Suppose that |M |< |D|. Then P has a subgroup H such that M is contained
in H and |H | = |D|. This is not possible because H neither covers nor avoids N .
Hence |D| ≤ |M |. In particular, |P|> p2. Let K be a nontrivial subgroup of M
such that |K | = |D|/p (note that |D|> p by step (5)) and let Z be a minimal normal
subgroup of P contained in N . Then Z has order p and Z K is a subgroup of P of
order |D| which does not avoid N . Hence Z = N . By step (3), E centralizes N and
then F∗(E/N )= F∗(E)/N . Since P/N is noncyclic, we can argue as in step (6) to
conclude that the noncyclic Sylow subgroups of F∗(E/N ) satisfy the hypotheses of
the theorem. Hence G/N ∈ F by minimality of G. Since N is cyclic, it follows that N
is F-central in G. Hence G ∈ F. This final contradiction proves the theorem.
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