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Abstract. Second order nonlinear delay differential equations with positive delays
are considered, and sufficient conditions are given that guarantee the existence of
positive increasing solutions on the half-line with first order derivatives tending to
zero at infinity. The approach is elementary and is essentially based on an old idea
which appeared in the author’s paper Arch. Math. (Basel) 36 (1981), 168-178. The
application of the result obtained to second order Emden-Fowler type differential
equations with constant delays and, especially, to second order linear differential
equations with constant delays, is also presented. Moreover, some (general or specific)
examples demonstrating the applicability of the main result are given.
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1. Introduction and statement of the main result. An important topic in the
asymptotic theory of ordinary and delay differential equations is that of deriving
sufficient conditions to ensure the existence of solutions with prescribed asymptotic
behavior. Numerous articles have appeared in the literature on this topic; we choose
to refer to [3, 6-10, 12-18, 20-30] (and the references cited therein). In particular, it is
of great interest to establish sufficient conditions for the existence of global solutions
(i.e., of solutions on the whole given interval) with prescribed asymptotic behavior.
As it concerns second order nonlinear ordinary or delay differential equations, the
investigation of the existence of global solutions with prescribed asymptotic behavior
is usually reduced to the study of the existence of solutions of boundary value problems
on the half-line (see, for example, [9, 10, 12, 13, 26-30]). Boundary value problems
on infinite intervals have many applications in physical problems (cf. [1]). The present
article is concerned with the existence of positive solutions of a boundary value problem
on the half-line to second order nonlinear delay differential equations. For the basic
theory of delay differential equations, the reader is referred to the books [4, 5]. Our
work here is closely related to the work in the recent papers by Mavridis, the author
and Tsamatos [12, 13] and, in a sense, to the work in the recent paper by Agarwal, the
author and Tsamatos [2].

In this paper, we consider second order nonlinear delay differential equations
with positive delays, and we establish sufficient conditions for the existence of positive
increasing solutions on the half-line with first order derivatives tending to zero at
infinity. The assumption that the delays are positive is essential to our approach,
and hence our results cannot be applied to the corresponding second order nonlinear
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ordinary differential equations (see Section 4). An old idea that appeared in the author’s
paper [19] plays a crucial role in this paper. (Grains of this idea were presented in the
paper by Lovelady [11].)

Consider the second order nonlinear delay differential equation

X'+ (8, x(t = T1(0)), ..., x(t = T(1))) = 0, (1.1)
where m is a positive integer, f is a continuous real-valued function on the set [0, o0) x R™,
and T; (j = 1, ..., m) are positive continuous real-valued functions on the interval [0, o)
such that

tlim(z— T() =00 (j=1,...,m).
Define

T =— min min(t — T;(?)).
j=1,..m =0

Clearly, t is a positive real number.

Our interest will be concentrated on solutions of the delay differential equation
(1.1) on the whole interval [0, co). By a solution on [0, oo) of (1.1), we mean a continuous
real-valued function x defined on the interval [—z, co) that is twice continuously
differentiable on [0, co) and satisfies (1.1) for all 7 > 0.

Together with the delay differential equation (1.1), we specify an initial condition
of the form

x(t) = ¢(1) for —7 <1 <0, (1.2)

where the initial function ¢ is a given continuous real-valued function on the interval
[—7, 0]. Throughout the paper, it will be assumed that

#(0) =0.
Moreover, along with (1.1), we associate the condition
tlim X'(f) =0. (1.3)

It must be noted that (1.3) implies that lim,_, ,o[x(?)/#] = 0.

The delay differential equation (1.1) together with the conditions (1.2) and (1.3)
constitute a boundary value problem (BVP, for short) on the half-line. A solution on
[0, 00) of (1.1) satisfying (1.2) and (1.3) is said to be a solution of the boundary value
problem (1.1)—(1.3) or, more briefly, a solution of the BVP (1.1)—(1.3).

The proposition given below provides a useful integral representation of the BVP
(1.1)—(1.3), which will be used in proving the main result of the paper. This proposition
has been established by Mavridis, the author and Tsamatos in [12] for a more general
second order nonlinear delay boundary value problem, in which, however, the delays
are assumed to be bounded. But, as it is easy to see, the restriction of the boundedness
of the delays is not needed for the validity of the proposition. A similar proposition
has also been used by Mavridis, the author and Tsamatos in the recent paper [13].
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PROPOSITION. A4 continuous real-valued function x defined on the interval [—t, 00) is
a solution of the BVP (1.1)—(1.3) if and only if it satisfies
(1) for —t<t=<0,
Jo° min{z, s}f (s, x(s — T1(5)), ..., x(s — T,u(s))) ds
= fot sF(s, x(s — T1(5)), . .., x(s — Tu(s))) ds
—l—tfloof(s, x(s — T1(5)), ..., x(s — Tp(s))ds fort>0.

x(f) = (1.4)

In the present paper, we are interested in studying the problem of the existence
of solutions of the BVP (1.1)—(1.3) that are positive on [—t, co) — {0}. Therefore, in
addition to the assumption that ¢(0) = 0 posed previously, without mentioning it any
further, it will be supposed that

(1) >0 for—t<t<0O.

The main result of this paper is the following theorem, which provides sufficient
conditions for the BVP (1.1)—(1.3) to have at least one solution that is positive on
(0, 00) and strictly increasing on [0, 00).

THEOREM. Suppose that the function f is positive on [0, 00) x (0, c0)™ ; i.e.,

ft,y1,...,ym)>0 forallt>0andy; >0,...,y, > 0. (1.5)
Also, assume that, for each t > 0, the functionf(t, -, . .., -) isincreasing on [0, co)" in the
sense that f(t, Y1, ..., Ym) < f(t, w1, ..., wy) for any (yi,..., Vm), (W1, ..., wy) with
Ofyl Swl,---,OS)’mSwm-

Let there exist a real number ¢ > 0 so that
[ Ao pnar = (1.6)

where, for eachj € {1, ..., m}, the function p; depends on ¢, ¢ and is defined by

[ eu—Tia), if0<1<T0)
pi(1) = [c(l— Ty, > T, (7

(Clearly, p; (j=1,...,m) are nonnegative continuous real-valued functions on the
interval [0, 00). ) Then the BVP (1.1)—(1.3) has at least one solution x such that

0<x(t)<ct foreveryt>0 (1.8)
and
0<xX(t)<c foreveryt>0. (1.9)

Note. Because of x(0) = ¢(0) = 0, (1.8) is a consequence of (1.9).

We notice here that, because of the continuity of / on [0, c0) x [0, c0)™, the
hypothesis that f is positive on [0, c0) x (0, 00)™, i.e., that (1.5) holds, implies that
the function f is nonnegative on [0, 00) x [0, c0)™, i.e.,

f&,y1,...,ym) =0 forallt>0 andy, >0,...,y, >0. (1.10)
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The proof of our theorem will be given in Section 2. Section 3 contains the
application of the main result to second order Emden-Fowler type differential
equations with constant delays, and, especially, to second order linear differential
equations with constant delays. Also, some (general or specific) examples, which
demonstrate the applicability of our theorem, will be presented in Section 3. The
last section (Section 4) is devoted to a discussion.

2. Proof of the theorem. The following lemma provides useful information about
the solutions of the BVP (1.1)—(1.3) that are nonnegative on the interval (0, co). This
lemma plays a crucial role in proving our theorem.

LEMMA. Suppose that the function f is positive on [0, 00) x (0, 00)"; i.e., (1.5) holds.
Let x be a solution of the BVP (1.1)—(1.3) that is nonnegative on the interval (0, co).
Then x is always positive on (0, 00), moreover, we have

X () >0 foreveryt>0

and so x is strictly increasing on [0, 00).

Note. Because of x(0) = ¢(0) = 0, the positivity of x on (0, co) is a consequence
of the fact that x is strictly increasing on [0, co).

Proof of the lemma. The proof will be accomplished by proving that x’ is positive
on the interval [0, co) (and so x is strictly increasing on [0, c0)).

First of all, we observe that x is nonnegative on the whole interval [—t, c0). Thus,
we must have x(r — Tj(f)) > 0 for t > 0 (j =1, ..., m) and consequently, in view of
(1.10),

f(t, x(t—Ty()),...,x(t— T,()) >0 foreveryt>0. 2.1

Moreover, we see that, by our proposition, the solution x satisfies (1.4). It follows
immediately from (1.4) that

X'(t) = /oof(s, x(s — T1(s5)), ..., x(s — T,(s)))ds forallt > 0. 2.2)

Now, we shall show that x'(0) > 0. For this purpose, we apply (2.2) for t =0 to
obtain

x'(0) = fo S, x(s = T1(9). - - x(s — Tou(s))) dis. (23)

Since —1<-T(0)<0 (j=1,...,m), we have x(—T;0))=¢(-T;0)) >0,
forj=1,..., mand so because of (1.5) we always have

SO, x(=T1(0)). ... x(=Tx(0))) > 0;

that is

S x(t = T(0), ... x(t = Tn(D)li=0 > 0.

In view of (2.1) and the last inequality, it follows from (2.3) that x(0) is necessarily
positive.
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Next, we shall prove that x’ is positive on the interval (0, co). Assume, for the sake
of contradiction, that x’ is not always positive on (0, co). Then, as x'(0) > 0, we see
that x’ must have zeros in the interval (0, co). Let 7y > 0 be the first zero of X’ in (0, c0).
That is, X’ is positive on [0, #y), and x'(z9) = 0. Thus, x is strictly increasing on [0, ()
and x in increasing on [0, #y]. Hence, as x(0) = ¢(0) = 0, we conclude that x is always
positive on the interval (0, #]. Furthermore, as x'(¢y) = 0, an application of (2.2) with
t =ty gives

foof(s, x(s — T1(s5)), ..., x(s — Tp,(s)))ds = 0,

which, because of (2.1), yields
f(t, x(t —Ti(2), ..., x(t — T,(2)) =0 foreveryt > t,. 2.4

By (2.4), it follows from (1.1) that x"(¢) =0 for all ¢ > #,, which implies that x’
is constant on [#, 00). Hence, since x'(zp) = 0, we have x'(¢) = 0 for every ¢ > ¢.
Consequently, x is constant on [#y, 0c0). Thus, as x(#y) > 0, we have x(¢) > 0 for any
t > to. Hence, the solution x is necessarily positive on the interval (0, co). Now, by

taking into account the assumption that lim,_,(t — Tj(¢)) = oo (j = 1, ..., m), we can
choose a point #{ > Osothatt — Tj(f) > Oforallz > #; (j = 1, ..., m). Then, since x is
positive on (0, co), we have x(t — T;(¢)) > 0 for every t > t; (j = 1, ..., m). Therefore,

by virtue of (1.5), we obtain
ft, x(t—T\(@),...,x(t — Tu(®)) >0 forallz> 1,

which contradicts (2.4).
The proof of the lemma is complete.

Now, we are in a position to proceed to the proof of our theorem.

Proof of the theorem. Let X be the set of all continuous real-valued functions x
defined on the interval [z, 00), that satisfy

x(t)y=¢(t) for —1<t<0 2.5)
and

0<x(t) <ct foreveryt> 0. (2.6)

Consider an arbitrary function x in X. It follows from (2.5) and (2.6) that, for any
jef{l,...,m}andevery ¢ > 0,

0 < x(t — Ty(1) = ¢(t — Ty(0) if0 <1< Ty(0),
0 < x(t—Ty(0) < et — T{0) if 1= Ty(0.

(Note that x(0) = ¢(0) = 0.) In view of (1.7), we have
0<x(t—Tit) <pi(t) foreveryt>0 (j=1,...,m).

Thus, by using (1.10) as well as the hypothesis that, for each ¢ > 0, the function
f(,-,...,-) isincreasing on [0, c0)", we find that

0 </t x(t = T\(0), ... x(t = Tw()) = (&, 21(D), ..., pw(D)) forallz= 0. (2.7)
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Hence,
0< /tsf(s, x(s — T1(5)), ..., x(s — Tu(s)))ds fort > 0. (2.8)
0

Furthermore, we observe that the asssumption (1.6) guarantees, in particular, that

AJ@MWWWWW<M 29)

and consequently, by virtue of (2.7), we must have
0< / f(s, x(s — T1(5)), ..., x(s — Tpu(s))ds < oo fort>0. (2.10)
t
For any function x in X, (2.8) and (2.10) hold true and so we immediately see that
the formula
¢(r) for —7 <t <0,
fooo min{z, s} (s, x(s — T1(s)), ..., x(s — Ty,(s))) ds

= [y 8/ (5. x(s = T1(9). ..., x(s — T(s))) ds
+1 [ f (s, x(s — T1(5)), ..., X(s — Tyu(s)))ds fort>0

(Mx)(1) =

makes sense for any function x in X, and that this formula defines a mapping M of X
into the set of all nonnegative continuous real-valued functions defined on the interval
[—7, 00). We shall show that M is a mapping of X into itself; i.c., that MX C X.
We observe that, for any function x in X, we have (Mx)(?) = ¢(¢) for —7 <t <0.
Furthermore, let us consider an arbitrary function x in X. By (2.8) and (2.10), we have
(Mx)(t) = 0 for every t > 0. Moreover, by taking into account (2.7), we obtain, for
t>0,

(MMW%=/‘f@x@—Ylenqx@—TM@»ﬁ
5/%ﬁm®an®WS

sﬂﬂmmwwquM&

Hence, by using the assumption (1.6), we find that
(Mx)'(f) < ¢ foreveryt> 0. (2.11)

Since (M x)(0) = ¢(0) = 0, it follows from (2.11) that, for each ¢ > 0,

(Mx)(1) = /OI(Mx)/(s) ds < /Ot cds = ct.

That is, we always have (M x)(¢) < ct for every ¢ > 0. We have thus proved that, for any
x € X, Mx belongs to X; thatis MX C X.

Now, let us consider two arbitrary functions x and X in X with x < X; i.e., with
x(t) < X(¢) for t > —7. Then, by the definition of X, for eachj € {1, ..., m} and every
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t > 0, we have

0 < x(t — Ty(1) = §(t — Ty(1)) = Xt — Ty(1)) if0 <1 < Ty(1),
0 < x(t = T,(1) < Xt — T/(1) if 1= Ty(0).

Thus, by taking into account the hypothesis that, for each ¢ > 0, the function
f(,-,...,-)isincreasing on [0, c0)™, we get

[t x(t — T(1)), ..., x(t = T,(0)) < f(t,X(t — T1(2)), ..., X(t — T, (2))) fort=>0.
Hence, we see that

(Mx)(t) = (MX)(#) for —7 <1<0,
(Mx)(1) < (MX)(t) fort>0

and consequently (Mx)(¢) < (MX)(?), for every t > —t1;i.e., Mx < MX. We have thus
proved that the mapping M is increasing with respect to the usual pointwise ordering
in X.

Next, we define

(1) = ¢(t) for —t <1t<0,
Y= ct fort>0
and

Xppr1=Mx, (v=0,1,...).

As M is an increasing mapping of X into itself, it is not difficult to see that (x,),_¢ .
is a decreasing sequence of functions in X. Set

x = lim x, pointwise on [—T, 00).
V—>00
By (2.7), we have for t > 0

0 Sf(tv Xv(l - Tl(t))v D) Xv(t - Tm(t))) Sf(h p](t)v R Pm(t))

for all nonnegative integers v. Hence, because of (2.9), we can apply the Lebesgue
dominated convergence theorem to obtain, for 7 > 0

oo

lim min{z, s}f (s, x,(s — T1(5)), ..., Xo(s — T)u(s))) ds
V—> 00 0

= /oo min{z, s} (s, x(s — T1(s)), . .., x(s — Tyu(s))) ds.
0

Thus, we conclude that

lim (Mx,)(t) = (Mx)(¢), forevery t> —rt.
V—>00

Consequently, we have

X(1) = lim x,41() = lim (Mx,)(7) = (Mx)() for 1> —7
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and so x = Mx, i.e., x satisfies (1.4). Therefore, by our proposition, x is a solution of
the BVP (1.1)—(1.3). As x € X, the solution x satisfies 0 < x(#) < ct for every ¢ > 0.
Moreover, since x = M x, it follows from (2.11) that x'(z) < cfor every ¢t > 0. Finally, as
x is nonnegative on the interval (0, 00), our lemma guarantees that x is always positive
on (0, co) and such that x'(¢) > 0 for every ¢ > 0. Hence the solution x satisfies (1.8)
and (1.9).

The proof of the theorem is complete.

3. Applications and examples. Consider the second order Emden-Fowler type
delay differential equation

X'(0)+ Y pi)lx(t — )7 sgn x(1 — 1) =0 (3.1)
j=1

and, especially, the second order linear delay differential equation

X0+ pix(t — 1) =0, (3.2)

J=1

where m is a positive integer, p; (j =1, ..., m) are nonnegative continuous real-valued
Sunctions on the interval [0,00), t; (j=1,...,m) are positive real constants, and y;
(G =1,...,m)are positive real numbers. It will be supposed that

ij(l) >0 forallt>0.

J=1

We notice that, as p; (j =1,..., m) are nonnegative on [0, 00), the last hypothesis
means exactly that, for each t > 0, there exists at least one index j € {1, ..., m} so that
p;(t) > 0.

Let us define the positive real number t by

We are interested in solutions of the delay differential equation (3.1) (and,
especially, of (3.2)) on the whole interval [0, c0). A solution on [0, 00) of (3.1)
(respectively, of (3.2)) is a continuous real-valued function x defined on the interval
[—7,00), which is twice continuously differentiable on [0, c0) and satisfies (3.1)
(respectively, (3.2)) for all ¢ > 0. The initial condition (1.2) as well as the condition
(1.3) are associated with (3.1) (and, especially, with (3.2)). Hence, we have the BVP
(3.1), (1.2) and (1.3) (and, especially, the BVP (3.2), (1.2) and (1.3)).

By applying our theorem to the particular case of the BVP (3.1), (1.2) and (1.3),
we are led to the following corollary.

COROLLARY 1. Let there exist a real number ¢ > 0 so that

Z/ j [¢(z — fj)]yfpj(t) dt + Z Y / (t —7)pi()dt < c.
j=1 70 = Y
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Then the BVP (3.1), (1.2) and (1.3) has at least one solution x such that (1.8) and (1.9)
hold.

The linear delay differential equation (3.2) can be obtained (as a special case) from
(3.1) by taking y; = 1 for j =1, ..., m. In the special case of the BVP (3.2), (1.2) and
(1.3), the hypothesis in Corollary 1 becomes

j; /O ; (1 — gpi(n) dt + c;-/r, (t — T)p(t)dt < ¢

m 7 m 00
Z/ ¢t —pi(dt <c|1— Z/ (t — t)pi(D)dt
oo =g

Hence, we can immediately arrive at the next corollary.

COROLLARY 2. Let the condition

> / (t—t)p(Hdt < 1
j=1°79

be satisfied, and set

. Yo Jo ot — ppi(0)dt
=300 [ = gp(ndt

(Clearly, ¢ is a positive real number.) Then the BVP (3.2), (1.2) and (1.3) has at least
one solution x such that (1.8) and (1.9) hold.

Now, in order to present some examples demonstrating the applicability of our
theorem, we shall concentrate on Emden-Fowler type differential equations (and,
especially, linear differential equations) with one constant delay.

Let us consider the Emden-Fowler type delay differential equation

X"(6) + p(@) |x(t — )" sgnx(t — 1) =0 (3.3)
and, especially, the linear delay differential equation
X'(t) + p()x(t — ) =0, (3.4)

where p is a positive continuous real-valued function on the interval [0, 00), T is a positive
real constant, and y is a positive real number.

In the particular case of the BVP (3.3), (1.2) and (1.3), Corollary 1 is formulated
as follows.

Let there exist a real number ¢ > 0 so that

/T [¢(t — )] p(t)dt + ¢ foo(t —)'p(r)dt < c. (3.5)
0 T
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Then the BVP (3.3), (1.2) and (1.3) has at least one solution x such that (1.8) and (1.9)
hold.

Moreover, as it concerns the special case of the BVP (3.4), (1.2) and (1.3),
Corollary 2 takes the following form.

Let the condition
/ (t—1)p(t)dt < 1 (3.6)

be satisfied, and set

_ Jo ot = D)p(n dt
1= [Pt —optydt

Clearly, c is a positive real number. Then the BVP (3.4), (1.2) and (1.3) has at least one
solution x such that (1.8) and (1.9) hold.

(3.7)

ExaMPLE 1. Consider the differential equation (3.3) with y = %; i.e., the sublinear
delay differential equation

X'(£) + p(0)|x(t — )| Y?sgn x(t — ) = 0. (3.8)

As it concerns the BVP (3.8), (1.2) and (1.3), condition (3.5) becomes
[ = ozpnare = [0 dr <

namely

c— [ / oo(z —1)2p(1) dt} 2 /0 T[¢(z —0)]2p(t)dt > 0. (3.9)
By taking c!/? = C, the last inequality is written as

c? - Uoo(z —)'2p() dt] C - /OT[¢(1 —0)]2p(t)dt = 0. (3.10)
Let us consider the quadratic equation

a0 =0~ | [T 00 dt|o - [Toc- o1 piar=o
in the complex plane, and let A be its discriminant; i.e.,

A= |:/oo(t —)'2p(1) dt]z + 4/0T [p(1 — )] p(t) dt.

We observe that A > 0. Hence, the equation Q(w) = 0 has two distinct real roots w;
and w; given by

00 00 2 T
o= (t—t)]/zp(t)dt—\/[% / (z—r)l%(r)dr} + [ o= o
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and

:l > _ )2 d \/|:l Oo — )2 d:r ' — 7)]1/2 d
0= f (=00 di+ |5 / (t—V2p(ydi| + /0 Bt — D1 2p(0) d.

We immediately see that w; < 0 < w,. For each real number w, we have Q(w) > 0 if
and only if either w < w; or w > w,. Hence, (3.10) is satisfied with C > 0 if and only if
C > wj. Consequently, (3.9) holds with ¢ > 0 if and only if ¢ > w% Thus, we conclude
that (3.9) is valid (as an equality) for

2
00 00 2 T
c= {% / (t—r)l/zp(t)dt+\/ [% / (t—r)l/zp(t)dt:| + fo [¢(l—r)]1/2p(l)dl} .

@3.11)

In particular, we obtain the following result.

Let ¢ > 0 be the real number given by (3.11). Then the BVP (3.8), (1.2) and (1.3) has
at least one solution x such that (1.8) and (1.9) hold.

Now, we choose T = 1, ¢(¢f) = —tfor —1 <t <0, and

p()=e """ fors>o0.

Then we can easily show that

[Cu—opodi=a [we-orpoa=a- 3
T 0 e

and consequently (3.11) becomes

2
c=<2+,/8—§> . (3.12)

Hence, we arrive at the following result. The boundary value problem

¥(1) 4+ e x(r — 1) sgn x(t — 1) = 0,
x()=—t for —1<t=<0, lim_x'({#)=0

has at least one solution x such that (1.8) and (1.9) hold, where the positive real number
¢ is given by (3.12).
EXAMPLE 2. Let us consider the case of the differential equation (3.3) with y = 2;
i.e., the case of the superlinear delay differential equation
X"(t) + p(0)[x(t — T)Psgn x(t — ) = 0. (3.13)

In the case of the BVP (3.13), (1.2) and (1.3), condition (3.5) is written as

/T [¢(t — OF p(1)dt + & /Oo(l —)’p(di < ¢
0 T
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or
[ / oo(z —7)%p(t) dt} A —c+ / ‘ [¢(r — T)F p(t)dt < 0. (3.14)
T 0

Consider the quadratic equation

Qw) = [ / (t—t)zp(t)dt]w —w+ / [p(t — ) p(t)dt =

in the complex plane, and denote by A its discriminant; i.e.,

A=1-4 [ / (1 — 1)°p(1) dt} /0 [¢(r — ) p(t) dt.

If A <0, then we always have Q(w) > 0 for all real numbers w, and so there is
no real number ¢ > 0 such that (3.14) holds. Suppose that A = 0. Then the equation
Q(w) = 0 has exactly one (double) real root wy given by

1
2 [ —op(tydt’
which is obviously positive. For any real number w, we have Q(w) < 0 if and only if
Q(w) = 0; i.e., if and only if w = wy. Consequently, (3.14) is satisfied with ¢ > 0 if and

only if ¢ = wy. (For ¢ = wy, (3.14) is fulfilled as an equality.) Next, let us assume that
A > 0. Then the equation Q(w) = 0 has the real roots

wy =

L= 1= 4[J = op( di] [y 1 — DFp(r) dr
“re 2 [ — op(r)dr
and
L /1= 4[5 = 0p( di] [y (0 — DFp(r) dr
wy =

27t —v)*p(r)dt

with 0 < w; < w;. For each real number w, we have Q(w) < 0 if and only if w; < w <
;. Thus, (3.14) holds with ¢ > 0 if and only if w; < ¢ < w,. In particular, for ¢ = wy,
(3.14) is satisfied (as an equality). After the above analysis, we conclude that, if

|:/ (t—1) (t)dt]f [p(t — OPp()dt < ‘—ll (3.15)

then (3.14) is valid (as an equality) for

1= 14— 02 de] [ 9 — T)Pp(r) d
2 [2(r — v)p(t) dt
Hence, we are led to the next result.

Assume that (3.15) is satisfied, and let ¢ > 0 be the real number given by (3.16). Then
the BVP (3.13), (1.2) and (1.3) has at least one solution x such that (1.8) and (1.9) hold.

(3.16)
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Now, take T = 1, ¢(f) = —t for —1 <t <0, and

3
HN= —— f 0.
p(1) TES ort>

Then it is easy to find that

o0 1 T
/T ((~Ppydi=5 and /0 6 — OF pltydi = »

Hence, (3.15) is satisfied (as an equality) and (3.16) becomes ¢ = 1. Thus, we derive the
following result. The boundary value problem

X'(f) + (r++)4[x(t — DPsgnx(t—1)=0,
x()=—t for —1<t=<0, lim_,x'()=0
has at least one solution x such that (1.8) and (1.9) hold, with ¢ = 1.
Next,set 7 = 1, ¢(¢f) = —t for —1 <t <0, and

3V3

In this case, we find that

/t C—orp(ydi = ? and /0 ot oPpd = %

and consequently (3.15) is fulfilled (as a strict inequality) and (3.16) gives ¢ = % Thus,
we arrive at the next result: The boundary value problem

X'(1) + 2([+1)4 [x(t — DPsgnx(t — 1) = 0,
x(f)=—t for —1<t=<0, lim_,x'()=0
has at least one solution x such that (1.8) and (1.9) hold, with ¢ = f
ExAMPLE 3. Consider the linear delay differential equation (3.4) with t = 1 and

2
)= —— forr>0.
p(1) R
Take ¢(t) = —t for —1 < ¢ < 0. It is a matter of elementary calculation to show that

o0 1 T
/T (t—1t)p(t)dt = 3 and /0 ot —)p(t)ydt = =

Hence, we see that (3.6) is satisfied and that (3.7) becomes ¢ = 1. Thus the following
result is true. The boundary value problem

{x“(t) + X = 1) =0

x(t)y=—t for — 1 <t<0, Ilim_x'({#)=0

has at least one solution x such that (1.8) and (1.9) hold, with ¢ = 1.
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4. Discussion. Asitisimmediately seen, our lemma plays a crucial role in proving
our theorem; i.e., the main result of the paper. Moreover, after a careful reading of the
proof of our lemma, one may easily verify that the proof of this lemma is essentially
based on the use of the hypothesis that the initial function ¢ is positive on the interval
[—7, 0) (as well as on the assumption that the function f"is positive on [0, oo) x (0, c0)™;
i.e., that (1.5) holds). This hypothesis is fundamental, because of the fact that T > 0;
i.e., of the fact that the delays 7; (j =1, ..., m) are positive on the interval [0, co).
It is clear that we cannot have such an hypothesis in the case of the second order
nonlinear ordinary differential equations, and so our lemma (and, consequently,
our theorem) cannot be applied to the corresponding ordinary boundary value
problem. More precisely, let us consider the second order nonlinear delay differential
equation

xX"(8) + fo(t, x(t — 7)) = 0, 4.1

where fj is a continuous real-valued fucntion on [0, co) x R that is positive on [0, c0) x
(0, 0co) and 7 is a positive real constant. For T = 0, equation (4.1) reduces to the second
order nonlinear ordinary differential equation

x'(1) + fo(t, x(1)) = 0, (4.2)
and the initial condition (1.2) becomes
x(0) = 0. (4.3)

That is, when t = 0, the BVP (4.1), (1.2), (1.3) reduces to the BVP (4.2), (4.3), (1.3).
Our lemma and our theorem are applicable to the delay BVP (4.1), (1.2), (1.3), but
these results cannot be applied to the ordinary BVP (4.2), (4.3), (1.3).

In Section 3 we have given examples of delay boundary value problems of the
form (4.1), (1.2), (1.3) in which our theorem applies. But, it is difficult to verify that
the corresponding ordinary boundary value problems of the form (4.2), (4.3), (1.3)
have no positive increasing solutions, since in order to show this fact one has to solve
explicitly the ordinary boundary value problems.

Finally, we notice that our theorem establishes sufficient conditions for the
existence of at least one solution x of the BVP (1.1)—(1.3), that is positive on (0, co)
and strictly increasing on [0, 0o). It is remarkable that our lemma guarantees that any
solution x of the BVP (1.1)—(1.3) that is nonnegative on (0, 00), has the same behaviour;
1.e., it is always positive on (0, co) and strictly increasing on [0, 00).
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